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a b s t r a c t 

This work presents a novel numerical investigation of the dynamics of free-boundary flows of viscoelas- 

tic liquid membranes. The governing equation describes the balance of linear momentum, in which the 

stresses include the viscoelastic response to deformations of Maxwell type. A penalty method is utilized 

to enforce near incompressibility of the viscoelastic media, in which the penalty constant is proportional 

to the viscosity of the fluid. A finite element method is used, in which the slender geometry representing 

the liquid membrane, is discretized by linear three-node triangular elements under plane stress condi- 

tions. Two applications of interest are considered for the numerical framework provided: shear flow, and 

extensional flow in drawing processes. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Thin viscoelastic films can be found in a large variety of set-

tings, from typical life situations to sophisticated manufacturing

processes. In our everyday life, we may encounter sheets or thin

layers of liquids that show a viscoelastic behavior, such as cus-

tard, shampoo, shaving cream, wax, glue, and paint; or similarly,

soft solids with the same characteristics, such as gels. For biomed-

ical engineering applications, thin viscoelastic sheets can repre-

sent biopolymers [1] , or biological tissues constituting blood cells

[2,3] . In some manufacturing processes, thin layers of elastic or vis-

coelastic materials, for instance, in the form of liquid crystal poly-

mers, are largely employed [4] . Hence, the prediction of the be-

havior of viscoelastic sheets through mathematical and numerical

modeling becomes a cost-effective manufacturing practice, as well

as an important tool to better understand some physical effects,

that are difficult or expensive to reproduce experimentally. The

mathematical and numerical framework developed in this work

aims at providing insight to the understanding of the dynamics

and physical behavior of thin layers of viscoelastic media, modeled

as membranes. 

Thin curved bodies are commonly modeled as shells or mem-

branes [5,6] . The slender geometry of thin films or sheets of vari-

ous materials can be described through an idealized mid-surface,

that sits at half thickness between the top and bottom surfaces
∗ Corresponding author. 
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f the sheet. For the general theory of shells, the mid-surface has

 non zero curvature, and any application of loading or external

orces causes both bending and stretching [7,8] . A particular case of

his general theory is the membrane theory of shells, that concerns

he study of the in-plane stretching deformations, dominant with

espect to transversal deflections, and in which bending stiffness is

eglected. In this work, we utilize the membrane theory of shells,

n which the in-plane stresses are included to model the viscoelas-

ic response to deformations. The majority of the studies in the

iterature of membrane theory of shells, focuses on the statics of

oad-carrying elastic shells that hold an equilibrium state (see, for

nstance [5,9–12] ). However, in this work we are interested in the

ransient analysis of the dynamics, described by the conservation

f momentum equation, as outlined by Taylor et al. in [6] , for

he case of nonlinearly elastic membranes. Our goal is to expand

he analysis conducted by Taylor et al. to include Newtonian and

on-Newtonian membranes. For the non-Newtonian membranes

e characterize the stresses by the Maxwell model [13] . We use

his infinitesimal strain model within the general framework de-

eloped by Taylor et al. in [6] for finite strain theory, with the aim

f expanding our analysis in future works, by including nonlinear-

ties and corotational effects. 

Viscoelastic materials exhibit features that are typical of both

uids (viscosity) and solids (elasticity). This hybrid nature allows

t to characterize a broad variety of materials, with limiting cases

hat fall under a liquid state, or a solid state, and intermediate

egimes that constitute soft materials, such as gels [14] . The evo-

ution of their complex internal microstructures can affect their

https://doi.org/10.1016/j.compfluid.2018.07.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
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Fig. 1. The surface coordinate system on a triangular element in the deformed con- 

figuration. 
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ynamics and the overall macroscopic rheology [15] . The major-

ty of the previous studies on viscoelastic membranes focus on

he rheological responses of the material to deformations (see,

.g., [2,16,17] ), but only a few works investigate the dynamics of

uch membranes; see, for instance, [1] , in which the dynamics

f the viscoelastic membrane is coupled to the hydrodynamics

f the surrounding viscous phase. Among the numerous studies

n the rheology of viscoelastic membranes, Lubarda and Marzani

3] use the Kelvin–Voigt constitutive model, that is more suitable

o describe viscoelastic solids [18] ; while Crawford and Earnshaw

19] use the Maxwell model, more suitable for the description of

iscoelastic liquids [20] , to identify the relaxation time of bilayer

ipid membranes. Moreover, some studies propose numerical solu-

ions of the dynamics of thin layers of viscoelastic fluids within the

ubrication theory to simulate the interfacial flow of thin viscoelas-

ic films of Jeffreys type [21] , deposited on substrates, in wetting or

ewetting processes [22–24] . However, to the best of our knowl-

dge, a numerical investigation solving for the equation of motion

escribing the hydrodynamics of the free-boundary flow of thin

iscoelastic membranes of Maxwell type is not available in the lit-

rature. The aim of this work is therefore to provide a general nu-

erical framework for the simulations of thin viscoelastic mem-

ranes, and to analyze the role of viscoelasticity on their dynam-

cs arising in different settings or engineering processes, such as

hearing flows [20] or stretching in redraw processes [25,26] . 

The Maxwell model belongs to a class of linear differential

odels for non-Newtonian fluids, that describes mechanical prop-

rties such as “fading memory” and stress relaxation [20] . These

eatures become remarkable, especially when compared to consti-

utive models that describe a linear relationship between the stress

nd the strain (for linear elastic solids) or strain rate (for New-

onian fluids). The Maxwell constitutive model, in the same fash-

on as Hooke’s law, was proposed empirically [13] . Although it has

een applied to and proven to be useful for the analysis of a broad

ange of materials, this model is limited to cases in which the

eformation gradients are infinitesimally small [20] . To overcome

his limitation, variations of Maxwell model have been proposed,

uch as the Oldroyd-B model [20] in which convective derivatives

re introduced to describe the nonlinearities in the stress tensor.

espite the limitations of a linear viscoelastic model, such as the

axwell model, we believe that a comprehensive analysis as well

s a detailed numerical framework for the dynamics of thin vis-

oelastic membranes, can serve as a benchmark for future analyses

hat include nonlinear features, such as the convective/corotational

ariations of the stress. 

The governing equation describes the conservation of linear

omentum. To the typical steady formulation in which the bal-

nce of forces is considered, we retain the inertial term so we may

onsider transient analyses [27,28] . The incompressibility condition

hat typically serves as a constraint on the vector velocity field in

he equations describing the fluid dynamics [29] is replaced in this

ork via the use of a penalty method [30,31] . This method, first in-

roduced by Courant [32] for solutions of problems of equilibrium

nd vibrations, obtained by the calculus of variations, has been

ubsequently used to approximate solutions of the Navier–Stokes

quations (see, for instance, [33] and the references therein). In

he context of solutions of fluid flows, it relaxes the incompress-

bility condition allowing for a small perturbation of the rate of

olume change, which approximates the near incompressibility of

he fluid. We propose a formulation of the penalty function as a di-

ect proportionality on the rate of change of the volumetric strain,

n which the constant of proportionality depends on the viscosity

f the fluid. 

In this numerical investigation, we use the finite element

ethod for the spatial discretization of the slender geometry de-

cribing the membranes, and implicit schemes to discretize the
ime variations in the governing and constitutive equations. Finite

lement analyses of linearly elastic shells or membranes constitute

 computational advantage relative to volumetric analyses and are

ast in the Continuum Mechanics literature (see, e.g., [6,27,34,35] ),

ut, to the best of our knowledge, none of the existing analyses in-

luded viscoelastic stresses of Maxwell type that can be adapted to

luid Mechanics problems. We approximate the membrane with a

esh, constituted of linear 3-node triangles embedded in a three-

imensional global coordinate system (i.e., elements with nine de-

rees of freedom with respect to the global coordinates), and ob-

ain the stress state on the surface of the membrane in terms

f the nodal displacements. The spatial discretization formulation

dopted closely follows the one by Taylor et al. [6] , however, the

ovel aspects are the inclusion of viscoelasticity in the constitutive

odel, the corresponding derivation of the material Jacobian (stiff-

ess) tensor, and the numerical investigation of the dynamics of

iscoelastic liquid membranes in free-boundary, shear and exten-

ional flows. 

The remainder of this work is organized as follows: In

ection 2 , we introduce the mathematical formulation and finite

lement analysis of the governing equation (whose detailed the-

retical derivation is given in the Appendix A ); In Section 3 , we

ntroduce the material models considered in this analysis both in

ontinuous and discrete form; In Section 4 , we discuss our numer-

cal results; In Section 5 , we draw our conclusions. 

. Mathematical formulation 

We consider a nearly incompressible viscoelastic liquid mem-

rane with constant density ρ , surrounded by a passive gas with

onstant pressure. The equation describing the balance of linear

omentum is 

iv ( σ) + F b = ρü , in �, (1) 

here u = (u 1 (x 1 , x 2 , x 3 , t) , u 2 (x 1 , x 2 , x 3 , t) , u 3 (x 1 , x 2 , x 3 , t)) repre-

ents the vector displacement field in a global coordinate system,

¨  = d 2 u /dt 2 in a Lagrangian formulation, F b is the vector of the

ody force (such as gravity), div ( σ) = ∇ · σ, with σ the symmetric

tress tensor, and � is the two-dimensional surface embedded in

 

3 . In what follows, we outline the weak and discrete versions of

q. (1) , leaving the detailed derivation for the interested reader in

ppendix A . 

We discretize the domain � with finite elements, in which each

lement represents a triangular membrane under plane stress con-

itions, uniquely described by its three vertices (nodes) in R 

3 (see

ig. 1 ). By considering a global Cartesian coordinate system, we de-

ote by upper case X the reference (undeformed state) configura-

ion coordinates, and by lower case x the current (deformed state)

nes. We denote the nodal values of the reference coordinates, cur-

ent coordinates and displacement vector, respectively, by the use

f superscripts, i.e, ˜ X 

α, ̃  x α, and 

˜ u 

α = ̃

 x α − ˜ X 

α, with α = 1 , 2 , 3 for
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Fig. 2. Cook’s membrane schematic for the numerical experiment. 
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each node. By using the virtual displacement field, δu , we apply

the virtual work formulation [6,27] , and obtain the weak form of

(1) as 

δ� = 

∫ 
�(e ) 

δu 

T ρü d V −
∫ 
�(e ) 

δεT σ d V −
∫ 
�(e ) 

δu 

T F b d V = 0 , (2)

where [ · ] T represents the matrix transpose operator, ε the sym-

metric strain tensor, and �( e ) the domain of the element e .

For the case of membranes of constant thickness h , we ex-

press an infinitesimal volume element as d V = h d A . Following the

displacement-based finite element formulation provided in [6] for

the spatial derivatives (outlined in Appendix A ), we can write

the spatially discrete version of the volume contribution terms

(i.e., without the traction term) of Eq. (2) , for each element, in vec-

tor form, as 

M 

(e ) 

⎡ ⎢ ⎣ 

¨̃
 u 

1 

¨̃
 u 

2 

¨̃
 u 

3 

⎤ ⎥ ⎦ 

− hA 

(e ) B 

(e ) T 

[ 

σ11 

σ22 

σ12 

] 

−

⎡ ⎣ ̃

 F 1 
b ˜ F 2 
b ˜ F 3 
b 

⎤ ⎦ = 0 , (3)

where we have used Voigt notation [27] for the symmetric stress

tensor in vector form for two-dimensional problems, defined by 

σ = 

[ 

σ11 

σ22 

σ12 

] 

, 

and where A 

( e ) represents the area of each triangular element in

the reference configuration; the vector ̃  F b = ( ̃  F 1 
b 
, ̃  F 2 

b 
, ̃  F 3 

b 
) represents

the nodal body force; M 

( e ) is the element mass matrix, and B 

( e ) T σ
represents the divergence of the stress tensor on each element. In

each triangle, we consider that both the strain and the stress ten-

sors are constant. The interested reader can find the details of the

derivation of each term of Eq. (3) in Appendix A . Our goal is to

solve Eq. (3) for the nodal displacement field. We note that the

nodal displacement vectors, ˜ u 

α ( α = 1 , 2 , 3 ), as well as the nodal

force vectors, ̃  F α
b 

( α = 1 , 2 , 3 ), represent three-dimensional vectors

for each node, in the global coordinates. Hence, in components, we

will solve for nine scalar equations, even though the strain and the

stress tensors only account for the in-plane displacements. 

3. Constitutive models 

To describe the material response to deformations, we need

to express a constitutive law that relates the stress tensor and

the strain and/or strain rate tensors. We consider a small defor-

mation strain, within the general framework presented by Taylor

et al. [6] that allows nonlinearities due to large deformations (de-

rived in Appendix A ). For membrane problems, the in-plane mag-

nitudes of the stress are dominant relative to the out-of-plane

ones, leading to the conditions (referred to as plane stress con-

ditions) on the stress tensor components, σ13 = σ23 = σ33 = 0 . In

two spatial dimensions, the deviatoric stress is defined, in tensor
orm, as 

′ 
i j = σi j −

1 

2 

σkk δi j , (4)

here δij is the Kronecker delta ( i, j = 1 , 2 ), and σ kk is the trace

f the stress tensor in indicial notation, i.e., σkk = σ11 + σ22 . In in-

nitesimal strain theory [27] , the linear (small deformation) strain

s given, in tensor form, by εi j = 

(
∂u i / ∂x j + ∂u j / ∂x i 

)
/ 2 . In two di-

ensions, the trace of the strain tensor, also called the volumet-

ic strain, is denoted by εv ol = εkk = ε11 + ε22 . We call hydrostatic

train the mean of the normal strains, that is, εhyd = εkk / 2 . With

his definition, we can also define the deviatoric strain, ε′ 
i j 
, satisfy-

ng 

′ 
i j = εi j −

1 

2 

εkk δi j . (5)

An important material parameter related to the response to

uniform) pressure in linear elasticity of isotropic media is the bulk

odulus, K , and it is related to other material parameters such as

, the Poisson’s ratio, and Y , the Young’s modulus, via the rela-

ionship ν = 1 / 2 − Y/ 6 K [27] . We notice that for K � Y , meaning in

he limiting case in which K → ∞ (i.e., for ν → 1/2), we approach

he incompressible limit. However, for nearly incompressible ma-

erials, a penalty function [30] that allows for small perturbations

o the trace of the strain, representing the volumetric change, is

iven by 

kk + p/K = 0 . (6)

ence, we find an expression for the pressure, p , in terms of the

olume variation, given by 

p = −Kεkk . (7)

or various formulations, including the penalty method, the reader

s referred to [27,30] . 

In this work, we expand the condition (6) to account for the hy-

rodynamic pressure, p , in liquids. In constitutive models describ-

ng liquids, the stress response is directly proportional not to the

train, but to the rate of change of the strain, namely ˙ ε. Accord-

ngly, the consideration of a penalty method for liquids needs to

ake into account the strain rate [31] . We introduce a penalty for-

ulation for the variation of the volume of nearly incompressible

iquids 

˙ kk + p/ ̂  K = 0 , (8)

or which the pressure in the liquid is then given in terms of the

race of the strain rate by 

p = −̂ K ˙ εkk , (9)

ith the penalty constant, ̂ K , such that ̂ 

 � η , (10)

here η represents the shear viscosity coefficient. 

We start our constitutive analysis by introducing the Newtonian

onstitutive model for viscous liquids, given by 

i j = 2 η ˙ ε′ 
i j + ̂

 K ˙ εkk δi j . (11)

Next, we include in our analysis viscoelastic fluids. Different lin-

ar viscoelastic constitutive models of interest can be expressed in

inear differential form [18,20,36] . The Maxwell constitutive model

or viscoelastic liquids is given by 

i j + τ∂ t σ
′ 
i j = 2 η ˙ ε′ 

i j + ̂

 K ˙ εkk δi j , (12)

here τ is the relaxation time constant, such that τ = η/G, with G

he shear modulus [20] . We notice that when τ = 0 we recover the

ewtonian fluid constitutive law in Eq. (11) . When τ > 0, it deter-

ines the rate at which the stress relaxes (i.e decays) for constant

train. Maxwell model can interpolate between a linearly viscous
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Fig. 3. The final configuration, at t 
 = 1 , of a Cook’s membrane of viscoelastic material of Maxwell type, with viscosity coefficient η = 10 Pa s , and relaxation time τ = 1 s . 

The color gradient represents contour plots of the displacement field, in which warmer shades mean higher values. In (a), we show the first component of the displacement 

field, u 1 , that ranges between its minimum value, u 1 min ∼ 0 m (blue), and its maximum value, u 1 max = 4 . 648 × 10 −3 m (red). In (b), we display the second component, u 2 , 

that ranges between its minimum value, u 2 min = −3 . 275 × 10 −3 m (blue), and its maximum value, u 2 max = 4 . 385 × 10 −4 m (red). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Convergence tests for the Cook’s membrane for Maxwell (red square data on 

blue dashed curve) and Newtonian (red circle data on blue solid curve) models. We 

display the relative error on the computed u 1 , as measured at the top-right corner 

of the deformed Cook’s membrane, at time t 
 = 1 , versus the number of elements, 

N e = 8 , 22 , 80 , 336 , both in logarithmic scale. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Schematic of the pressure validation test. 
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nd elastic behavior. In fact, when the stress applied has a fast

ime variation, the left hand side of Eq. (12) is dominated by the

ime derivative, and, upon time integration, the constitutive law for

inearly elastic solids is recovered [20] . 

.1. Time discretization 

The time interval t ∈ [0, T ] is discretized by n equal steps, with

 = 0 , 1 , . . . , and �t is the temporal step size considered. At each

patial material point, we denote the stress at the previously con-

erged time step by σn , and at the current time step by σn +1 . We

efine the rate of change of the strain tensor with a finite differ-
nce ˙ εn +1 = ( εn +1 − εn ) / �t, and similarly for the stress tensor. We

onsider initial conditions on both the strain and the stress to be
0 = σ0 = 0 . Hence, we can write the discrete form of Eq. (11) , in

ndicial form, as 

n +1 
i j 

= 

2 η

�t 

{(
εi j −

1 

2 

εkk δi j 

)n +1 

−
(
εi j −

1 

2 

εkk δi j 

)n 
}

+ 

̂ K 

�t 

{
εn +1 

kk 
δi j − εn 

kk δi j 

}
, (13) 

nd in vector form as 
 

σ11 

σ22 

σ12 

] n +1 

= 

2 η

�t 

⎧ ⎨ ⎩ 

[ 

1 
2 
ε11 − 1 

2 
ε22 

− 1 
2 
ε11 + 

1 
2 
ε22 

γ12 

] n +1 

−
[ 

1 
2 
ε11 − 1 

2 
ε22 

− 1 
2 
ε11 + 

1 
2 
ε22 

γ12 

] n 
⎫ ⎬ ⎭ 

+ 

̂ K 

�t 

⎧ ⎨ ⎩ 

[ 

ε11 + ε22 

ε11 + ε22 

0 

] n +1 

−
[ 

ε11 + ε22 

ε11 + ε22 

0 

] n 
⎫ ⎬ ⎭ 

, (14) 

here we have used the notation γ12 = 2 ε12 , for which in vector

orm shear strain components are twice that given in tensor form

27] . We consider the algorithmic consistent Jacobian (or stiffness)

ourth order tensor to be defined for the case of Newtonian fluids

s 

 i jlm 

= 

∂σ n +1 
i j 

∂ ˙ εn +1 
lm 

= η(δil δ jm 

+ δim 

δ jl ) − ηδi j δlm 

+ ̂

 K δi j δlm 

. (15) 

This way, we can write Eq. (11) in matrix form as a linear re-

ation between the stress tensor and the strain rate tensor with a

onstant coefficient matrix, D v . We shall refer to D v as the viscos-

ty matrix of moduli , analogously to the elasticity matrix of moduli

27] , and write 

n +1 = D v ̇ ε
′ n +1 

, (16) 

n components, 

 v = 

⎡ ⎢ ⎢ ⎢ ⎣ 

c v 
2 

+ ̂

 K − c v 
2 

+ ̂

 K 0 

− c v 
2 

+ ̂

 K 

c v 
2 

+ ̂

 K 0 

0 0 

c v 
2 

⎤ ⎥ ⎥ ⎥ ⎦ 

, (17) 

here we have used the constant c v = 2 η. 

Similarly, we discretize the Maxwell model, in Eq. (12) , by con-

idering the stress implicitly. In indicial form, it becomes 

′ 
i j 

n +1 = 

(
1 + 

�t 

τ

)−1 {
σ ′ 

i j 

n + 

2 η

τ

[(
εi j −

1 

2 

εkk δi j 

)n +1 
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Fig. 6. In (a), the computed volumetric strain, εkk , and in (b), the corresponding volumetric strain rate, ˙ εkk , versus the dimensionless constant η/ ̂  K , for different values εkk , 

versus the dimensionless constant η/ ̂  K , for different values of ̂  K = 10 2 , 5 × 10 2 , 10 3 , 5 × 10 3 , 7 . 5 × 10 3 , 10 4 Pa s, keeping η = 10 Pa s fixed, both in logarithmic scale. 

Fig. 7. Schematic of a sheared membrane between parallel plates. Both plates are 

sheared on the top, held fixed at the bottom, and no-flux and traction-free bound- 

ary conditions are applied on the lateral boundaries of the plates. Friction between 

the liquid and the plates is neglected. 

 

 

 

 

 

 

 

 

w

σ  

w  

o  

c

 

u  

6  

w

4

4

 

t  

t  

t  

n  

a  

O  

t  

w  

d  

b  

b  

a  

fi  

f  

t  

r  

t  

l  

b  

t  

t  

t  

a  

A  

c  

ρ  

M  

w  

c  

e  
−
(
εi j −

1 

2 

εkk δi j 

)n 
]

+ 

̂ K 

τ

[
εn +1 

kk 
δi j − εn 

kk δi j 

]}
, (18)

which may be written in vector form, as [ 

σ ′ 
11 

σ ′ 
22 

σ ′ 
12 

] n +1 

= 

(
1 + 

�t 

τ

)−1 

⎧ ⎨ ⎩ 

[ 

σ ′ 
11 

σ ′ 
22 

σ ′ 
12 

] ′ n 

+ 

2 η

τ

⎡ ⎣ 

[ 

1 
2 
ε11 − 1 

2 
ε22 

− 1 
2 
ε11 + 

1 
2 
ε22 

γ12 

] n +1 

−
[ 

1 
2 
ε11 − 1 

2 
ε22 

− 1 
2 
ε11 + 

1 
2 
ε22 

γ12 

] n 
⎤ ⎦ 

+ 

̂ K 

τ

⎡ ⎣ 

[ 

ε11 + ε22 

ε11 + ε22 

0 

] n +1 

−
[ 

ε11 + ε22 

ε11 + ε22 

0 

] n 
⎤ ⎦ 

⎫ ⎬ ⎭ 

. (19)

Now we can rewrite the relation in Eq. (12) in matrix form,

with a constant coefficient matrix, D ve , that we shall call the vis-

coelasticity matrix of moduli . This matrix does not express a direct

proportionality between the variation of the stress and the one of

the strain, as in the viscous case. But it expresses the variation

of the total change of the algorithmic stress (including its history)
ith respect to the rate of change of the strain, that is 

n +1 + τ∂ t σ
′ n +1 = D v e ̇ ε

′ n +1 
, (20)

here in components D ve has the same form as the Newtonian

ne, in Eq. (17) , except for the constant that now is defined as

 v e = c v /τ, and 

̂ K /τ appears in place of ̂ K . 

The discrete material models presented are implemented as a

ser defined subroutine ( UMAT ) for the software Abaqus/Standard

.13, and the time derivatives of Eq. (3) are discretized implicitly

ith a generalized Newmark scheme [37] . 

. Results and discussion 

.1. Convergence tests 

We present our numerical results in absence of gravity, and in

erms of the surface coordinate system, for which the surface vec-

or displacement and applied loads only have two in-plane non-

rivial components, and therefore we omit the null third compo-

ent to avoid cumbersome notation. To validate our formulation

nd implementation, we have performed several convergence tests.

ne of the typical convergence tests for membrane structures is

he Cook’s membrane [38,39] . This is a free-boundary problem in

hich a membrane, shaped as in Fig. 2 , undergoes a load (equally

istributed among all nodes) on its top boundary, while its bottom

oundary is held fixed. We apply a horizontal load along the top

oundary, given by P = (1 , 0) N, and the bottom boundary satisfies

 homogeneous Dirichelet boundary condition on the displacement

eld, i.e., u = (0 , 0) m. All other boundaries of the membrane are

ree to move, and satisfy no-flux and traction-free boundary condi-

ions. In problems in which a load is applied and/or removed, we

elate the time of the loading/unloading phases to the characteris-

ic time of the response of the material. For the case of Maxwell

iquids we scale the time interval of the loading/unloading phases

y the normalized time t 
 = t/τ . On the other hand, for New-

onian liquids, we use t 
 = t/t c , where t c = 1 s is a characteris-

ic time scale for viscous fluids. For the convergence test of both

he Newtonian and Maxwell models, we apply a load with an

mplitude A , linearly varying in time, with A = 1 at t 
 = 0 and

 = 0 at t 
 = 1 . For the numerical investigations that follow, we

onsider membranes of viscosity coefficient η = 10 Pa s, density

= 10 3 kg/m 

3 , and relaxation time τ = 1 s for the Maxwellian (for

axwell model) membrane, unless specified differently. In Fig. 3 ,

e show the deformed Maxwellian membrane at time t 
 = 1 , dis-

retized by an unstructured mesh composed of 336 triangular el-

ments. We display the contour plots of the vector displacement
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Fig. 8. Comparison of the evolution of sheared membranes of Newtonian and Maxwellian fluids. The contour plots of u 1 , are displayed at time t 
 = 1 , 2 , 5 (from left to right), 

where the red color represents the maximum value attained at t 
 = 5 , u 1 max = 2 . 381 × 10 −2 m, and the blue color represents the minimum value, u 1 min = 0 m. The viscosity 

coefficient for all membranes is η = 20 Pa s, and the relaxation times are τ = 0 , 0 . 5 , 1 , 2 , 5 s, (from top to bottom). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 9. (a) Evolution of the shear stress component, σ 12 , of sheared membranes, for different values of the relaxation time τ = 0 s (blue solid curve), 0.5 s (green dashed 

curve), 1 s (purple dash-dotted curve), 2 s (yellow dashed curve), 5 s (red dotted curve). (b) A magnification for t ∈ [0, 5] s. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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Fig. 10. Evolution of u 1 , measured from the top-right corner of the sheared mem- 

brane, for different values of the relaxation time τ = 0 s (blue solid curve), 0.5 s 

(green dashed curve), 1 s (purple dash-dotted curve), 2 s (yellow dashed curve), 

5 s (red dotted curve). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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field, for which warmer shades indicate higher values. In Fig. 3 a,

we show the contour plot of the first component of the vector

displacement field, u 1 , that ranges between its minimum value,

u 1 min ∼ 0 m (blue), on the bottom boundary, and its maximum

value, u 1 max = 4 . 648 × 10 −3 m, (red) on the top-right corner of

the membrane. In Fig. 3 b, we display the contour plot of the sec-

ond component of the vector displacement field, u 2 , that ranges

between its minimum value, u 2 min = −3 . 275 × 10 −3 m (blue), on

the top-right corner of the membrane, and its maximum value,

u 2 max = 4 . 385 × 10 −4 m (red), on the left boundary. 

By performing several numerical experiments, with a fixed time

step, �t = 10 −4 s, and refined unstructured meshes, we can have

a quantitative analysis of the convergence of our numerical algo-

rithms, Eqs. (14) and (19) , and show that our results converge un-

der mesh refinement. Since the analytical solution of the particu-

lar free-boundary problem depicted in Fig. 2 is not known, it is a

common practice to use the displacement field components, mea-

sured at one of the tips of the membrane, for convergence tests,

as also described in the literature (see for instance, [38,39] ). In

Fig. 4 , we show our numerical results of the relative error on the

computed u 1 , as measured at the top-right corner of the deformed

Cook’s membrane, at time t 
 = 1 , versus the number of elements,

N e = 2 , 8 , 22 , 80 , 336 , both in logarithmic scale. For the computa-

tion of the relative error, we have considered as approximation

of the actual solution, the results obtained with an unstructured

mesh composed of N e = 1346 elements. We represent with red

squares on a blue dashed curve the data for the Maxwellian mem-

brane, and with red circles on a blue solid curve the Newtonian

one. We can see that the results of our implementation of both

constitutive models converge, with increasing number of elements.

A validation test for the pressure formulation and the near in-

compressibility condition is given by a tension experiment. For
Fig. 11. Schematic of the drawing process of a thin viscoelastic membrane (n
his test, the liquid membrane is deposited on a plane and sur-

ounded by rigid plates, forming a square bounding box. As de-

icted in Fig. 5 , on the left boundary, the plate is allowed to move

ertically, by imposing a zero boundary condition for u 1 , while on

he bottom boundary, the plate is allowed to move horizontally,

y imposing a zero boundary condition for u 2 . The right bound-

ry satisfies a no-flux and traction-free boundary condition. The

op boundary satisfies a no-flux boundary condition and it is dis-

laced linearly in time by u = (0 , 0 . 005) m, such that for t 
 = 0 ,

he corresponding amplitude is A = 0 , and for t 
 = 1 , the cor-

esponding amplitude is A = 1 . Hence, by studying the dimen-

ionless parameter related to the pressure, η/ ̂  K , we can quantita-

ively verify that the pressure formulation leads, in the limit, to

ncompressibility. In Fig. 6 , we show the results of our simula-

ions for the Maxwellian film. We measure the computed volumet-

ic strain, εkk (shown in Fig. 6 a), and the corresponding volumet-

ic strain rate, ˙ εkk (shown in Fig. 6 b), for different values of ̂ K =
0 2 , 5 × 10 2 , 10 3 , 5 × 10 3 , 7 . 5 × 10 3 , 10 4 Pa s, keeping η = 10 Pa s

xed, both in logarithmic scale. We can see that the data corre-

ponding to the small values of the dimensionless ratio η/ ̂  K , have

oth smaller volume change, εkk , and respective rate of change, ˙ εkk .

e have found that the optimal range for the near incompressibil-

ty condition is η/ ̂  K ∈ [10 −3 , 10 −1 ] . For values outside of this range

he penalty method leads to stringent constraints on the time step

33,40] , or larger compressibility of the material. 

.2. Membrane deformation under shear flow 

The first application we consider is the simple shear flow

20,29] of a thin liquid layer between parallel rigid plates. In this

nvestigation, we do not include friction effects between the liquid

ayer and the rigid plates. The shear motion is obtained by hold-

ng fixed the bottom boundary of the plates, and by horizontally

hearing the top boundary, by either imposing a horizontal dis-

lacement, or a horizontal force. In Fig. 7 , we show the schematic

f the setup of this numerical experiment, where square mem-

ranes of length L = 10 −1 m are used. For the first numerical ex-

eriment, a constant horizontal load P = (10 −2 , 0) N has been lin-

arly applied in time for t 
 = 5 . The right and left boundaries sat-

sfy a traction-free and no-flux boundary conditions, the bottom

oundary is clamped, and the top is allowed to move only hori-

ontally, by imposing the condition that u 2 = 0 on all nodes along

he top boundary. In Fig. 8 , we show the final configuration of

heared membranes of Maxwell type, compared to a viscous one.

he contour plots of u 1 , are displayed at time t 
 = 1 , 2 , 5 (from left

o right), where the red color represents the maximum value at-

ained at t 
 = 5 , u 1 max = 2 . 381 × 10 −2 m, and the blue color rep-

esents the minimum value, u 1 min = 0 m. The viscosity coefficient

or all membranes is η = 20 Pa s, and the relaxation times are

= 0 , 0 . 5 , 1 , 2 , 5 s, (from top to bottom). We observe that the liq-

id membrane of Maxwell type with the highest relaxation time

as deformed the most, corresponding to a longer dimensional
ot in scale), and the temperature profile at the location of the furnace. 
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ime of imposed load. Moreover, we notice how the Newtonian

embrane (shown on the second row) is the one that displaces

he least, compared to all other Maxwellian membranes, and there-

ore exhibits the darkest shades. 

Next, we investigate the effect of the relaxation time on both

he stress and the displacement in the simple shear flow. We ob-

erve that the relaxation time, τ = η/G, represents the ratio of the

hear viscosity coefficient over the shear elastic modulus. Hence by

eeping the viscosity fixed, and by increasing τ , we increase the

mportance of viscosity relative to elasticity. In this test case, we

isplace the top plates by applying a velocity of v = (10 −4 , 0) m/s.

his boundary condition is time-dependent, with the magnitude

f the applied velocity linearly decreasing in time, with A = 1 at

 


 = 0 and A = 0 at t 
 = 4 . In Fig. 9 , we plot the time evolution

in Fig. 9 (a), for t ∈ [0, 20] s, and in Fig. 9 (b), a close-up for t ∈ [0,

] s) of the shear stress component, σ 12 , for the values of the re-

axation time τ = 0 s (blue solid curve), 0.5 s (green dashed curve),

 s (purple dash-dotted curve), 2 s (yellow dashed curve), 5 s (red

otted curve), for a 2-element test membrane, in which the stress

s uniform and the same in both elements. In this figure we can

ee that the limiting case, for τ = 0 s, that corresponds to a Newto-

ian fluid, exhibits the linear relationship between the shear stress

nd strain rate. Moreover, the Maxwellian liquid of relaxation time

= 0 . 5 s shows a similar behavior, and the ones with τ > 1 s show

he stress relaxation feature, typical of Maxwell model [20] , in

hich the peak of shear stress is lowered by higher values of the

elaxation time. 

Following that, we carry out one last parameter study on the

elaxation time in shear flows. For this test case, and different

rom the previous one in which we imposed an initial velocity for

he shear motion, we displace the top boundary of a 2-element

est membrane, by applying a horizontal load P = (0 . 1 , 0) N, lin-

arly decreasing in time, with A = 1 at t 
 = 0 and A = 0 at t 
 = 25 .

hen the load or the deformation is removed, different behaviors

ccur according to the material model considered. A linearly elastic

aterial bounces back and forth, with no constitutive dissipation.

 Newtonian liquid exhibits resistance to the shearing velocity and

o elastic behavior. A Maxwell liquid can combine both these two

haracteristic behaviors, as described in Section 3 . We measure u 1 ,

n the top-right corner of the membrane, and track its evolution

n time. In Fig. 10 , we show the values corresponding to the re-

ults with τ = 0 s (blue solid curve), 0.5 s (green dashed curve),

 s (purple dash-dotted curve), 2 s (yellow dashed curve), 5 s (red

otted curve). We observe how the viscous fluid, corresponding to

he curve with τ = 0 s, reaches a plateau and does not exhibit any

lastic effects. In fact, even when the load is removed, the New-

onian membrane displacement remains constant. On the contrary,

he Maxwell liquids exhibit a nearly elastic response in the early

imes, that is dissipated by viscosity in later times. As stated in the

revious paragraph, by increasing the relaxation time τ , at parity

f viscosity coefficient, we increase the importance of the viscos-

ty relative to elasticity. In fact, we can see the increasing effects

f viscosity in the oscillations with smaller amplitude and larger

avelengths for the curves of τ > 1 s. 

.3. Membrane deformation under extensional flow 

Finally, we consider the application of the drawing of viscoelas-

ic membranes with constant thickness, as a planar study of a

ore general redrawing process of viscoelastic flat sheets [41] .

rawing or redrawing processes are manufacturing practices for

hich a sheet, usually of glass or metal, is heated and stretched

o obtain a reduced cross sectional area, such as in the produc-

ion of glass fibers (see [25,26,41] and references therein). We

odel the sheet as a slender membrane of initial length L =
00 mm and width W = 1 mm, with its bottom-left corner co-
nciding with the origin of the surface coordinate system (see

ppendix A ) in reference state, ( Y 1 , Y 2 ), as depicted in Fig. 11 .

he membrane is clamped on its right and left boundaries to

igid walls that move with a drawing velocity on the right bound-

ry, v d = (10 −3 , 0) m/s, and a feed velocity on the left boundary,

 f = (10 −4 , 0) m/s, respectively. The top and bottom boundary sat-

sfy no-flux and traction-free boundary conditions. As the mem-

rane is drawn, it passes a heated region, representing an idealized

urnace, starting at location Y 1 = 40 mm. The furnace temperature

ollows a linear profile that increases from the ambient tempera-

ure, T a = 300 K, reaching its maximum, T f = 400 K, that is held

onstant for 45 mm < Y 1 < 55 mm, and returns to the ambient

emperature at Y 1 = 60 mm, as shown in Fig. 11 . According to the

ndustrial application of interest, the dimension of the membrane

nd the furnace can vary [25] . We are interested in industrially

elevant processes where the furnace zone is short relative to the

embrane length, but large relative to the membrane width. Con-

istent with Srinivasan et al. [41] , we assume that the temperature

rradiation between the heating device and the viscoelastic mem-

rane is in equilibrium, so that the temperature in the fluid equals

he one prescribed by the furnace. As the temperature reaches its

aximum, we model the viscosity as linearly dependent on the

emperature T , according to the following expression 

= ηa −
η f − ηa 

T f − T a 
(T − T a ) , (21) 

here we have considered the difference between the viscosity of

he liquid in the furnace, ηf , and in the ambient, ηa , to be modeled

s η f − ηa = ηa / 2 , with ηa = 1 Pa s. 

In Fig. 12 , we show contour plots of u 2 (on the left panel) and

he second normal stress component, σ 22 (on the right panel),

or the quasi-static solution of the central region of drawn mem-

ranes, of relaxation time τ = 0 , 0 . 5 , 1 , 2 , 5 s, (from top to bottom),

t t ∼ 10 s. As the membranes are stretched, they exhibit some

ecking in their central part, corresponding to the region of low-

st viscosity, consistently with [42] . The blue color on the top of

he necking region represents the minimum value of u 2 , u 2 min =
1 . 440 × 10 −4 m, and the red color at the bottom of the necking

egion represents its maximum value, u 2 max ∼ −u 2 min . In addition,

y analyzing the stresses, we can identify the onset of buckling,

eading to wrinkling instabilities, that are known to arise when

iscous [41,42] or elastic [43,44] sheets are stretched. The nor-

al stress σ 22 has reached its maximum value, σ22 max = 3 . 759 ×
0 −1 Pa, represented by the red shades, and its minimum value,

22 min = −1 × 10 −3 Pa, represented by the blue shades. We note

hat, in the finite element formulation chosen in this work, the

tress components are constant on each element. Furthermore, for

isualization, the color map representing the stresses is smoothed

within a default threshold of 75%, as displayed in the legend of

he right panel of Fig. 12 , where S stands for σ and, similarly,

 22 for σ 22 ). Accordingly, there is no visible distinction between

he stress value along the edge of an element and its interior.

oreover, we remark that, although the constitutive model cho-

en does not explicitly represent effects due to a difference in nor-

al stresses, we believe that the region of maximum stress, ob-

erved on the right panel of Fig. 12 , suggests the onset of buckling,

imilar to the behavior of stretched rubber observed in the liter-

ture (see, e.g., [43,44] ). In Fig. 13 , we show the evolution of the

oint of maximum necking, at the center of the redrawn Newto-

ian and Maxwellian sheets. We plot u 2 , at the midpoint of the

op boundary of the stretched film, for τ = 0 s (blue solid curve),

.1 s (green dashed curve), 0.25 s (purple dash-dotted curve), 0.5 s

yellow dashed curve), 0.75 s (red dotted curve), 1 s (black solid

urve), 2 s (magenta dash-dotted curve), 5 s (orange solid curve),

nd 10 s (light blue dashed curve), both in logarithmic scale. We
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Fig. 12. Central region of drawn viscoelastic membranes. On the left panel, contour plots of u 2 , for the quasi-static solution of drawn membranes, of relaxation time 

τ = 0 , 0 . 5 , 1 , 2 , 5 s, (from top to bottom), at t ∼ 10 s. The blue color on the top of the necking region represents the minimum value of u 2 , u 2 min = −1 . 440 × 10 −4 m, and the 

red color at the bottom of the necking region represents its maximum value, u 2 max ∼ −u 2 min . On the right panel, contour plots of the second normal stress component, σ 22 , at 

time t ∼ 10 s. The normal stress σ 22 has reached its maximum value, σ22 max = 3 . 759 × 10 −1 Pa, represented by the red shades, and its minimum value, σ22 min = −1 × 10 −3 Pa, 

represented by the blue shades. The region of maximum stress represents the onset of buckling. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 13. Comparison of u 2 at the midpoint of the top boundary of the stretched 

Newtonian and Maxwellian membranes, for τ = 0 s (blue solid curve), 0.1 s (green 

dashed curve), 0.25 s (purple dash-dotted curve), 0.5 s (yellow dashed curve), 0.75 s 

(red dotted curve), 1 s (black solid curve), 2 s (magenta dash-dotted curve), 5 s 

(orange solid curve), and 10 s (light blue dashed curve), both in logarithmic scale. 

The inset shows a magnification of the graphs for t ∈ [8, 10] s. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

Fig. 14. Stretch factor, ε = u 1 max /L, versus the relaxation time τ , for four different 

sets of feeding and drawing velocities: v f = (10 −4 , 0) m/s and v d = (10 −3 , 0) m/s 

(blue solid curve), v f = (5 × 10 −4 , 0) m/s and v d = (10 −3 , 0) m/s (magenta dotted 

curve), v f = (10 −4 , 0) m/s and v d = (5 × 10 −3 , 0) m/s (black solid curve), and v f = 

(5 × 10 −4 , 0) m/s and v d = (5 × 10 −3 , 0) m/s (red dotted curve). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

o  

f  

v  

o  

v  
can see that the Maxwellian membranes with higher values of the

relaxation time exhibit more necking. 

Finally, we investigate the maximum stretch, defined as ε =
u /L, attained by the elongated membranes before the onset
1 max 
f buckling. This quantity, industrially relevant, can help manu-

acturers avoid undesired wrinkling instabilities. In Fig. 14 , we in-

estigate the influence of the relaxation time, for τ ∈ [0, 10] s,

n ε, for four different sets of feeding and drawing velocities:

 = (10 −4 , 0) m/s and v = (10 −3 , 0) m/s (blue solid curve), v =
f d f 
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(5 × 10 −4 , 0) m/s and v d = (10 −3 , 0) m/s (magenta dotted curve),

 f = (10 −4 , 0) m/s and v d = (5 × 10 −3 , 0) m/s (black solid curve),

nd v f = (5 × 10 −4 , 0) m/s and v d = (5 × 10 −3 , 0) m/s (red dot-

ed curve). We can see that membranes that are drawn at higher

peeds, i.e., with v d = (5 × 10 −3 , 0) m/s, reach a maximum elon-

ation of 20% from their initial length. We moreover notice that

embranes with equal drawing velocities exhibit a similar behav-

or, although the ratio of the magnitude of their drawing to feed

elocities, is different, ranging from 10 for the first and third set of

ata, to 50 for the second and fourth ones. 

. Conclusions 

We have performed a novel numerical investigation of the dy-

amics of nearly incompressible viscoelastic fluid membranes. We

ave introduced a displacement-based finite element formulation,

n which the stresses are expressed for both viscoelastic fluids of

axwell type, and viscous (Newtonian) fluids. For the nearly in-

ompressibility condition of both the Newtonian and Maxwellian

ases, we have introduced a penalty function, in which the penalty

onstant is proportional to the viscosity of the fluid. We have val-

dated our numerical implementation with several numerical ex-

eriments, demonstrating mesh-independence of our results, and

alidity of the formulation for near incompressibility, in the limit

f the dimensionless parameter η/ ̂  K . 

We have focused on two main applications of our general nu-

erical framework: shear flow [20] and extensional flow in draw-

ng processes [25,26] . For the case of the simple shear flow of

embranes between parallel plates, we have investigated the ef-

ect of the relaxation time on the stress relaxation, feature typical

f Maxwell liquids [20] , and the dynamics. Comparing the behavior

f sheared Newtonian and Maxwellian membranes, we have ob-

erved the effects of viscoelasticity on the nature of the dynam-

cs, as well as on their final configuration. We have found that

axwellian membranes deform the most, compared to Newtonian

nes, when they are continuously sheared. While they exhibit an

lastic response, that is constitutively damped by viscosity, in the

ase of loading/unloading forcing. 

For the drawing process of Newtonian and Maxwellian mem-

ranes, with a temperature-dependent viscosity, we have investi-

ated how viscoelasticity affects the necking of the membranes in

xtensional flows. We have found that higher values of the relax-

tion time enhance the necking of the stretched membranes. Fi-

ally, we have investigated the influence of the relaxation time on

he maximum stretch attained by the membranes before the on-

et of wrinkling instabilities, that are known to arise when viscous

41,42] or elastic [43,44] sheets are stretched. We have found that

igher values of the relaxation time facilitate the onset of buckling

nd therefore the emergence of the wrinkling instabilities. 

ppendix A 

We describe here the details of the spatial discretization for

ach term in Eq. (2) . By linear interpolation, we can specify a po-

ition in the triangular element by X = ξα
˜ X 

α in the reference con-

guration, and x = ξα˜ x α in the current one. Where ξα represents

he natural area coordinates, or barycentric coordinates [27] , such

hat 

1 + ξ2 + ξ3 = 1 . (A.1) 

