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High-performance operator evaluations with ease of
use: libCEED’s Python interface
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Abstract—libCEED is a new lightweight, open-source library for high-
performance matrix-free Finite Element computations. libCEED offers a portable
interface to high-performance implementations, selectable at runtime, tuned for
a variety of current and emerging computational architectures, including CPUs
and GPUs. libCEED’s interface is purely algebraic, facilitating co-design with
vendors and enabling unintrusive integration in new and legacy software. In this
work, we present libCEED’s newly-available Python interface, which opens up
new strategies for parallelism and scaling in high-performance Python, without
compromising ease of use.

Index Terms—High-performance Python, performance portability, scalability,
parallelism, high-order finite elements

Introduction

Historically, high-order Finite Element Methods (FEM) have seen
very limited use for industrial problems because the matrix de-
scribing the action of the operator loses sparsity as the order
is increased [Ors80], leading to unaffordable solve times and
memory requirements [Bro10]. Consequently, most industrial ap-
plications have used at most quadratic polynomial bases, for which
assembled matrices appear to be a good choice, at least when
one seeks to minimize the number of floating point operations
(FLOPs) per degree of freedom (DOF); see the right panel of Fig.
1. Nowadays, high-order numerical methods, such as the spectral
element method (SEM)—a special case of nodal p-Finite Element
Method that can reuse the interpolation nodes for quadrature—are
employed (e.g., in scientific computing packages such as MFEM
[MFE20] and Nek5000 [Nek20]), especially with applications for
which implicit solves are limited to linear constant-coefficient
separable equations on (nearly) affine elements, which can be
efficiently solved with sum factorization and multigrid [LF05].

In Fig. 1, we analyze and compare the asymptotic costs of
applying the action of a finite element matrix using different
configurations: assembling the sparse matrix representing the
action of the operator (labeled as assembled), applying the action
without assembly while using a tensor-product decomposition of
the basis and metric terms computed on the fly with a compact rep-
resentation of the linearization stored at quadrature points (labeled
as tensor), and similarly, but with a precomputed pull-back of the
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Fig. 1: Comparison of asymptotic memory transfer and floating point
operations per degree of freedom for different representations of
a linear operator for a PDE (on a 3D hexahedral mesh) with b
components and variable coefficients arising due to Newton lineariza-
tion of a material nonlinearity. The representation labeled as tensor
computes metric terms on the fly and stores a compact representation
of the linearization at quadrature points. The representation labeled
as tensor-qstore pulls the metric terms into the stored representation.
The assembled representation uses a (block) CSR format.

linearization to reference elements (labeled as tensor-qstore). In
the right panel, we show the cost in terms of FLOPs/DOF. This
metric for computational efficiency made sense historically, when
performance was primarily limited by floating point arithmetic.
Memory bandwidth is the overwhelming bottleneck on today’s
machines, which can perform 40-100 FLOPs per floating point
load from memory, and thus the left panel of Fig. 1 becomes a
more accurate performance model for modern architectures. We
can see that well-implemented high-order methods require low
memory motion that decreases with polynomial order and FLOPs
that are relatively insensitive to polynomial order for operator
evaluation. Thus, high-order methods in matrix-free representation
not only possess favorable properties, such as higher accuracy and
faster convergence to solution, but also manifest an efficiency gain
compared to their corresponding assembled representations.

For the reasons mentioned above, in recent years, high-order
numerical methods have been widely used in Partial Differential
Equation (PDE) solvers, but software packages that provide high-
performance implementations have often been special-purpose and
intrusive. In contrast, libCEED [lib20b], the Code for Efficient
Extensible Discretizations is light-weight, minimally intrusive,
and very versatile. In fact, libCEED offers a purely algebraic
interface for matrix-free operator representation and supports run-
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Fig. 2: The role of libCEED as a lightweight, portable library that
provides a low-level API for efficient, specialized implementations.
libCEED allows different applications to share highly optimized
discretization kernels.

time selection of implementations tuned for a variety of com-
putational device types, including CPUs and GPUs. libCEED’s
algebraic interface can unobtrusively be integrated in new and
legacy software to provide performance portable interfaces. While
libCEED’s focus is on high-order finite elements, the approach is
algebraic and thus applicable to other discretizations in factored
form (e.g., spectral difference). libCEED’s role, as a low-level
library that allows a wide variety of applications to share highly
optimized discretization kernels, is illustrated in Fig. 2, where a
non-exhaustive list of specialized implementations (backends) is
provided. libCEED provides a low-level Application Programming
Interface (API) for user codes so that applications with their
own discretization infrastructure (e.g., those in PETSc [BAA+20],
MFEM and Nek5000) can evaluate and use the core operations
provided by libCEED. GPU implementations are available via
pure CUDA [CUD20] as well as the OCCA [OCC20] and
MAGMA [MAG20] libraries. CPU implementations are available
via pure C and AVX intrinsics as well as the LIBXSMM [LIB20c]
library. libCEED provides a unified interface, so that users only
need to write a single source code and can select the desired
specialized implementation at run time. Moreover, each process
or thread can instantiate an arbitrary number of backends.

In this work, we first introduce libCEED’s conceptual model
and interface, then illustrate its new Python interface, which was
developed using the C Foreign Function Interface (CFFI) for
Python. CFFI allows reuse of most of the C declarations and
requires only a minimal adaptation of some of them. The C and
Python APIs are mapped in a nearly 1:1 correspondence. For in-
stance, a CeedVector object is exposed as libceed.Vector
in Python, and may reference memory that is also accessed via
Python arrays from the NumPy [vCV11] or Numba [LPS15]
packages, for handling host or device memory (when interested
in GPU computations with CUDA). Flexible pointer handling in
libCEED makes it easy to provide zero-copy host and (GPU)
device support for any desired Python array container.

libCEED’s API

As illustrated in the Introduction, it is favorable to minimize
memory motion, especially when computations are performed in
parallel computing environments. In Finite Element codes that
exploit data parallelism, the action of the operator can be described
as global, when the operator is applied to data distributed across

different nodes or compute devices, or local, when operating on
a single portion of the data partition. libCEED’s API provides the
local action of an operator (linear or nonlinear) without assembling
its sparse representation. The purely algebraic nature of libCEED
allows efficient operator evaluations (selectable at runtime) and
offers matrix-free preconditioning ingredients. While libCEED’s
focus is on high-order finite elements, the approach with which it
is designed is algebraic and thus applicable to other discretizations
in factored form. This algebraic decomposition also presents the
benefit that it can equally represent linear or non-linear finite
element operators.

Let us define the global operator as

A = PT GT BT DBG︸ ︷︷ ︸
libCEED’s scope

P , (1)

where P is the parallel process decomposition operator (external
to libCEED, which needs to be managed by the user via external
packages, such as petsc4py [BAA+20], [DPKC11]) in which
the degrees of freedom (DOFs) are scattered to and gathered
from the different compute devices. The operator denoted by
AL = GT BT DBG gives the local action on a compute node or
process, where G is a local element restriction operation that
localizes DOFs based on the elements, B defines the action of
the basis functions (or their gradients) on the nodes, and D
is the user-defined pointwise function describing the physics of
the problem at the quadrature points, also called the QFunction
(see Fig. 3). Instead of forming a single operator using a sparse
matrix representation, libCEED composes the different parts of
the operator described in equation (1) to apply the action of the
operator AL =GT BT DBG in a fashion that is tuned for the different
compute devices, according to the backend selected at run time.

In libCEED’s terminology, the global or total vector is called
a T-vector (cf. Fig. 3). This stores the true degrees of freedom of
the problem. In a T-vector, each unknown has exactly one copy,
on exactly one processor, or rank. The process decomposition,
denoted by P in equation (1), is a non-overlapping partitioning.
The application of the operator P to a T-vector results in an
L-vector, or local vector. This stores the data owned by each
rank. In an L-vector, each unknown has exactly one copy on
each processor that owns an element containing it. This is an
overlapping vector decomposition with overlaps only across differ-
ent processors—there is no duplication of unknowns on a single
processor. The nodes adjacent to different elements (at element
corners or edges) will be the one that have more than one copy,
on different processors. Applying an element restriction operator,
denoted by G in equation (1), to an L-vector creates an E-vector.
This stores the nodes grouped by the elements they belong to.
In fact, in an E-vector each unknown has as many copies as the
number of elements that contain it. The application of a basis
operator B to an E-vector returns a Q-vector. This has the same
layout of an E-vector, but instead of holding the different unknown
values, a Q-vector stores the values at quadrature points, grouped
by element.

The mathematical formulation of QFunctions, described in
weak form, is fully separated from the parallelization and meshing
concerns. In fact, QFunctions, which can either be defined by the
user or selected from a gallery of available built-in functions in
the library, are pointwise functions that do not depend on element
resolution, topology, or basis degree (selectable at run time).
This easily allows hp-refinement studies (where h commonly
denotes the average element size and p the polynomial degree
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Fig. 3: Operator decomposition.

of the basis functions in 1D) and p-multigrid solvers. libCEED
also supports composition of different operators for multiphysics
problems and mixed-element meshes (see Fig. 4). Currently, user-
defined QFunctions are written in C and must be precompiled as
a foreign function library and loaded via ctypes. The single-
source C QFunctions allow users to equally compute on CPU
or GPU devices, all supported by libCEED. The ultimate goal
is for users to write only Python code. This will be achieved
in the near future by using the Numba high-performance Python
compiler or Google’s extensible system for composable function
transformations, JAX [BFH+18], which can use just-in-time (JIT)
compilation to compile for coprocessors and speed-up executions
when sequences of operations are performed.

G2

G1

B2

B1

D
︷ ︸︸ ︷
∇ · (∇u)︸ ︷︷ ︸

D

Fig. 4: A schematic of element restriction and basis applicator
operators for elements with different topology. This sketch shows the
independence of QFunctions (in this case representing a Laplacian)
element resolution, topology, or basis degree.

Source Code Examples

LibCEED for Python is distributed through PyPI [PyP20] and can
be easily installed via
$ pip install libceed

or
$ python -m pip install libceed

The package can then be simply imported via
>>> import libceed

The simple declaration of a libceed.Ceed instance, with
default resource (/cpu/self) can be obtained as
>>> ceed = libceed.Ceed()

If libCEED is built with GPU support, the user can specify a GPU
backend, e.g., /gpu/occa or /gpu/cuda/gen, with
>>> ceed = libceed.Ceed('/gpu/cuda/gen')

Next, we show the creation of a libceed.Vector of a specified
size
>>> n = 10
>>> x = ceed.Vector(n)

Similarly, this could have been achieved by running
>>> x = ceed.Vector(size=10)

In the following example, we associate the data stored in a
libceed.Vector with a numpy.array and use it to set and
read the libceed.Vector’s data
>>> import numpy as np

>>> x = ceed.Vector(size=3)

>>> a = np.arange(1, 4, dtype="float64")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> with x.array_read() as b:
... print(b)
...
[1. 2. 3.]

Similarly, we can set all entries of a libceed.Vector to the
same value (e.g., 10) via
>>> x.set_value(10)

If the user has installed libCEED with CUDA support and
Numba, they can use device memory for libceed.Vectors.
In the following example, we create a libceed.Vector with
a libCEED context that supports CUDA, associate the data stored
in a CeedVector with a numpy.array, and get a Numba
DeviceNDArray containing the data on the device.
>>> ceed_gpu = libceed.Ceed('/gpu/cuda')

>>> n = 4
>>> x = ceed_gpu.Vector(n)

>>> a = np.arange(1, n + 1, dtype="float64")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> with x.array_read(memtype=libceed.MEM_DEVICE) as
device_array:

... print(device_array)

...
[1. 2. 3. 4.]

Among the Finite Elements objects needed to compose an opera-
tor, in the following example we illustrate the creation and apply
action of an element restriction, denoted by G in equation (1)
>>> ne = 3

>>> x = ceed.Vector(ne+1)
>>> a = np.arange(10, 10 + ne+1, dtype="float64")
>>> x.set_array(a, cmode=libceed.USE_POINTER)

>>> ind = np.zeros(2*ne, dtype="int32")
>>> for i in range(ne):
... ind[2*i+0] = i
... ind[2*i+1] = i+1
...
>>> r = ceed.ElemRestriction(ne, 2, 1, 1, ne+1, ind,
... cmode=libceed.USE_POINTER)

>>> y = ceed.Vector(2*ne)
>>> y.set_value(0)

>>> r.apply(x, y)
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>>> with y.array_read() as y_array:
... print('y =', y_array)
...
y = [10. 11. 11. 12. 12. 13.]

An H1 Lagrange basis in d dimensions can be defined with the
following code snippet
>>> d = 1
>>> b = ceed.BasisTensorH1Lagrange(
... dim=d, # topological dimension
... ncomp=1, # number of components
... P=2, # number of basis functions (nodes)
... # per dimension
... Q=2, # number of quadrature points
... # per dimension
... qmode=libceed.GAUSS_LOBATTO)
>>> print(b)
CeedBasis: dim=1 P=2 Q=2

qref1d: -1.00000000 1.00000000
qweight1d: 1.00000000 1.00000000
interp1d[0]: 1.00000000 0.00000000
interp1d[1]: 0.00000000 1.00000000
grad1d[0]: -0.50000000 0.50000000
grad1d[1]: -0.50000000 0.50000000

In the following example, we show how to apply a 1D basis
operator, denoted by B in equation (1), from an E-vector named
Ev, to a Q-vector named Qv, and vice-versa, its transpose operator
BT

>>> Q = 4
>>> dim = 1
>>> Xdim = 2**dim
>>> Qdim = Q**dim
>>> x = np.empty(Xdim*dim, dtype="float64")
>>> for d in range(dim):
... for i in range(Xdim):
... x[d*Xdim + i] = 1 if (i % (2**(dim-d)))
... // (2**(dim-d-1)) else -1
...
>>> Ev = ceed.Vector(Xdim*dim)
>>> Ev.set_array(x, cmode=libceed.USE_POINTER)
>>> Qv = ceed.Vector(Qdim*dim)
>>> Qv.set_value(0)
>>> bx = ceed.BasisTensorH1Lagrange(dim, dim, 2, Q,
... libceed.GAUSS_LOBATTO)
>>> bx.apply(1, libceed.EVAL_INTERP, Ev, Qv)
>>> print(Qv)
CeedVector length 4

-1.000000
-0.447214
0.447214
1.000000

>>> bx.T.apply(1, libceed.EVAL_INTERP, Qv, Ev)
>>> print(Ev)
CeedVector length 2
-1.200000
1.200000

In the following example, we create two QFunctions (for the setup
and apply, respectively, of the mass operator in 1D) from the
gallery of available built-in QFunctions in libCEED
>>> qf_setup = ceed.QFunctionByName("Mass1DBuild")
>>> print(qf_setup)
Gallery CeedQFunction Mass1DBuild

2 Input Fields:
Input Field [0]:
Name: "dx"
Size: 1
EvalMode: "gradient"

Input Field [1]:
Name: "weights"
Size: 1
EvalMode: "quadrature weights"

1 Output Field:

Output Field [0]:
Name: "qdata"
Size: 1
EvalMode: "none"

>>> qf_mass = ceed.QFunctionByName("MassApply")
>>> print(qf_mass)
Gallery CeedQFunction MassApply

2 Input Fields:
Input Field [0]:

Name: "u"
Size: 1
EvalMode: "interpolation"

Input Field [1]:
Name: "qdata"
Size: 1
EvalMode: "none"

1 Output Field:
Output Field [0]:

Name: "v"
Size: 1
EvalMode: "interpolation"

The setup QFunction, named qf_setup in the previous example,
is the one that defines the formulation of the geometric factors
given by the correspondence between deformed finite element
coordinates and reference ones. The apply QFunction, named
qf_mass in the previous example, is the one that defines the
action of the physics (in terms of the spatial discretization of the
weak form of the PDE) the user wants to solve for. In this simple
example, this represented the action of the mass matrix.

