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Abstract

We present a computational investigation of thin viscoelastic films and drops on a solid substrate

subject to the van der Waals interaction force, in two spatial dimensions. The governing equations

are obtained within a long-wave approximation of the Navier-Stokes equations with Jeffreys model

for viscoelastic stresses. We investigate the effects of viscoelasticity, Newtonian viscosity, and

the substrate slippage on the dynamics of thin viscoelastic films. We also study the effects of

viscoelasticity on drops that spread or recede on a prewetted substrate. For dewetting films, the

numerical results show the presence of multiple secondary droplets for higher values of elasticity,

consistently with experimental findings. For drops, we find that elastic effects lead to deviations

from the Cox-Voinov law for partially wetting fluids. In general, elastic effects enhance spreading,

and suppress retraction, compared to Newtonian ones.

Keywords: Viscoelastic thin films; Viscoelastic drops; Dewetting instability; Drop spreading

1. Introduction

Thin liquid films play a central role in many real life applications and therefore are studied

widely theoretically, numerically, and experimentally. Thin polymer films, in particular, are of

special importance due to their presence in a broad variety of applications, for example, in the

food, chemical, and pharmaceutical industries, as well as in materials science. Polymeric liquids are

one example of a wider class of viscoelastic liquids, constituted by a Newtonian (viscous) solvent and

a non-Newtonian (polymeric) solute. In general, viscoelastic films combine characteristics of viscous

fluids with features typical of elastic matter. The interface between the liquid and the surrounding

fluid (usually a gaseous phase) is a free and deformable boundary, and therefore thin liquid films

can display a variety of dynamics and interfacial instabilities. As widely presented in the literature,

see, for instance, [1–3], these instabilities can lead to film breakup, dewetting the substrate. The

understanding of the instability mechanisms relevant to thin polymer films has thus motivated
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many theoretical and experimental studies, see, e.g., [4–7]. Perhaps one of the first experimental

works on this matter has been carried out by Reiter [8], where the influence of the film thickness

on the interfacial instability of polymer films of nanometer size is examined. His study shows that,

when dewetting occurs, a rim can form ahead of the dewetting edge and subsequently decay into

drops on the substrate. Since his work, the investigation of thin polymer film morphologies at the

nanoscale has been a major focus of many studies, see, e.g., [9–14]. Additional works focused on

the stability, the dynamics, and the morphology of the fluid interface due to rheological properties

[15–19]; these investigations are carried out with the goal of understanding whether the effects

related to viscoelasticity, slippage, surface heterogeneities, or forces of electrohydrodynamic origin

play a key role in the development of surface instabilities.

Despite numerous works focusing on polymeric films, very few studies consider numerical simula-

tions of the interface of thin layers of viscoelastic fluids dewetting a solid substrate, see, e.g., [20, 21].

In particular, Vilmin and Raphaël develop a model based on a simplified dewetting geometry of the

film, neglecting the surface tension [20]. They demonstrate that the friction force and the residual

stresses, due to the film viscoelasticity, can have an opposing influence on the dewetting dynamics.

They show that these residual stresses can accelerate the onset of the dewetting, followed by a slow,

quasi-exponential, growth of the hole. Although their model is useful to explain the main features

of the dynamics of the evolving rim, it is unable to provide a detailed description of the dewetting

process and a quantitative investigation of the final morphological structures. An earlier study of

Tomar et al. [21] uses the lubrication model derived by Rauscher et al. [22] for thin viscoelastic

films of Jeffreys type, although without including the substrate slippage. Using both linear stability

analysis and nonlinear simulations, they show that viscoelasticity does not have a major influence

on the dewetting dynamics. Their numerical solutions suggest that the length scale of instability

in the nonlinear regime is unaltered by the viscoelasticity.

In this work, we present a detailed description of numerical solutions of the nonlinear governing

equation based on the long-wave (lubrication) model developed by Rauscher et al. [22] for thin

viscoelastic films, with Jeffreys constitutive model for viscoelastic stresses [4, 23]. In this model,

viscoelastic stresses are described with a Newtonian contribution (due to the solvent) plus a polymer

contribution that is governed by the linear Maxwell model [6]. To model the film breakup and the

consequent dewetting process, as well as to impose the contact angle, we include the van der

Waals attraction/repulsion interaction force. This force introduces an equilibrium film on the

solid substrate, leading to a prewetted (often called precursor) layer in nominally dry regions. In

particular, we focus on the emerging length scales due to the instability of a viscoelastic film at

dewetting stage, that to date have not been reported in the literature. Unlike the previous numerical

studies introduced, we consider the effect of transitioning from no-slip to weak slip on the initial

instability development and the dewetting dynamics. A surprising finding is that the resulting

morphologies are influenced by viscoelasticity and slippage. In fact, we show the formation of not
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only main drops, as previously demonstrated in [21], but also of multiple satellite droplets that

are completely absent for Newtonian films. These secondary droplets are comparable with those

found experimentally (see, e.g. [8, 12] or [10], where they are called “nanodroplets”), but, to the

best of our knowledge, have not been found in previous computational studies of the evolution of

viscoelastic films.

The first part of our investigations concerns the spontaneous dewetting of a thin viscoelastic film,

initially at rest, due to van der Waals interactions, in two spatial dimensions. Consistently with [24],

we find that in the linear regime, the critical and most unstable wavenumbers are neither dependent

on the viscoelastic parameters, nor on the slip length, but only on the van der Waals interactions

with the substrate. We then provide numerical simulations of the evolution of the interface in the

nonlinear regime. In this regime, we find that the instability and the final configuration of the fluid

in primary and secondary droplets are affected by the viscoelastic parameters and the slippage of

the substrate. We show how a larger viscoelasticity induces the formation of secondary droplets,

and how the slip at the substrate prevents them from forming. We thus provide, for the first time,

numerical simulations leading to novel morphologies for thin viscoelastic dewetting films.

Finally, we focus on the spreading/receding of viscoelastic planar drops on a solid substrate.

We study viscoelastic drops that spread/recede spontaneously due to the imbalance between the

initial and the equilibrium contact angles. The theoretical and experimental studies of spreading

or retracting drops, both for Newtonian and viscoelastic fluids, are numerous (see, e.g., [25–32]).

Surprisingly, only a few studies report computational results for viscoelastic dynamic contact lines,

see [33–35]. Yue and Feng [33] use a phase-field model to simulate the displacement flow of Oldroyd-

B fluids in a channel formed by parallel plates. They show that viscoelastic stresses close to the

contact line region affect the bending of the interface. Also, Wang et al. [34] use an axisymmetric

formulation to describe the spreading of viscoelastic drops, comparing the Giesekus (shear-thinning)

and the Oldroyd-B models. They show that the spreading speed depends on the viscoelastic re-

laxation time. Most recently, Izbassarov and Muradoglu [35] study the effects of viscoelasticity on

drop impact and spreading on a solid substrate. They investigate the spreading rate of viscoelastic

drops, using the FENE-CR model, and find that viscoelastic effects enhance the spreading speed.

