ibCEED - Lightweight High-Order Finite Elements Library

o with Performance Portability and Extensibility

ontact Information: : :

https://ceed.exascaleproject.org Jeremy ThOmpsonl, Valeria Barraz, Yohann DUdOUltB, CEE
https://github.com /CEED/IibCEED Oana Marin* & Jed Brown?2 EXASCALE DISCRETIZATIONS

email: valeria.barra@colorado.edu
email: jeremy.thompson@colorado.edu 1: Department of Applied Mathematics & 2: Computer Science, University of Colorado Boulder

3: Lawrence Livermore National Laboratory, 4: Argonne National Laboratory

Performance Benchmarks Application - Geometric Multigrid

Abstract

PI;Ilgh-orde.rd n(;u;:.er}:cal Tethods are V\|/|de|y us§d thDE :olvebrs, but so.ftlware packagdes. that | The CEED project uses Benchmark Problems (BP) to test and compare the performance of high order finite element With high order finite elements, preconditioning is essential to control the condition
_ave ITTEZIEED ig -per olr_rlr)]ance |hmp e]rc?entatlons Iave Io tebn .eer.1 spe?a —pufrpose an. |r}tru— co.d.es. We analyze the pen.‘o.rmance of I|bCEED backends on BP3, P.0|sso.n problem Wltl‘.l .homoger_leous number and total iteration count for iterative solvers such as CG. The libCEED oper-
sive. |i s a new | rjry that offers 2 pureI y .agef !ralcI inter ace for rr;a]::rlx- ree D|r|(-:hlet boundary conditions. We measure performance over 29 iterations of unpreconditioned Conjugate | _; . decomposition offers several opportunities for preconditioning. P-multigrid offers mesh
operfaltor repres_entaltldon _an suppo_rtslrtlr_\—tm&epse ectlo(r; oGll:)mp en\1/\e/nt.at|onj tuneh T-LZE?;[I; Gradl.ent.(CG) on hexahedral 3D elements with 1 more quadrature pom_t t.han the nl.mee.r of nc.)d.es for the shape independent convergence for unstructured meshes. Restriction, Prolongation, and Smoothing
Z:?:/|O cccl)r(?putatlona :‘:wce. types,bmc u C:n.g ljslan d Us.- e mtrc;I uc.eht ehl , function in 1D The plots below show w?rk, measured by./ DoFs multiplied by_CG iterations divided by comp_ute operators can all be implemented in libCEED. We investigate performance of p-multigrid for
a(n an)1I<E)_r|1_sStrat|\e;|FlcE)vl\\;l |thakr150801)Jse mlstan a onle cofe orb:ntegrahte v]\cnt ot_ er _pach— n]c:desI multl.p:leddby seFoEdsi[g)lohttedfagal.nst problen; size, measured by points per compute node. A variety | BP3 on an unstructured mesh with hexahedral 3D elements.
ages (e.g., C, , Ne to solve examples or problems that orten arise In the | of polynomial orders of the shape ftunctions, p, are shown.
scientific computing community, ranging from fast solvers via geometric multigrid methods @ Prolongation/Interpolation Operator @ Laplacian Operator
to Computational FlUId Dynamics (CFD) applications. s 1 node x 56 ranks, /cpu/self/opt/serial s 1 node x 56 ranks, /cpu/self/avx/serial s 1 node x 56 ranks, /cpu/self/xsmm/serial AL _ GTI/Bftoc Gf A — GTBT DB radG
| | | | +‘ p=1 | | | —0—‘p=1 —— p=1>
m] — —— p=2 | _ : —— p=2 | _ —o— p=2
%7_.. | —— p=3 %7_. + p=3 %7_._._ p=3
Operator Decomposition =ik CTETEE
%6 e p=6 | %61 S I x 61 o= p=6
Finite element operators are typically defined through weak formulations of PDEs involving E DERIE IR I
.) 5_.. o 5_. SOOI SO hvrrovrroprrrovee Fov o o 5_.. PP rTTrYS sl
integration over a computational mesh. The required integrals are computed by splitting 5 5 | ﬁ E] | —p -—n
. . S S : / £
them as a sum over the mesh elements, mapping each element to a simple reference element g4 g4 g4
ancll a.p[-)lylng a quadrature rule in the -ref.erence space. | | g5l £, Y 7SN
This is illustrated below for a symmetric linear operator on third order (Q3) scalar continuous § g g
(H1) elements, where T-vector, L-vector, E-vector and Q-vector represent the (true) degrees 321 3?1 3?1 | -
of freedom on the global mesh, the split local degrees of freedom on the subdomains, the split S0 s - Figure 5: P-Multigrid on Unstructured Mesh
degrees of freedom on the mesh elements, and the values at quadrature points, respectively. | | . | | , | | | | £ | | _ _ _ _ _
R T T T T T T T T T T T T T T We consider BP3 on 3D hexahedral elements with 7th order polynomial basis functions on
o roints per compute node roinis per compute node roints per compute node an unstructured mesh on a cubic domain with 203 elements and 2.69 million DoFs.
A=P'G'B"DBGP () (b) (<)
1 node x 56 ranks, /cpu/self/opt/blocked 1 node x 56 ranks, /cpu/self/avx/blocked 1 node x 56 ranks, /cpu/self/xsmm/blocked Performance UnpreconditiOHGd P‘MUItigrid
global domain sub-domains elements quadrature N le8 , | , , , le8 le8 _ _
all (shared) dofs device (local) dofs element dofs point values - ° | | | | —— p=1 ° | | | | —o— p=1 ° —o— p=1 H . HOQ error 5.08x10 12 3.75x10 12
/) e e E;; g7 e S;; | 7] o E;; . CG lterations 80 6
; DS o oms|| § ||~ s CG Solve Time 8.5 sec 8.5 sec
P G B T e o p=6 | x6{ o p=6 | x6{ e p=6 -
— T — e — S DERAIE- DELAIIE S The p-multigrid example is still in development and requires performance tuning to reduce
SRR R I e e e 3% IR N AN N W ool cod 25 Rl el s ! _ _ S e _
— = 5 | 5 2N | e time per iteration; however, initial results demonstrate the flexibility of the |i
= G' S B’ | the time per CG iteration; h tial results d trate the flexibility of the libCEED
eofoe oo oo - sl .. € £ : S -
34 ... 24 34 API in O.ﬂ:erlng precond|t|on|ng Strategles for hlgh_order Opel’atOI’S on unstructured meSheS
T-vector L-vector E-vector Q-vector § A § N § N : : :
R i — * Application - Navier-Stokes
Figure 1: Operator Algebraic Decomposition “3:’ E ?;
. o El SN N A W El_ El This example solves the time-dependent Navier-Stokes equations of compressible gas dynamics in
@ Process decomposition P Not in libCEED ; : : : | _ ; ; | : : : a static Eulerian three-dimensional frame using structured high-order finite element/spectral element spatial
@ Element restriction G CeedElemRestriction W I 100 10f 1518 T MRy -y T T T T T discretization and explicit high-order time-stepping. We solve the density current problem: a cold air bubble
_ _ Points per compute node Points per compute node Points per compute node drops by convection in a neutrally stratified atmosphere. The mathematical formulation is given below. The
@ Basis (NOdeS-tO'QPtS) evaluator B CeedBasis (d) (e) (f) compressible Navier-Stokes equations in conservative form are
o Operator at quadrature points [CeedQFunction Figure 3: BP3: 2x Intel Xeon Platinum 8180M CPU 2.50GHz (Skylake): In (a)-(c), internal vectorization implementation. In (d)-(f), %+v- U=0, (1a)
@ AL —G'B!' DBG CeedOperator external vectorization implementation. ou (U@ U) .
—+ V- +Pls | +pgk=V - 0o, (].b)
This decomposition exposes optimizations for modern architectures, high-order ele- | o | ot S s (EL P
ments, and tensor product elements not available with sparse matrices.) These benchmark codes are included in [ibCEED’s PETSc example suite. The top row shows the performance E+v°(g) —V.-(u-o+kVT), (1c)

of CPU backends utilizing an internal vectorization strategy for element basis operation (B) and QFunction (D) | .., _ - (V)" - T)l b Fhee Cawely (et siess teser, with i the dyieme visesdy

E t " bl B k d evaluation, processing on element at a time. The second row shows CPU backends utilizing an external vectorization | coefficient, and A\ = —2/3 the Stokes hypothesis constant. In equations (1), p represents the volume mass
XLensi € dCKENAS strategy, processing batches of 8 elements at a time with data interlaced to provide vectorization friendly lengths for | density, U the momentum density (defined as U = pu, where u is the vector velocity field), E the total
The libCEED API| takes an a|gebraic approach_ The user describes the objects G, B, and the tensor contractions and QFunction evaluations. For lower order elements, the external vectorization is energy density (defmed as £ = pe, V!here e is the total energy), I3 represents the 3 < 3 identity matrix, g the

« o o . - - . . . itati | acceleration constant, k the unit vector in the z direction, k the thermal conductivity constant
: ' ' ' ' ' more efficient, while at higher orders the elements are sufficiently large that internal vectorization | &rV'tationa ’ ’ y ’
[); and the library provides backend implementations to apply the local action of the PDE s y lars T represents the temperature, and P = (c,/c, — 1) (E — U - U/(2p) — pgz) is the pressure, where c, is the

operator A;. This purely algebraic description includes all finite element information, so | 1S more efficient, due to cache size limitations. specific heat at constant pressure and ¢, is the specific heat at constant volume (that define v = ¢,/c,, the
backends can operate on the linear algebra level without explicit finite element code. The I node x 1 ranks, /gpufcudasref I node x 1 ranks, /gpu/cudafgen specific heat ratio).
separation of the frontend and backends enables applications to easily change backends. 3,02 _ _ 3.0 222
: : —o— p=0 —eo— p=0
; ; —o— E=1 —— E=1
: : —— p=2 —e— p=2
Devices Backends libCEED User Code 2 I Ezi 221 Ezi
—— p=5 —— p=5
: : —o— p=6 —o— pP=6
2.0_ gy p=7 20_+ p=7

15_ 15_

10l T T .

(a) (b)
Figure 6: Solution of the compressible Navier-Stokes equations. In (a) the initial condition; In (b) the evolution
at time t = 50 s.

[DoFs x CG iterations] / [compute nodes x seconds]
[DoFs x CG iterations] / [compute nodes x seconds]

0.0 - - : ; i 0.0 - : :
101 103 10° 107 101 103 10° 107

Points per compute node Points per compute node
' ’ Development Outlook
Figure 4: BP3: 1x NVIDIA V100 GPU (Volta): In (a) reference CUDA implementation. In (b) CUDA code generation implementation.

Status: Ready for collaborators and friendly users.

These benchmarks use MFEM. The CUDA code generation backend, /gpu/cuda/gen, uses the user provided QFunc-
Figure 2: libCEED Backends tion (1)) code and information in the basis (B) and element restriction (G) objects to provide a single local operator
kernel (A;). This significantly improves performance over launching separate kernels to handle the action of each
ibCEED supports several backends and users can develop additional backends. The AP object, seen in /gpu/cuda/ref. The code generation in /gpu/cuda/gen can provide +/- 10% perfor-
LIBXSMM backends offer the best performance on the CPU and the CUDA | mance seen in hand written CUDA code, such as the code provided in libParanumal. Collaboration
with the libParanumal team provided several performance enhancements to the libCEED CUDA backends.

Further performance tuning for CPU and GPU
Improved non-conforming and mixed-mesh support

Algorithmic differentiation of Q-functions Grant: Exascale Computing Project (17-SC-20-SC)

HIP, OpenCL, and OpenMP Backends with OCCA

)
)
@ Preconditioning based on libCEED decomposition
)
)

backend with code generation offers the best performance on the GPU.

