CSCI 2824-Spring 2015: In-class exercise #1

Date: Monday February 9, 2015

Last nai	ne: F	irst name:	Student ID:
In this exercise, we prove universal statements of the form			
	for any int	eger $n \ge n_0$, $P(n)$ holds,	
where n_0 is some integer and $P(n)$ is a predicate, using weak induction			
(1) Claim: For every integer $n \ge 4$, $2^n < n!$.			
Proof.			
$n_0 =$			
P(n):			
(1) Check	the base case:		
(2) Wite	down the induction hypothesis:		
(3) Prove	the induction hypothesis:		

(2) Claim: For every integer $n \ge 1$, $\sum_{j=1}^{n} (2^{j} - 1) = 2^{n+1} - n - 2$.

Proof.

 $n_0 =$

P(n):

- (1) Check the base case:
- (2) Wite down the induction hypothesis:
- (3) Prove the induction hypothesis: