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Abstract
This study is developed in the field of Computational Fluid Dynamics, focusing on thin films of viscoelastic
liquids, such as polymeric fluids. Polymeric liquids combine characteristics of viscous fluids with features
typical of elastic matter. They are present in a broad variety of real life aspects and therefore studied and
used by a wide spectrum of industries and Sciences. The aim in this study is to give a full mathematical
analysis and to provide numerical simulations for the moving interface of viscoelastic liquids. The goal is to
deepen the comprehension of key features of the dynamics, and in particular of the interfacial instability, of
viscoelastic fluids through the tools of mathematical modeling and numerical simulations. We are interested
in the instabilities that cause the dewetting of the liquid on a solid substrate. The model we take into
consideration is characterized by a non-linear PDE that describes the motion of the fluid interface in time and
space, and includes a generalized Maxwell model of Jeffreys type to incorporate the viscoelastic behavior.
Through our study we find that the viscoelastic physical parameters, together with other physical quantities
involved such as slippage and molecular interactions with the substrate, affect the dynamics of the instability
and the final configuration of the fluid in blobs and droplets. Our findings are in agreement with the
theoretical framework and have been verified through the tool of Linear Stability Analysis.

Introduction
Thin liquid films are ubiquitous in nature and widely studied in industry for their innumerable types of
application. In particular, thin layers of viscoelastic fluids, such as polymeric liquids are commonly used in the
food industry, the chemical, pharmaceutical and biomedical industries, and material science related disciplines.
Our investigations are motivated by applications of thin polymer films in wetting/dewetting processes on solid
substrates (see figure 1). We are interested in understanding how the interface of a thin layer of fluid
surrounded by an ambient gas destabilizes, and separates so that the fluid exposes the solid substrate
(dewetting) and reorganizes in blobs and droplets. To solve this free-interface problem, we first use
mathematical tools like modeling and linear stability analysis to describe the theoretical framework. We then
drive numerical simulations to solve the highly non-linear partial differential equation (PDE) that governs the
motion of the liquid interface. Numerical investigations allow us to approximate the solution otherwise
impossible to obtain analytically.

Figure 1: An application of a thin polymeric liquid film. Picture from www.foodproductiondaily.com - MIT research.

Governing Equations
The equation governing the hydrodynamics for the fluid interface of viscoelastic media is derived as a
long-wave approximation of the conservation laws. The liquid is considered incompressible, with mass density
ρ. The equation of conservation of mass and continuity of momentum are:

∇ · u = 0 , ρ (∂tu + u · ∇u) = −∇pR +∇ · τ , (1)

where u = (u(x , y), v(x , y)) is the velocity vector field, ∇ = (∂x , ∂y), and pR the reduced pressure such that
pR = p − Π, where p is the hydrostatic pressure, while Π is the pressure induced by body forces of van der
Waals type (attractive or repulsive). The stress tensor τ follows the Jeffreys model for viscoelastic fluids,
which describes the non-Newtonian relation τ (γ̇) between the stress tensor τ and the strain rate γ̇:

τ + λ1∂tτ = η(γ̇ + λ2∂tγ̇) (2)

in which η is the shear viscosity coefficient and λ1, λ2 are, respectively, the relaxation time and the
retardation time. In figure 2 we can see a schematic of the fluid interface described parametrically by the
function y = h(x , t), where y = 0 is the solid substrate. At y = 0 we have Navier boundary conditions where
b ≥ 0 is the slip length (b = 0 means no slip, and b � O(1) means strong-slip). We nondimensionalize these
equations, using: x = Lx∗, y = Hy∗, u = Uu∗, v = εUv∗, t = Tt∗, with T = L/U , and H/L = ε, where ε is
the small parameter, and the pressure is scaled as PH/ηU ∼ ε−1. Keeping only O(1) terms in the governing
equations and boundary conditions, and dropping the “?” for simplicity sake, leads to the closed form
equation for the interface of a thin layer of viscoelastic fluid (3). The full derivation can be found in [1].
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Figure 2: Scheme of the fluid interface and boundary conditions.
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where Q and R satisfy respectively:
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and the van der Waals potential is defined by:
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with θ the contact angle with the substrate, M = (n −m)/[(m − 1)(n − 1)] (generally n > m), h? the
precursor film thickness, and σ the surface tension.

Linear Stability Analysis
To study the film’s response to a perturbation we consider h = h0 + εh0e

ikx+ωt , where h0 is the flat initial
thickness, k the wave number k = 2π/λ, and ω the growth rate. Using these into equation (3) and keeping
only terms up to O(ε), we obtain the following disperion/dissipation relation:
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Solving for the two roots of this quadratic equation we obtain one root strictly negative, let us say ω2, and
one root with varying sign, call it ω1. The latter one is positive (unstable) for −

√
Π′(h0) < ω1 <

√
Π′(h0).
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Figure 3: Linear Stability Analysis.

Results and Discussion
Through the LSA we investigate how the fastest growth rate ωm varies with λ1, λ2, b. In figure 3(a) we see
how ωm increases with larger λ1. In figure 3(b) we see how the growth rate blows up for this set of
parameters, with b = 0, λ2 = 0 at the value of λ1 = 9.011× 104. In fact for λ2 = 0 eq. (5) has a vertical
asymptote for a certain value of λ1. In figure 3(c) as λ2 increases ωm decreases, while in figure 3(d) as b
increases ωm increases remarkably.
We numerically solve eq. (3) using Newton linearization of the non-linear terms, Crank-Nicolson scheme for
the spacial derivatives and central finite differences for the second order derivative in time. The two ODEs for
eq. (4) can be solved with any Euler method.
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Figure 4: (a)-(d) Evolution for h0 = 1 and h? = 0.01, b = 0, λ1 = 10, λ2 = 0.01 at four selected times. In (a) the cusp formation.
In (b) the separation of the two rims and the formation of wrinkles that lead to droplets in later times, e.g. in (c), and that stay
until the final steady configuration (d).

In figures 4(a)-4(d) we see a numerical simulation of the evolution of the fluid interface. The unstable
interface, initially flat, is perturbed, and it does not return to its initial profile, but it breaks up into two
separate rims. The instability is due to the van der Waals force that drives the fluid interface towards the
substrate (figure 4(a)) until the fluid thickness reaches a short-range value, the precursor film h?. After this
value the fluid separates in rims (figure 4(b)). The high elasticity of the fluid (λ1 = 10) forms multiple
wrinkles (figure 4(c)) that lead to the formation of satellite droplets between the two major blobs of fluid.
These droplets remain even when the fluid reaches the steady state final configuration (figure 4(d)).

Conclusions and Future Work
Our numerical investigations allow to predict the dynamics of the moving interface of an unstable thin layer of
polymeric liquid that dewets a solid substrate. Our findings are in agreement with the theoretical framework
and have been verified through the tool of Linear Stability Analysis in the early times in which the fluid obeys
the linear regime. We numerically solve the highly non-linear PDE governing the interface of the viscoelastic
liquid, and our simulations show for the first time the formation of satellite droplets in thin films of
viscoelastic fluids. This opens to future investigations in the characterization of droplets number, size and
separation, depending on the physical parameters involved.
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