In the present work, we consider partial wetting by accounting for van der Waals interactions

between the solid and the fluid. Although our approach is developed strictly for configurations

characterized by small interfacial slopes, we expect that it still provides reasonably accurate results

for the situations such that the contact angle is not small (see, e.g., [27] for a discussion of this

topic). Our numerical results show that viscoelasticity enhances the spreading in the early stage

of wetting by smoothing the interface in the contact line region. Similar considerations are drawn

by Wang et al. [34], and Izbassarov and Muradoglu [35]. Finally, the study of the advancing

dynamic contact angle allows us to determine that the Cox-Voinov law [36, 37] holds for the viscous

Newtonian fluid, but not for the viscoelastic counterpart. For retracting drops, we find that the
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interface of a viscoelastic drop provides more resistance to the motion, causing the drop to retract

slower, consistently with the experimental study [32]. Our results regarding receding viscoelastic

drops show a deviation from the Cox-Voinov law as well.

It is appropriate to make a remark about the choice of the constitutive model. Although

linear viscoelastic models, such as the Jeffreys model, are known to be valid only for flows with

small displacement gradients [4, 21, 22], we expect a linear constitutive model to be sufficiently

adequate to describe the viscoelastic behavior in the context of spontaneous wetting/dewetting

processes. For more complex flows, one should incorporate more general viscoelastic models, such

as the Oldroyd-B model [4]. However, as noted also by Tomar et al. [21], the nonlinear convective

terms of the stress tensor in an Oldroyd-B model would not change the linear stability analysis, and

therefore our results for the linear regime are valid for both linear and nonlinear viscoelastic models.

Furthermore, our numerical simulations show how, in the final stage of the nonlinear evolution,

dewetting viscoelastic films display a slow, viscous dynamics, for which a linear viscoelastic model

is considered to be appropriate. Additionally, we have verified that displacement gradients (hence

the shear rate) are not large even in the intermediate time of the dewetting process, in which

viscoelastic fluids exhibit a non-Newtonian response to deformations. In summary, in the context

of spontaneous wetting/dewetting processes driven by the van der Waals interaction force only, the

assumption of small displacement gradients is not violated, and a linear viscoelastic model suffices

to describe the effects of viscoelasticity.

The rest of this paper is organized as follows: In § 2, we introduce the governing equations; In

§ 3, we outline the numerical methods used to solve the nonlinear problem; In § 4, we present the

linear stability analysis (LSA), and discuss the numerical results for both dewetting and wetting

studies; In § 5, we draw our conclusions; We finally report the derivation of the governing equations

and their numerical discretization in Appendices A and B, respectively.

2. Governing Equations

We consider an incompressible liquid, with constant density ρ, surrounded by a gas phase

assumed to be inviscid, dynamically passive, and of constant pressure. The equations of conservation

of mass and momentum, respectively, for the liquid phase then become

ρ (∂tu + u · ∇u) = −∇(p+ Π) +∇ · τ , (1a)

∇ · u = 0 , (1b)

where u = (u(x, y, t), v(x, y, t)) is the velocity field in the Cartesian xy-plane (as by convention, the

x-axis is horizontal, and the y-axis is vertical), and ∇ = (∂x, ∂y); τ is the stress tensor, p is the

pressure, and Π is the disjoining pressure induced by the van der Waals solid-liquid interaction force

(we note that ∇Π = 0 except at the liquid-gas interface). This force is attractive (destabilizing) for
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Figure 1: Schematic of the fluid interface and boundary conditions. Fluid 1 is the viscoelastic liquid and fluid 2 is
the ambient (passive) gas.

thicker films and repulsive (stabilizing) for thin ones, leading naturally to the concept of equilibrium

film thickness, defined below as h?, at which repulsive and attractive forces balance each other [38].

We provide the form of the disjoining pressure used in this work in Appendix A, where the long-wave

approximation of the system (1) is described in detail.

To model the stresses, we use a generalization of the Maxwell model for viscoelastic liquids: the

Jeffreys model. It describes the non-Newtonian nature of the stress tensor τ , interpolating between

a purely elastic and a purely viscous behavior. The stress tensor according to Jeffreys model follows

the constitutive equation

τ + λ1∂tτ = η(γ̇ + λ2∂tγ̇) , (2)

where γ̇ is the strain rate tensor, e.g. γ̇12 = ∂xv+∂yu (other components of γ̇ are similarly expressed

in terms of derivatives of u), and η is the shear viscosity coefficient. In Jeffreys model, the response

to the deformation of a viscoelastic liquid is characterized by two time constants, λ1 and λ2, the

relaxation time and the retardation time, respectively, related by

λ2 = λ1
ηs

ηs + ηp
. (3)

Here ηs and ηp are the viscosity coefficients of the Newtonian solvent and the polymeric solute,

respectively, such that η = ηs + ηp. Noting that the ratio ηr = ηs/(ηs + ηp) ≤ 1, we have that

λ1 ≥ λ2 [4, 21, 22]. We also observe that, within the Jeffreys model, we recover the Maxwell

viscoelastic model when λ2 = 0, and a Newtonian fluid when λ1 = λ2.

Figure 1 shows a schematic of the fluid interface, represented parametrically by the function

f(x, y, t) = y − h(x, t) = 0, and the boundary conditions at the free surface (y = h(x, t)) and at
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the x-axis (y = 0). At the latter, we apply the non-penetration and the Navier slip boundary

conditions, with slip length coefficient denoted by b ≥ 0 (b = 0 implies no-slip). As discussed in

[39, 40], long-wave models for thin films can be derived in different slip regimes. In the present

work, we will focus on the weak slip regime; for strong slip, a different system of governing equations

is derived in [24]. The interested reader can find the derivation of the governing equation for the

evolving interface h(x, t) in Appendix A, where all quantities and scalings are defined. We report

here its final dimensionless form

(1 + λ2∂t)ht +
∂

∂x

{
(λ2 − λ1)

(
h2

2
Q− hR

)
ht+[

(1 + λ1∂t)
h3

3
+ (1 + λ2∂t)bh

2

]
∂

∂x

(
∂2h

∂x2
+ Π(h)

)}
= 0 , (4)

where Q = Q(h) and R = R(h) satisfy, respectively,

(1 + λ2∂t)Q = − ∂

∂x

(
∂2h

∂x2
+ Π(h)

)
, (5a)

(1 + λ2∂t)R = −h ∂

∂x

(
∂2h

∂x2
+ Π(h)

)
. (5b)

We note that in the absence of viscoelasticity (i.e. with λ1 = λ2), equations (4) and (5) reduce to

the well-known long-wave formulation for viscous Newtonian films (see, e.g., [2]).

3. Numerical Methods

To numerically solve equations (4) and (5), we use the finite differences technique, described in

detail in Appendix B. To simplify, we first consider a purely elastic (Maxwell) liquid, that is λ2 = 0.

Thus, the governing equations (4) and (5) reduce to a first order in time formulation given by

ht −
∂

∂x

{
λ1
h2

2
(hxxx + Π′(h)hx)ht −

[
h3

3
+ bh2 + λ1

∂

∂t

(
h3

3

)]
(hxxx + Π′(h)hx)

}
= 0 . (6)

To discretize equation (6), we isolate the time derivatives from the spatial ones, so that we can

apply an iterative scheme to find the approximation to the solution at the new time step. We do

so by differentiating the spatial derivatives and, assuming the partial derivatives of h(x, t) to be
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continuous, we obtain

∂

∂x

[(
h3

3
+ bh2

)
(hxxx + Π′(h)hx)

]
︸ ︷︷ ︸

f(h)

+

[
1− 1

2
λ1

∂

∂x

[
h2 (hxxx + Π′(h)hx)

]]
︸ ︷︷ ︸

g(h)

ht+

∂

∂t

(
∂h

∂x

)
︸ ︷︷ ︸
l(h)

{
−1

2
λ1

[
h2 (hxxx + Π′(h)hx)

]}
︸ ︷︷ ︸

m(h)

+λ1
∂

∂t

[
∂

∂x

(
h3

3
(hxxx + Π′(h)hx)

)]
︸ ︷︷ ︸

p(h)

= 0 . (7)

We can now differentiate the time derivatives and use the Crank-Nicolson scheme on the term f(h)

as

g(h)ni
hn+1
i − hni

∆t
+m(h)ni

l(h)n+1
i − l(h)ni

∆t
+ λ1

p(h)n+1
i − p(h)ni

∆t
= −1

2

[
f(h)ni + f(h)n+1

i

]
. (8)

The nonlinear terms h2 and h3 are computed at the cell-centers, as outlined in [41, 42]. After the

linearization, we obtain a system of equations of the form A1ξ = B1, that we numerically solve for

the correction term, ξ, using a direct method [43]. The initial condition given for h(x, 0) is a known

function that either describes the initial perturbation of the fluid interface for the film simulations

or a circular cap for the drop simulations (see § 4).

For λ2 6= 0, the governing equation (4), after differentiating the spatial derivative, and isolating

the time derivatives, can be recast to a second order in time equation given by

λ2htt +
∂

∂x

[(
h3

3
+ bh2

)
(hxxx + Π′(h)hx)

]
︸ ︷︷ ︸

f(h)

+

{
1 + (λ2 − λ1)

[
∂

∂x

(
h2

2
Q− hR

)]}
︸ ︷︷ ︸

ĝ(h)

ht+

∂

∂t

(
∂h

∂x

)
︸ ︷︷ ︸
l(h)

(λ2 − λ1)

(
h2

2
Q− hR

)
︸ ︷︷ ︸

m̂(h)

+λ1
∂

∂t

[
∂

∂x

(
h3

3
(hxxx + Π′(h)hx)

)]
︸ ︷︷ ︸

p(h)

+

λ2
∂

∂t

[
∂

∂x

(
bh2 (hxxx + Π′(h)hx)

)]
︸ ︷︷ ︸

q(h)

= 0 , (9)

where now the discrete versions of the equations (5a) and (5b) are:

Qn+1
i −Qni

∆t
= −Q

n
i

λ2
− 1

λ2
(hxxx + Π′(h)hx)

n
i , (10a)

Rn+1
i −Rni

∆t
= −R

n
i

λ2
− 1

λ2
hni (hxxx + Π′(h)hx)

n
i , (10b)

that we simply solve by the forward Euler method with initial conditions Q0
i = 0 and R0

i = 0.
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Again, discretizing all terms and applying Crank-Nicolson scheme we obtain

λ2
hn+1
i − 2hni + hn−1

i

∆t2
+ ĝ(h)ni

hn+1
i − hni

∆t
+ m̂(h)ni

l(h)n+1
i − l(h)ni

∆t
+ λ1

p(h)n+1
i − p(h)ni

∆t
+

λ2
q(h)n+1

i − q(h)ni
∆t

= −1

2

[
f(h)ni + f(h)n+1

i

]
. (11)

Similarly, we proceed by linearizing the nonlinear terms and solving the resulting system A2ξ = B2.

We note that in this case the partial differential equation is second order in time. We therefore

need a two-step method with a second initial condition, in addition to the prescribed h(x, 0). We

use ht(x, 0) = 0, resulting from the assumption that the considered films and drops are initially at

rest.

4. Results and discussion

4.1. Linear stability analysis

To study the fluid response to a prescribed disturbance, we perform the linear stability analysis

(LSA). We perturb a flat film of initial thickness h0 by a Fourier mode of amplitude δh0 (such

that δ � 1), with wavenumber k and growth rate ω. Hence we let h(x, t) = h0 + δh0e
ikx+ωt. The

dispersion relation ω = ω(k) is

λ2ω
2 +

[
1 + (k4 − k2Π′(h0))

(
λ1
h3

0

3
+ λ2bh

2
0

)]
ω + (k4 − k2Π′(h0))

(
h3

0

3
+ bh2

0

)
= 0 . (12)

Solving for the two roots of this quadratic equation, we obtain one strictly negative root, ω2, and

one root with varying sign, ω1. The latter one is positive (unstable) for k2 < Π′(h0). We note that

both the critical wavenumber, kc, given by k2
c = Π′(h0), and the wavenumber of maximum growth,

km = kc/
√

2, do not depend on λ1 and λ2, nor on the slip length b (as also discussed in [24]).

Moreover, we note that in the absence of retardation, i.e. for λ2 = 0, the dispersion relation for a

purely elastic film leads to an unbounded growth rate for λ1 = −3/h3
0(k4 − k2Π′(h0)). However,

for λ2 6= 0, the growth rate ω is always finite. This observation about the unboundedness of the

growth rate in purely elastic films has also been drawn by other authors, see, for instance, [19, 21].

We also note that the maximum growth rate, ωm = ω(km), is an increasing function of λ1 and b,

while a decreasing function of λ2. In § 4.2, we will discuss in more details the effects of λ1, λ2, and

b on the dewetting dynamics.

4.2. Dewetting of thin viscoelastic films

In this section, we present the numerical results for a dewetting thin film under the influence

of the van der Waals interaction force. We perturb the initially flat fluid interface of thickness
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Figure 2: (a) The comparison of the computed growth rate (red circles) with the prediction of the LSA (blue solid
line) given by equation (12), for h0 = 1, h? = 0.01, b = 0, λ2 = 0, λ1 = 5. (b)-(d) Evolution of four distinct
dewetting films with λ1 = 0 (blue circles), 2 (cyan triangles), 4 (green squares), 6 (red crosses), at three selected
times. At t = 3.345 × 105 (b), the separation of the rims and the formation of a secondary droplet for values of
λ1 6= 0 are shown. In (c), t = 3.37× 105, and in (d), t = 3.38× 105. The insets show a close-up of the region where
a secondary droplet forms.

h0 as described in § 4.1, with k = km and δ = 0.01. We choose the domain size to be equal to

the wavelength of maximum growth, that is Λ = 2π/km, unless noted otherwise. For unstable

perturbations, the van der Waals interaction force is attractive, causing the liquid interface to

retract towards the substrate. When the fluid interface approaches the substrate, dewetting occurs,

i.e. a hole (nominally a dry region) forms, leading to the formation of a rim that retracts and

collects the liquid at the edge. The system then gradually evolves toward an equilibrium state,

corresponding to separate drops on the substrate characterized by the equilibrium contact angle,

θe. We are mainly interested in the dynamics of the instabilities and the resulting morphologies,
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so we will only show results for unstable films. The set of parameters used for all simulations

shown hereafter is: an initial normalized height of the fluid h0 = 1, an equilibrium film thickness

h? = 0.01, a constant contact angle θe = 45◦, a normalized surface tension σ = 1, and a fixed grid

size ∆x = 5×10−3, unless specified differently. All numerical results shown in this work are verified

to be mesh-independent. We also validate our numerical investigations by comparing the growth

rate for the early times with the LSA (equation (12)). Figure 2(a) shows the comparison of the

computed growth rates for different wavenumbers (red circles) with the one given by the dispersion

relation ω1(k) (blue solid curve), for a film with λ1 = 5 and λ2 = 0, when b = 0. For these

numerical simulations, we choose the domain size according to the wavelength that corresponds to

the specified wavenumber. Although not shown here, comparisons between computed growth rates

and the LSA are performed for all following results as well.

We begin our analysis with the simplest case of a purely elastic fluid, λ2 = 0, and with no-slip

at the substrate, b = 0. Figures 2(b)–2(d) show the evolution of four distinct films with different

values of the relaxation time, λ1 = 0 (blue circles), 2 (cyan triangles), 4 (green squares), and 6 (red

crosses), at three selected times. The interfacial dynamics can be divided into three phases. The

initial regime corresponds to the short-time viscous response of the fluid, until the film separates in

two retracting rims (figure 2(b)). During intermediate times, the fastest dynamics occurs, and the

liquid responds elastically: in this stage holes and retracting edges form (figure 2(c)). In the last

phase, the rims grow further in height, until the interface reaches its final configuration, attaining

an equilibrium contact angle with the substrate (figure 2(d)). During this third stage, the fluid

shows a long-time Newtonian response again. These observations of the dewetting dynamics are

in agreement with results in [20, 21]; moreover, we note that the shape of the dewetting front that

forms a retracting rim is consistent with findings in [13, 14, 21]. In addition, we observe that non-

zero values of λ1 not only slightly increase the speed of the breakup, but also allow for the formation

of a satellite droplet, in contrast to the Newtonian film (with λ1 = 0). In particular, in the inset

in figure 2(b), we distinguish the formation of dips on the interface in the vicinity of the secondary

droplet formed in the film with the highest value of λ1 = 6. These oscillations disappear at a

later time, as the interface around the secondary droplet flattens (figures 2(c) and 2(d)). To study

analytically the observed oscillations, we perform a linear analysis, as the one presented in [22, 40],

for the inner region of the growing hole. We find that the linearized solution, under quasi steady

state conditions, does not depend on the viscoelastic parameters. Therefore the oscillations that

the viscoelastic interface exhibits in the inner region of the dewetting hole cannot be analytically

described with a linear analysis. In what follows, we also show that increasing the elasticity even

further, provided a small retardation time (e.g. λ2 = 0.01) is also included, can lead to multiple

strongly pronounced dips, and subsequently form numerous secondary droplets.

Next, we take into account the viscosity of the Newtonian solvent by including λ2 6= 0. As

anticipated in § 4.1, λ2 has the effect of slowing down the growth rate of the instability. We find that
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Figure 3: Evolution of a viscoelastic film with h0 = 1, h? = 0.01, b = 0, λ1 = 10 and λ2 = 0.01, at three
selected times. (a) The separation of the two rims (t = 3.341 × 105). (b) The formation of oscillations that lead
to the formation of secondary droplets (t = 3.345 × 105). The secondary droplets remain present until the final
configuration shown in (c) (t = 4 × 105). In all three figures, the insets show a detailed close-up of the dewetting
region.

a slower dynamics provides a numerical advantage as well: By stabilizing the computations, hence

avoiding the high Weissenberg number1 problem (see [44] and references therein for a discussion on

the computational challenges regarding this aspect), which otherwise can destabilize the numerical

solutions. In fact, our simulation results show that when λ2 = 0, for λ1 > 6, unfeasibly small time

steps would be required to overcome numerical instabilities, due to the rapid growth rate for purely

elastic films. On the contrary, when viscoelastic films are considered, even a small contribution of

the retardation time (e.g. λ2 = 0.01) allows simulations of films with a high Weissenberg number,

that are yet numerically stable.

Figures 3(a)–3(c) show the evolution of a viscoelastic dewetting film with λ1 = 10, λ2 = 0.01, at

three selected times. In particular, in the inset of figure 3(a), we observe the separation of the two

rims (at time t = 3.341×105), and the formation of oscillations on the interface. These undulations

lead to multiple secondary droplets that are shown in figure 3(b) (t = 3.345×105), and that remain

present until the final configuration shown in figure 3(c) (t = 4×105). To our knowledge, secondary

droplets of this nature have not been reported in numerical investigations of thin viscoelastic films,

but their observation is consistent with experimental findings (see, for instance, [8, 10, 12]). While

we do not attempt a direct comparison with experiments in the present work, our results suggest

that the emergence of secondary droplets in simulations is related to viscoelastic phenomena, in

accordance with experimental observations. Our results therefore highlight the need for more refined

numerical models for a comprehensive prediction of the instabilities in viscoelastic thin films.

We can rheologically explain the presence of the secondary droplets by noting that a higher

1Defined in Appendix A.

11



t #105
3.4 3.5 3.6 3.7 3.8 3.9 4

N
u
m

b
er

o
f
D

ro
p
le
ts

0

10

20

30

40

50

(a)

t #105
3.4 3.5 3.6 3.7 3.8 3.9 4

D
ro

p
le
ts

M
ea

n
H

ei
g
h
t

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(b)

t #105
3.4 3.5 3.6 3.7 3.8 3.9 4

D
ro

p
le
ts

M
ea

n
W

id
th

0.2

0.3

0.4

0.5

0.6

0.7

(c)

Figure 4: Evolution of the secondary droplets with h0 = 1, h? = 0.01, b = 0, λ2 = 0.01, and λ1 = 2 (yellow
diamonds), 4 (blue circles), 6 (cyan triangles), 8 (green squares), and 10 (red crosses). (a) The number of droplets
versus time. For λ1 = 2, 4, 6, only one secondary droplet is formed, so the lines overlap. For values of λ1 > 6, there
are multiple secondary droplets; due to coalescence, the number of secondary droplets decrease in time. (b) The
mean height of the secondary droplets versus time. (c) The width (at half height) of the secondary droplets versus
time.

relaxation time λ1 manifests a higher molecular weight of the polymers [45]. Thus, in the presence of

an extensional flow, as the one produced by the two separating rims, the chains of molecules are more

stretched, and the elastic response to deformation is more visible. Similar considerations can be

found in studies on beads-on-string structures of viscoelastic jets (see, for instance, [46, 47]). We note

that both in our study and in the cited works on extensional flows of viscoelastic filaments, there is no

strong correlation between the breakup time and the relaxation time. The latter mostly influences

the formation of droplets, their migration and coalescence [47]. We also note that additional

simulations have shown that λ2 does not affect significantly the final configurations (results not

shown for brevity). We moreover remark that a high Weissenberg number does not break the

assumption of small shear rates, for which linear viscoelastic constitutive models, such as the one

that we consider, are valid. This observation is confirmed numerically by analyzing the quantity

|∂u/∂x| ∼ |ht(x, t)/h(x, t)| over the entire time of the evolution. In particular, for the times

presented in figures 3(a)–3(b), |∂u/∂x| does not exceed the value of 10−2, and for the final stage of

the evolution, shown in figure 3(c), it has an order of magnitude of 10−5. Hence, we can confirm that

for the flows considered, even for a high value of the dimensionless relaxation time, λ1U/L, which

corresponds to a high Weissenberg number (see Appendix A), the assumption of small deformation

gradients is not violated.

We proceed by analyzing the influence of λ1 on the characteristic length scales of the secondary

droplets. The corresponding results are shown in figure 4, where we keep λ2 = 0.01, and study the

resulting morphologies for λ1 = 2, 4, 6, 8, 10. Figure 4(a) shows the number of secondary droplets

versus time. For λ1 = 2, 4, 6, denoted by yellow diamonds, blue circles, and cyan triangles respec-

tively, only one secondary droplet is formed. Whereas, for values of λ1 = 8, 10, denoted by green
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Figure 5: Evolution of four distinct films with h0 = 0.1 and h? = 0.06, λ2 = 0, b = 0, and λ1 = 0 (blue circles), 10
(cyan triangles), 20 (green squares), and 50 (red crosses), at t = 50 (a), t = 70 (b) and t = 250 (c). For this set of
parameters, the dynamics of the breakup is faster compared to the simulations considered in earlier figures.

squares and red crosses respectively, multiple secondary droplets form. At later times and when

λ1 = 8, 10, the secondary droplets can coalesce, resulting in a sudden change in their numbers,

height, and width. From figure 4(a), we also notice that the merging of secondary droplets is much

more severe for λ1 = 10, implying that the elastic force is responsible for the secondary droplets

migration and coalescence. We note that the coarsening process of droplets under the influence of

the disjoining pressure has been studied for Newtonian fluids [48, 49]. Extending such analyses to

include viscoelastic effects would be of interest, but is beyond the scope of the present work.

The results presented so far suggest that the relaxation time λ1 significantly affects the final

morphologies of dewetting films, but it has a weaker effect on the growth rate and the breakup

time. We note that in the results presented above, the viscoelastic relaxation time, λ1, is relatively

short with respect to the breakup time. Hence, in the linear early-time regime of the evolution,

the viscoelastic fluid shows a Newtonian response. It is therefore reasonable to raise the question

of the effect of the liquid viscoelasticity when the breakup time is comparable to the relaxation

time of the liquid, i.e. when ω−1
m ≈ λ1. Figures 5(a)–5(c) present the evolution of four distinct

films with h0 = 0.1 and h? = 0.06, λ2 = 0, b = 0, and λ1 = 0 (blue circles), 10 (cyan triangles),

20 (green squares), and 50 (red crosses), at three selected times. For this set of parameters, the

relaxation time and the breakup time are comparable. We see that in this regime, the influence of

the elasticity parameter λ1 on the time scale of the evolution of the dewetting prior to rupture is

more pronounced, with respect to the cases analyzed earlier. We furthermore notice that for this

set of parameters, the van der Waals interaction force, higher in this case, prevents formation of

satellite droplets.

Finally, we focus on the influence of the slip coefficient b. In figures 6(a)–6(c), we fix the

viscoelastic parameters λ1 = 10, λ2 = 0.01, and consider b = 0 (blue circles), 0.001 (cyan triangles),

0.01 (green squares), and 0.1 (red crosses). The results show that the dynamics with a non-zero
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Figure 6: Evolution of dewetting films for h0 = 1, h? = 0.01, λ1 = 10 and λ2 = 0.01 at three selected times, for
b = 0 (blue circles), 0.001 (cyan triangles), 0.01 (green squares), and 0.1 (red crosses). At time t = 2.5× 105 in (a),
the film with b = 0.1 is separating, while in (b) at time t = 3.34× 105, and in (c) at time t = 3.345× 105, the films
with b = 0.01 and b = 0.1 are already fully developed. We note that for large slip, the evolution is faster and no
satellite droplets form. As b is decreased, the dynamics is slower and satellites form. The insets show a close-up of
the secondary droplets.

slip coefficient is faster. In fact, we can see in figure 6(a), that the film with b = 0.1 is already

separating at time t = 2.5× 105, whereas the other films are still in the initial phase in which the

perturbation has not grown significantly. Moreover, we see in figure 6(b) at time t = 3.34 × 105,

and in figure 6(c) at time t = 3.345 × 105, that the films with b = 0.01, and b = 0.1 are already

fully developed, whereas the ones with b = 0, and b = 0.001 are still retracting. We show that not

only slip has an influence on the dynamics of the evolution, but it also has two main effects on the

resulting morphologies of the interface: First, by raising the height of the retracting rims in the

early stage of the evolution (we note in figure 6(b) the dip in the interface of the receding rim for

the film with b = 0.001 in contrast to the one with no-slip); Second, by preventing the formation

of the secondary droplets in the final configuration. In fact, multiple satellite droplets form in the

cases with b = 0, and b = 0.001, while only one secondary droplet remains present when b = 0.01,

and none when b = 0.1.

4.3. Spreading and receding viscoelastic drops

4.3.1. Spreading drops

Next, we discuss spreading of a planar viscoelastic drop. The initial condition is a circular

cap of radius R and center (0,−R cos θi), that lies on the substrate with an offset of thickness h?.

We specify the initial contact angle between the fluid interface and the solid substrate, called θi,

different from the equilibrium angle, denoted by θe. The latter is implicitly defined by the form

of the disjoining pressure given by equation (A5). We investigate the dynamic contact angle, θD,

formed at the moving contact line, and study its relation with θe. θD is calculated as the slope of

the tangent line at the inflection point of the fluid interface h(x, t). In the discussion that follows,
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Figure 7: The spreading of a viscoelastic drop with λ1 = 15, λ2 = 0.01 (red solid curve) versus a Newtonian drop
with λ1 = λ2 = 0 (blue dotted curve), at t = 10, 50, 100 from left to right. In (a)–(c) the equilibrium thickness
h? = 0.01; in (d)–(f) h? = 0.005. The insets show a close-up of the contact line region.

we start with θi = 30◦, and let the drop relax to θe = 15◦. For all cases shown, we impose a no-slip

boundary condition.

Figure 7 shows the comparison of numerical simulations of a Newtonian drop, with λ1 = λ2 =

0 (blue dotted curve), versus a viscoelastic drop with λ1 = 15, λ2 = 0.01 (red solid curve), at

three selected times (t = 10, 50, 100). Figures 7(a)–7(c), where we use h? = 0.01, illustrate the

difference in the velocity of the contact line. In figure 7(a), we note that viscoelasticity influences

predominantly the initial stage of the spreading. This behavior can be attributed to viscoelastic

effects due to stretching of liquid around the contact line region in the direction of spreading. As

the spreading velocity decreases, viscoelastic stresses relax in the contact line region, leading to the

same spreading speed for both drops. In both cases, the drops relax towards the final configuration

defined by θe (this regime of spreading is not shown in figure 7). To shed more light on the origin of

the difference in the spreading behavior, we plot in figures 7(d)–7(f) the simulation results where we

use h? = 0.005. The consideration of thinner h? is motivated by [50, 51], where it was shown, within

the Oldroyd-B model, that elastic effects influence the behavior of the film ridge more remarkably

when h? is reduced. The comparison of figure 7(d) and 7(a) shows that the difference between
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Figure 8: The spreading of a planar drop on a prewetted substrate with h? = 0.005, from an initial angle θi = 30◦

to an equilibrium configuration with θe = 15◦ for a viscous Newtonian drop, with λ1 = λ2 = 0 (blue circles), and
viscoelastic drops, λ1 = 5 (cyan triangles), 10 (green squares), and 15 (red crosses) when λ2 = 0.01. (a) Contact
line position, xCL, versus time. (b) The velocity of the contact line, vCL, versus time. (c) θ3D − θ

3
e versus time in

a semilogarithmic scale. (d) θ3D − θ
3
e versus the capillary number Ca in a log-log plot. The dashed black line has a

reference slope equal to one.

the Newtonian and the viscoelastic drop is indeed more significant for thinner h?. We attribute

this difference to the dynamics of the interface at the contact line region: For the Newtonian

drop, the interface of the prewetted film shows an oscillatory “sagging” behavior, slowing down the

spreading velocity. When decreasing h?, this oscillation is more noticeable. For the viscoelastic

drop, however, the prewetted film does not exhibit such pronounced oscillatory behavior, as the

interface at the contact line region is smoothed by viscoelasticity. A similar oscillatory behavior

is demonstrated, both analytically [22] and experimentally [52], in the far-field region of dewetting

viscoelastic fronts. In particular, Seemann et al. [52] also show that viscoelastic effects tend to

16



stabilize the observed undulations, in agreement with our results. In addition, our simulations

suggest that viscoelasticity enhances spreading, consistently with findings in [35, 51]. We note that,

Spaid and Homsy [51] observe that the viscoelastic fluid interface tends to be stabilized primarily

because of changes of transport of momentum in the spreading direction, and finite restoring forces

that are present when a viscoelastic fluid is stretched. More recently, Izbassarov and Muradoglu

[35] consistently demonstrate that the enhancement of the spreading of viscoelastic drops is mainly

due to the stretched polymer chains that exert an extensional stress, pushing the contact line, and

thus increasing the spreading rate.

We next investigate the influence of the viscoelasticity on the dynamic advancing contact angle.

In figure 8, we consider three viscoelastic spreading drops with a fixed retardation time, λ2 = 0.01,

and three different relaxation times, λ1 = 5 (cyan triangles), 10 (green squares), and 15 (red

crosses), and compare them to the Newtonian drop with λ1 = λ2 = 0 (blue circles). All drops

spread on a prewetted substrate with thickness h? = 0.005. In figure 8(a), we show the front

contact line, xCL, determined as the x-coordinate of inflection point of h(x, t). Figure 8(b) shows

that viscoelastic drops initially move faster than the Newtonian counterpart. Eventually, both

viscoelastic and Newtonian drops reach the same speed towards the equilibrium configuration. We

also note that increasing λ1 enhances the velocity of the contact line, vCL. Figure 8(c) shows the

difference of the cubes of the dynamic and equilibrium contact angles, θ3
D − θ3

e , versus time in a

semilogarithmic plot. As shown, the quantity θ3
D− θ3

e is smaller for viscoelastic drops with a higher

relaxation time λ1, due to the fact that the viscoelastic drop contact line displaces faster from the

initial configuration compared to the Newtonian one, as discussed above. Finally, figure 8(d) shows

θ3
D − θ3

e versus the capillary number Ca = vCL (given our choice for scales), both in logarithmic

scales. The direct proportionality between these quantities is known as the Cox-Voinov law [36, 37],

that we consider in the general form θ3
D − θ3

e ∝ Caβ (consistently with [27]). In figure 8(d), we

show that this law holds for the Newtonian fluid, where the best linear fit of the data (denoted

by blue circles) has unit slope (i.e. β = 1); while lower values of β are visible for the viscoelastic

counterparts. These findings are consistent with recent experimental [30] and computational [34]

results, showing that the viscoelasticity enhances contact line motion, and that there is a slight

variation in the slope of the linear dependence on the capillary number in the Cox-Voinov law, due

to viscoelasticity. Furthermore, we have verified (figures not shown for brevity) that different values

of the precursor film thickness do not significantly alter the dynamic contact angle, and hence the

results of the comparison with the Cox-Voinov law.

4.3.2. Receding drops

Similarly to the spreading case, we carry out investigations of the dynamic contact angle for

receding drops. We use the same geometrical framework as the one for a spreading drop, but

we impose θi = 15◦ and θe = 30◦. Figures 9(a)–(c) show the comparison of the evolution of
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Figure 9: The retraction of a viscoelastic drop with λ1 = 15, λ2 = 0.01 (red solid curve) versus a Newtonian drop
λ1 = λ2 = 0 (blue dotted curve), at t = 100, 350, 1000 from left to right; equilibrium film thickness h? = 0.005.

two retracting drops at three selected times: a Newtonian drop with λ1 = λ2 = 0 (blue dotted

curve), and a viscoelastic one with λ1 = 15, λ2 = 0.01 (red solid curve); for both simulations, we

impose an equilibrium film thickness h? = 0.005. Again, the two drops exhibit discrepancy in their

evolution. In figure 9(a), at time t = 100, we see that the Newtonian drop has receded more than

the viscoelastic one. This happens because, contrary to the spreading problem, the viscoelastic fluid

interface initially shows more bending (visible in the inset of the figure 9(a)), indicating that there

is resistance to the force that drives the retraction of the drop. In figure 9(b), at time t = 350, this

oscillation in the viscoelastic interface is flattened, and this allows for faster motion of the contact

line for viscoelastic drop. As in the spreading case, eventually, both drops reach the same speed,

and attain the same final configuration at time t = 1000, shown in figure 9(c). The slower retraction

of a viscoelastic drop is also investigated in [32], where it is demonstrated that this behavior is due

to the elastic effects near the moving contact line.

Finally, we present the results of the dynamic contact angle for the receding drops. Figure

10(a) shows that the Newtonian drop with λ1 = λ2 = 0 (denoted by blue circles) recedes faster

than the viscoelastic drop with λ1 = 15, λ2 = 0.01 (denoted by red crosses). Figure 10(b) shows

the retraction velocities of the two drops as a function of time. The Newtonian drop initially

recedes faster than the viscoelastic one, and eventually they reach the same speed towards the final

configuration. Figure 10(c) shows θ3
e − θ3

D versus time, in a semilogarithmic plot. The quantity

θ3
e − θ3

D is higher for the viscoelastic drop, since it retracts slower. Figure 10(d) shows θ3
e − θ3

D

versus Ca, both in logarithmic scales. Differently from the spreading case, the best linear fit of the

receding viscoelastic data has a slope higher than the one corresponding to the Newtonian data

(β = 1).
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Figure 10: The retraction of a planar drop on a prewetted substrate with h? = 0.005, from an initial angle θi = 15◦

to an equilibrium configuration with θe = 30◦ for a viscoelastic drop with λ1 = 15, λ2 = 0.01 (red crosses), versus
a Newtonian drop with λ1 = λ2 = 0 (blue circles). (a) The contact line position, xCL, versus time. (b) The speed
of the contact line, vCL, versus time. (c) θ3e − θ3D versus time. (d) θ3e − θ3D versus the capillary number Ca. The
dashed black line has a reference slope equal to one.

5. Conclusions

We numerically solve the nonlinear equation that governs the fluid interface of a dewetting thin

film of viscoelastic fluid on a solid substrate. The governing equation is obtained as the long-wave

approximation of the Navier-Stokes equations with Jeffreys type constitutive equation to describe

the non-Newtonian nature of the viscoelastic fluid. The van der Waals interaction force drives

the instabilities of the liquid interface and causes the film to break up, forming holes bounded

by retracting rims. We investigate how physical parameters involved, such as the relaxation and

retardation characteristic times of the viscoelastic fluid, and the slip coefficient, affect the dynamics
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and the final configuration of the fluid. In the linear regime, our results are in agreement with the

linear stability analysis. Consistently with previous studies, we find that viscoelastic parameters

and the slippage coefficient do not influence either the wavenumber corresponding to the maximum

growth rate or the critical one, but influence the maximum growth rate. In particular, an increase

of the relaxation time, λ1, or the slip length, b, leads to an increase of the maximum growth rate.

Conversely, increasing the retardation time, λ2, leads to a decrease of maximum growth rate.

The simulations of the dewetting of thin viscoelastic films in the nonlinear regime reveal novel

complex morphologies that depend on the viscoelasticity. The results show that for small values of

λ1, a single secondary droplet can be formed, while for large values, multiple secondary droplets can

emerge. We note that the emergence of these small length scales can be related to the relaxation

time λ1. Here, we not only provide, for the first time, a study of these developing length scales,

but also report on the migration and merging of the secondary droplets due to viscoelastic effects.

Simulation results also show that the inclusion of λ2 provides a numerical advantage by stabilizing

the computations at high values of λ1. In addition, the influence of the slip coefficient on the

dynamics and final configurations is also addressed. Future work shall consider extension of these

results to three spatial dimensions.

In the final part of this work, we investigate the dynamic contact angle of viscoelastic drops. Our

numerical simulations show that the viscoelastic advancing front moves faster at early times, and

that eventually it behaves as the Newtonian counterpart for large times. Our simulations suggest

that the enhancement of the speed of the viscoelastic spreading drop is due to the smoothness of

its interface in the prewetted region. The analysis of the dynamic contact angle also allows us to

verify the Cox-Voinov law for the viscous Newtonian case; while we show small deviations from this

law for viscoelastic drops. For receding viscoelastic drops, we show that the speed of the contact

line is instead decreased, when compared to a Newtonian one. Again, we explain this behavior by

the viscoelastic force at the contact line region resisting the receding motion of the contact line.

Although our study is limited to the Jeffreys linear viscoelastic model, we hope that it will serve as

a basis for further analysis of other viscoelastic models.
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Appendix A: Derivation

In this appendix, we outline the derivation of the long-wave formulation, equations (4) and (5), for

the evolution of the interface of a thin viscoelastic film. The system of equations (1a) and (1b)

is subject to boundary conditions at the free surface, represented parametrically by the function
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f(x, y, t) = y − h(x, t) = 0, and boundary conditions at the x-axis (y = 0), as introduced in § 2,

and illustrated in figure 1. The stress balance at the interface (where the top fluid is passive, as in

our study) is expressed as

(τ − (p+ Π)I) · n = σκn , (A1)

where I denotes the identity matrix. In the absence of motion, this condition describes the jump

in the pressure across the interface with outward unit normal n, and a local curvature κ = −∇ · n,

due to the surface tension σ. We define the two mutually orthogonal vectors n, t as

n =
1

(h2
x + 1)

1/2
(−hx, 1) , t =

1

(h2
x + 1)

1/2
(1, hx) . (A2)

The kinematic boundary condition is given by ft + u · ∇f = 0, where substituting f(x, y, t) =

y − h(x, t) gives

∂h

∂t
(x, t) = − ∂

∂x

∫ h(x,t)

0

u(x, y)dy . (A3)

The boundary conditions at the solid substrate are described by the non-penetration condition for

the normal component of the velocity and the Navier slip boundary condition for the tangential

one

v = 0, u =
b

η
τ12 , (A4)

respectively, where b ≥ 0 is the slip length (b = 0 implies no-slip).

The equilibrium contact angle, θe, formed between the fluid interface y = h(x, t) and the solid

substrate can be included directly in the disjoining pressure term Π(h), leading to

Π(h) =
σ(1− cos θe)

Mh?

[(
h?
h

)m1

−
(
h?
h

)m2
]
, (A5)

with M = (m1−m2)/[(m2− 1)(m1− 1)], where m1 and m2 are constants such that m1 > m2 > 1,

(in this work we chose m1 = 3 and m2 = 2, as also widely used in the literature, for instance by

the authors in [53–55], but other values can be modeled as verified in [56]).

Next, we nondimensionalize using commonly implemented scaling appropriate to long-wave

formulation

x = Lx∗ , (y, h, h?, b) = H(y∗, h∗, h∗?, b
∗) , (p,Π) = P (p∗,Π∗) , (A6)

u = Uu∗ , v = εUv∗ , (t, λ1, λ2) = T (t∗, λ∗1, λ
∗
2) , σ =

Uη

ε3
σ∗ , (A7)

(
τ11 τ12

τ21 τ22

)
=
η

T

(
τ∗11

τ∗12

ε
τ∗21

ε τ∗22

)
, (A8)
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where H/L = ε� 1 is the small parameter. To balance pressure, viscous and capillary forces, the

pressure is scaled with P = η/(Tε2), and the time with T = L/U . Following the derivation in [22],

we can scale the surface tension σ∗ to one by an ad hoc choice of the length scale. We note that

the Weissenberg number, Wi, given the choice for scales, is Wi = λ1U/L = λ1/T = λ∗1. To avoid

cumbersome notation, we drop the superscript ‘∗’ and we consider from now on all quantities to be

dimensionless.