Finally, once all ingredients for a libceed.Operator are
defined (i.e., element restriction, basis, and QFunction), one can
create and apply a local operator as
>>> nelem = 15
>>> P = 5
>>> Q = 8
>>> nx = nelem + 1
>>> nu = nelem*(P-1) + 1

>>> # Vectors
>>> x = ceed.Vector(nx)
>>> x_array = np.zeros(nx)
>>> for i in range(nx):
... x_array[i] = i / (nx - 1.0)
...
>>> x.set_array(x_array, cmode=libceed.USE_POINTER)
>>> qdata = ceed.Vector(nelem*Q)
>>> u = ceed.Vector(nu)
>>> v = ceed.Vector(nu)

>>> # Restrictions
>>> indx = np.zeros(nx*2, dtype="int32")
>>> for i in range(nx):
... indx[2*i+0] = i
... indx[2*i+1] = i+1
...
>>> rx = ceed.ElemRestriction(nelem, 2, 1, 1, nx, indx,
... cmode=libceed.USE_POINTER)
>>> indu = np.zeros(nelem*P, dtype="int32")
>>> for i in range(nelem):
... for j in range(P):
... indu[P*i+j] = i*(P-1) + j
...
>>> ru = ceed.ElemRestriction(nelem, P, 1, 1, nu, indu,
... cmode=libceed.USE_POINTER)
>>> strides = np.array([1, Q, Q], dtype="int32")
>>> rui = ceed.StridedElemRestriction(nelem, Q, 1,
... Q*nelem, strides)

>>> # Bases
>>> bx = ceed.BasisTensorH1Lagrange(1, 1, 2, Q,
... libceed.GAUSS)
>>> bu = ceed.BasisTensorH1Lagrange(1, 1, P, Q,
... libceed.GAUSS)



HIGH-PERFORMANCE OPERATOR EVALUATIONS WITH EASE OF USE: LIBCEED’S PYTHON INTERFACE 89

>>> # QFunctions
>>> qf_setup = ceed.QFunctionByName("Mass1DBuild")
>>> qf_mass = ceed.QFunctionByName("MassApply")

>>> # Setup operator
>>> op_setup = ceed.Operator(qf_setup)
>>> op_setup.set_field("dx", rx, bx,
... libceed.VECTOR_ACTIVE)
>>> op_setup.set_field("weights",
... libceed.ELEMRESTRICTION_NONE, bx,
... libceed.VECTOR_NONE)
>>> op_setup.set_field("qdata", rui,
... libceed.BASIS_COLLOCATED,
... libceed.VECTOR_ACTIVE)
>>> print('Setup operator: ', op_setup)
Setup operator: CeedOperator

3 Fields
2 Input Fields:
Input Field [0]:
Name: "dx"
Active vector

Input Field [1]:
Name: "weights"
No vector

1 Output Field:
Output Field [0]:
Name: "dx"
Collocated basis
Active vector

>>> # Apply Setup operator
>>> op_setup.apply(x, qdata)

For all of the illustrated classes of objects, libceed.Ceed,
libceed.Vector, libceed.ElemRestriction,
libceed.Basis, libceed.QFunction, and
libceed.Operator, libCEED’s Python interface provides
a representation method so that they can be viewed/printed by
simply typing

>>> print(x)

These and other examples can be found in the suite of Project
Jupyter [KRKP+16] tutorials provided with libCEED in a Binder
[lib20a] interactive environment, accessible on libCEED’s devel-
opment site [lib20b]. Finally, examples of integration of libCEED
with other packages in the co-design Center for Efficient Exascale
Discretizations (CEED), such as PETSc, MFEM, and Nek5000,
can be found in the CEED distribution, which provides the full
CEED software ecosystem [BAB+19], [KFA+20].

Conclusions

We have presented libCEED, a new lightweight, open-
source, matrix-free Finite Element library, its conceptual
framework, and new Python interface. libCEED’s purely
algebraic framework can unobtrusively be integrated in
new and legacy software to provide performance portable
applications. In this work, we have demonstrated the usage
of libCEED’s Python interface by providing examples
of the creation and application of the main classes in
libCEED’s API: libceed.Ceed, libceed.Vector,
libceed.ElemRestriction, libceed.Basis,
libceed.QFunction, and libceed.Operator. We
have showed how libCEED’s simple interface allows for easy
and composable library reuse and can open up new strategies for
parallelism and scaling in high-performance Python.
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