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Figure 1: Operator Algebraic Decomposition “3:’ E ?;
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_ _ Points per compute node Points per compute node Points per compute node drops by convection in a neutrally stratified atmosphere. The mathematical formulation is given below. The
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The libCEED API| takes an a|gebraic approach_ The user describes the objects G, B, and the tensor contractions and QFunction evaluations. For lower order elements, the external vectorization is energy density (defmed as £ = pe, V!here e is the total energy), I3 represents the 3 < 3 identity matrix, g the
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operator A;. This purely algebraic description includes all finite element information, so | 1S more efficient, due to cache size limitations. specific heat at constant pressure and ¢, is the specific heat at constant volume (that define v = ¢,/c,, the
backends can operate on the linear algebra level without explicit finite element code. The I node x 1 ranks, /gpufcudasref I node x 1 ranks, /gpu/cudafgen specific heat ratio).
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Figure 6: Solution of the compressible Navier-Stokes equations. In (a) the initial condition; In (b) the evolution
at time t = 50 s.
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Figure 4: BP3: 1x NVIDIA V100 GPU (Volta): In (a) reference CUDA implementation. In (b) CUDA code generation implementation.

Status: Ready for collaborators and friendly users.

These benchmarks use MFEM. The CUDA code generation backend, /gpu/cuda/gen, uses the user provided QFunc-
Figure 2: libCEED Backends tion (1)) code and information in the basis (B) and element restriction (G) objects to provide a single local operator
kernel (A;). This significantly improves performance over launching separate kernels to handle the action of each
ibCEED supports several backends and users can develop additional backends. The AP object, seen in /gpu/cuda/ref. The code generation in /gpu/cuda/gen can provide +/- 10% perfor-
LIBXSMM backends offer the best performance on the CPU and the CUDA | mance seen in hand written CUDA code, such as the code provided in libParanumal. Collaboration
with the libParanumal team provided several performance enhancements to the libCEED CUDA backends.

Further performance tuning for CPU and GPU
Improved non-conforming and mixed-mesh support

Algorithmic differentiation of Q-functions Grant: Exascale Computing Project (17-SC-20-SC)

HIP, OpenCL, and OpenMP Backends with OCCA
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@ Preconditioning based on libCEED decomposition
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backend with code generation offers the best performance on the GPU.