Following Taylor et al. [6] , to describe the in-plane deformation

nd stresses of the membrane, it is convenient to introduce a sur-

ace coordinate system that lays on the plane of the triangle, de-

oted by Y 1 and Y 2 , with normal direction N in the reference con-

guration, and y 1 , y 2 with normal direction n in the current state

see Fig. 1 ). 
In the surface coordinate system, the origin of the coordinates,

 Y 1 OY 2 ) and ( y 1 oy 2 ) are placed at the nodal locations, ˜ X 1 and 

˜ x 1 ,

espectively. The unit base vectors then may be constructed from

he linear displacement triangle, constituted by the three vertices

abeled by (1,2,3), by aligning the first base vector along the 1 − 2

ide. For simplicity, we denote the edge vectors of the reference

onfiguration by E 12 = ̃

 X 

2 − ˜ X 

1 , E 13 = ̃

 X 

3 − ˜ X 

1 , E 23 = ̃

 X 

3 − ˜ X 

2 , and

 12 = ̃

 x 2 −˜ x 1 , e 13 = ̃

 x 3 −˜ x 1 , and e 23 = ̃

 x 3 −˜ x 2 for the current con-

guration. Hence, we define the first unit base vector as 

ˆ  1 = 

e 12 

‖ e 12 ‖ 

. (A.2) 

 vector normal to the plane of the triangle is found by E 3 = E 12 ×
 13 in the reference state, and e 3 = e 12 × e 13 in the current state.

he normal vector in the current state is normalized by 

 : ˆ e 3 := 

e 3 
‖ e 3 ‖ 

, (A.3) 

nd similarly for the reference state, N : ̂  E 3 := E 3 / ‖ E 3 ‖ . The second

ase vector is found by E 2 = N × E 1 , and analogously by e 2 = n ×
 1 for the current configuration. Their normalized unit vectors are

ound, similarly, as ̂  E 2 = N ×̂ E 1 , and ˆ e 2 = n × ˆ e 1 . 

With the base vectors defined above for the plane of the trian-

le, we can define positions directly as 

 

i = (x −˜ x 

1 ) · ˆ e i . (A.4) 

From Eq. (A.4) , we note that for ˜ y 1 , the expression is ˜ y 1 =
( ̃  x 1 −˜ x 1 ) · ˆ e i = 0 . Hence, any position y , found by interpolation of

he surface coordinates reduces to 

 = ξα˜ y α = ξ2 ̃  y 2 + ξ3 ̃  y 3 , (A.5) 

here we have used the summation convention, and Eq. (A.1) be-

omes redundant. 

We define the deformation gradient tensor as 

 = 

∂y 

∂Y 

= I + 

∂u 

∂Y 

, (A.6) 

oreover, we can write 

 

∂Y 

∂ ξ
= 

∂y 

∂Y 

∂Y 

∂ ξ
= 

∂y 

∂ ξ
. (A.7) 

If we denote by J the Jacobian transformation tensor for the ref-

rence state, and by j the Jacobian transformation tensor for the

urrent state, we have 

 = 

∂Y 

∂ ξ
, j = 

∂y 

∂ ξ
. (A.8) 

ence, we can express the deformation gradient as 

 = jG , (A.9) 

here we have used G = J −1 . Following closely the derivation by

aylor et al. in [6] , we can expand the expressions for the matrices

 and j , by taking into considerations that E 12 is orthogonal to the

nit vector ̂  E 1 , and analogously e 12 is orthogonal to the unit vector

ˆ  1 , they become 

 = 

[‖ E 12 ‖ E 

T 
12 E 13 / ‖ E 12 ‖ 

0 

̂ E 3 / ‖ E 12 ‖ 

]
, (A.10) 

nd 

 = 

[‖ e 12 ‖ e T 12 e 13 / ‖ e 12 ‖ 

0 

̂ e 3 / ‖ e 12 ‖ 

]
. (A.11) 

We note that the symmetric part of the displacement gradient

s defined as H i j = ∂ u i /∂ x j , and can be recast as 

 = F − I . (A.12) 
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Thus, 

ε = 

1 

2 

(
H + H 

T 
)
. (A.13)

We can then define 

C = F T F = J −T j T jJ −1 = G 

T gG , (A.14)

where we have used g = j T j . We rewrite Eq. (A.14) in component

form as 

 IJ = G iI g i j G jJ , with i, j = 1 , 2 , and I, J = 1 , 2 , (A.15)

where the components of the matrix G are 

G 11 = 

1 

J 11 

, G 22 = 

1 

J 22 

, G 12 = 

−J 12 

J 11 J 22 

, G 21 = 0 . (A.16)

We can now find the relations among the indices needed for

the term δεT σ in Eq. (2) , first by noting that 

δC IJ σIJ = G iI δg i j G jJ σIJ = δg i j s i j , (A.17)

where the variable s ij , related to stress, is defined by 

s i j = G iI G jJ σIJ . (A.18)

We can rewrite the last transformation in matrix form 

s i j = Q 

T σ , (A.19)

where Q is a matrix of the change of index, defined by 

Q = 

[ 

G 

2 
11 0 0 

G 

2 
12 G 

2 
22 G 12 G 22 

2 G 11 G 12 0 G 11 G 22 

] 

. (A.20)

We can use Eq. (A.17) and write the second term on the right-

hand side of Eq. (2) , as ∫ 
�(e ) 

δεT σh d A = 

∫ 
�(e ) 

h 

2 

δC IJ σIJ d A = 

h 

2 

δg i j s i j A 

(e ) , (A.21)

where the area of a triangular element in the reference configura-

tion, A 

( e ) , can be calculated given any two vectors on the reference

configuration triangle, e.g., E 12 , and E 13 , by A 

(e ) = ‖ E 12 × E 13 ‖ / 2 . It
is convenient to rewrite Eq. (A.21) in matrix form 

1 

2 

δC IJ S IJ = [ δε11 δε22 2 δε12 ] 

[ 

σ11 

σ22 

σ12 

] 

= δεT σ , (A.22)

or, in terms of the expression found in Eq. (A.21) 

1 

2 

δg i j s i j = [ δg 11 δg 22 2 δg 12 ] 

[ 

s 11 

s 22 

s 12 

] 

= 

1 

2 

δg T s . (A.23)

We can finally write 

δε = 

1 

2 

δC = Qb δ ˜ x , (A.24)

where the vector ˜ x represents the three nodal values stacked in

a (9 × 1) column vector, and b is the strain-displacement matrix,

given by 

b = 

[ −e T 12 e T 12 0 

−e T 13 0 e T 13 

−(e 12 + e 13 ) 
T e T 13 e T 12 

] 

. (A.25)

Finally, we can form the divergence operator matrix, for each ele-

ment, B 

( e ) , in Eq. (2) , in terms of variations of the displacement for

each element, as 

B 

(e ) = Qb . (A.26)

We next need to define the matrix M 

( e ) , in Eq. (2) , representing

the mass matrix for each element, whose components are given

by 

M 

(e ) 
αβ

= 

∫ 
�(e ) 

ρhξαξβd A I . (A.27)
The last vector used in Eq. (2) , ̃  F b , represents the constant nodal

ody force, such as gravity, that is trivially linearly interpolated at

he nodes, and its description is omitted here. 
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