The incompressibility condition, equation (1b), is invariant under rescalings, while the dimen-

sionless form of equation (1a) for the x and y component is, respectively,

ε2Re
du

dt
= ε2 ∂τ11

∂x
+
∂τ21

∂y
− ∂p

∂x
, (A9a)

ε4Re
dv

dt
= ε2

(
∂τ12

∂x
+
∂τ22

∂y

)
− ∂p

∂y
, (A9b)

where Re = ρUL/η is the Reynolds number, assumed to be O(1/ε) or smaller. The dimensionless

components of the stress tensor given by the Jeffreys model, equation (2), satisfy

τ11 + λ1
∂τ11

∂t
= 2

(
∂u

∂x
+ λ2

∂

∂t

(
∂u

∂x

))
, (A10a)

τ22 + λ1
∂τ22

∂t
= 2

(
∂v

∂y
+ λ2

∂

∂t

(
∂v

∂y

))
, (A10b)

τ12 + λ1
∂τ12

∂t
=
∂u

∂y
+ λ2

∂

∂t

(
∂u

∂y

)
+ ε2

(
∂v

∂x
+ λ2

∂

∂t

(
∂v

∂x

))
. (A10c)

The kinematic boundary condition (A3) is invariant under rescaling, while the non-penetration con-

dition and the Navier slip boundary condition for the velocity components parallel to the substrate

(A4) in dimensionless form are

v = 0 , u = bτ12 , (A11)

where in the weak slip regime b = O(1). The leading-order terms in the governing equations (A9a)

and (A9b) respectively, are

∂τ21

∂y
=
∂p

∂x
, (A12a)

∂p

∂y
= 0 . (A12b)

The leading-order terms of the normal and tangential components of the stress balance at the free
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surface (A1) are

p = −∂
2h

∂x2
−Π(h) , (A13)

hxτ12 = 0 , (A14)

where the form of Π(h) in (A13) is given by (A5), with all the quantities considered nondimensional.

Considering in general hx 6= 0, from (A14) follows that τ12 = 0, at the interface. Now, integrating

(A12a) with respect to y, from y to h(x, t), we obtain τ21 = (y−h)px. Noting that the stress tensor

is symmetric, and substituting τ21 into (A10c), we obtain (up to the leading-order)

∂p

∂x
(y − h) + λ1

∂

∂t

(
∂p

∂x
(y − h)

)
=
∂u

∂y
+ λ2

∂

∂t

(
∂u

∂y

)
. (A15)

Integrating (A15) from 0 to y = h(x, t) and using the corresponding boundary conditions at the

substrate y = 0, we obtain(
1 + λ2

∂

∂t

)(
u+ bh

∂p

∂x

)
=

(
1 + λ1

∂

∂t

)((
y2

2
− yh

)
∂p

∂x

)
. (A16)

Integrating (A16) again from y = 0 to y = h(x, t) gives

∫ h(x,t)

0

udy + bh2 ∂p

∂x
+ λ2

∂

∂t

∫ h(x,t)

0

udy + λ2b
∂h2

∂t

∂p

∂x
− λ2htu(y = h(x, t))− λ2htbh

∂p

∂x
=

− h3

3

∂p

∂x
− λ1h

2ht
∂p

∂x
+ λ1

h2

2
ht
∂p

∂x
. (A17)

Taking the spatial derivative of the latter equation and substituting it into the kinematic boundary

condition (A3), we obtain a long-wave approximation in terms of u and h(x, t)

ht + λ2

[
htt +

∂

∂x
(u(y = h(x, t))ht)

]
=

∂

∂x

[
(1 + λ1∂t)

(
h3

3

∂p

∂x

)
+

+ (1 + λ2∂t)

(
bh2 ∂p

∂x

)]
− ∂

∂x

[(
λ1
h2

2

∂p

∂x
+ λ2bh

∂p

∂x

)
ht

]
. (A18)

To write this in a closed form relation for h(x, t), we note that equation (A16) can be written in a

more compact form as a linear ordinary differential equation

u+ λ2
∂u

∂t
= −(1 + λ2∂t)bh

∂p

∂x
+ (1 + λ1∂t)

[(
y2

2
− hy

)
∂p

∂x

]
. (A19)

23



x−1 x0 x 1
2

=

0

x1 x2

∆x∆x/2

xi−2 xi−1 xi xi+1 xi+2 xN−1 xN
xN+ 1

2

=

Λ

xN+1 xN+2

Figure 11: Discretization of the spatial domain.

One can simply solve this linear differential equation, obtaining

u =
1

λ2

∫ t

−∞
e−

t−t′
λ2 f̂(x, y, t′)dt′ , (A20)

with f̂ equal to the right-hand side of equation (A19). Integration by parts can be performed to

recast (A20) at y = h(x, t), and one finally obtains equations (4) and (5).

Appendix B: Numerical Discretization

The spatial domain [0,Λ] is discretized by uniformly spaced grid points, that constitute a vertex-

centered grid (see figure 11). Following the natural order from left to right, adjacent vertices are

associated to the indices i − 1, i, i + 1, respectively. Thus, we let xi = x0 + i∆x, i = 1, 2, . . . , N

(where N = Λ/∆x, and ∆x is the grid size), so that the endpoints of the physical domain, 0 and

Λ, correspond to the x1 − ∆x
2 and xN + ∆x

2 cell-centers, respectively. Similarly, we discretize the

time domain and denote by hni the approximation to the solution at the point (xi, n∆t), where

n = 0, 1, . . . indicates the number of time steps, and ∆t is the temporal step size.

In order to approximate the fourth order spatial derivative in equation (4), we need at least a

5-point stencil to obtain second order accuracy. We define the first and third derivatives at the

cell-centers so that the second and fourth order derivatives are centered at the grid points (see [41]

for a detailed description).

We recall that the class of θ-schemes for the finite difference discretization of the time derivative,

can be written as

hn+1
i − hni
4t

= −
[
θFni + (1− θ)Fn+1

i

]
, i = 1, 2, . . . , N, (A1)

where 0 ≤ θ ≤ 1 and the nonlinear function Fi is related to the spatial discretization of equations

(4) and (5). Here, θ = 0 leads to the explicit forward Euler scheme, θ = 1 to the implicit backward

Euler scheme, and θ = 1/2 to the implicit second order Crank-Nicolson scheme. We use the latter,

similarly to [54, 57], leading to a system ofN nonlinear algebraic equations for hn+1
i , i = 1, 2, . . . , N .

Following the procedure outlined in [41], we linearize the nonlinear terms with Newton’s method
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by expanding hn+1
i = h†i + ξi, and Fn+1

i = F †i + (∂F †i /∂ξj)ξj , for i = 1, 2 . . . , N, j = 1, 2 . . . , N ;

where h† is a guess for the solution (commonly the previous time step solution hn), ξ is the correction

term, and the notation F †i indicates that Fi is calculated using h†i . Once the linearized system is

solved for the correction term, the guess for the solution is updated, and this iterative scheme is

repeated until the convergence criterion is met (up to a desired tolerance).

To solve the discrete equations efficiently, we use an adaptive time step ∆t. In fact, ∆t is

increased to accelerate the time integration at stages where the solution does not vary rapidly. On

the other hand, ∆t is decreased when the solution shows a high variation, where the Newton’s

method requires more than a few steps to converge. The behavior of the solution is discussed in

detail in § 4, where we present our numerical results.

At the endpoints of the domain we impose the hx = hxxx = 0 boundary conditions. The

condition hx = 0 gives the value of h at the two ghost points x0 and xN+1 outside the physical

domain, i.e. h0 = h1 and hN+1 = hN ; the condition hxxx = 0 specifies the two ghost points x−1

and xN+2, i.e. h−1 = h2 and hN+2 = hN−1.
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