
libCEED - Lightweight High-Order Finite Elements Library
with Performance Portability and Extensibility

Jeremy Thompson1, Valeria Barra2, Yohann Dudouit3,
Oana Marin4 & Jed Brown2

1: Department of Applied Mathematics & 2: Computer Science, University of Colorado Boulder
3: Lawrence Livermore National Laboratory, 4: Argonne National Laboratory

Abstract
High-order numerical methods are widely used in PDE solvers, but software packages that
have provided high-performance implementations have often been special-purpose and intru-
sive. libCEED is a new library that offers a purely algebraic interface for matrix-free
operator representation and supports run-time selection of implementations tuned for a vari-
ety of computational device types, including CPUs and GPUs. We introduce the libCEED
API and demonstrate how it can be used in standalone code or integrated with other pack-
ages (e.g., PETSc, MFEM, Nek5000) to solve examples of problems that often arise in the
scientific computing community, ranging from fast solvers via geometric multigrid methods
to Computational Fluid Dynamics (CFD) applications.

Operator Decomposition
Finite element operators are typically defined through weak formulations of PDEs involving
integration over a computational mesh. The required integrals are computed by splitting
them as a sum over the mesh elements, mapping each element to a simple reference element
and applying a quadrature rule in the reference space.
This is illustrated below for a symmetric linear operator on third order (Q3) scalar continuous
(H1) elements, where T-vector, L-vector, E-vector and Q-vector represent the (true) degrees
of freedom on the global mesh, the split local degrees of freedom on the subdomains, the split
degrees of freedom on the mesh elements, and the values at quadrature points, respectively.

Figure 1: Operator Algebraic Decomposition

Process decomposition P Not in libCEED

Element restriction G CeedElemRestriction

Basis (Nodes-to-Qpts) evaluator B CeedBasis

Operator at quadrature points D CeedQFunction

AL = GTBTDBG CeedOperator

This decomposition exposes optimizations for modern architectures, high-order ele-
ments, and tensor product elements not available with sparse matrices.

Extensible Backends
The libCEED API takes an algebraic approach. The user describes the objects G , B , and
D; and the library provides backend implementations to apply the local action of the PDE
operator AL. This purely algebraic description includes all finite element information, so
backends can operate on the linear algebra level without explicit finite element code. The
separation of the frontend and backends enables applications to easily change backends.

Backends

CPU

GPU

AVX

LIBXSMM

Pure CUDA

OCCA

MAGMA

libCEED

MFEM

Nek5000

PETSc

...

Devices Backends libCEED User Code

Pure C

Figure 2: libCEED Backends

libCEED supports several backends and users can develop additional backends. The
LIBXSMM backends offer the best performance on the CPU and the CUDA
backend with code generation offers the best performance on the GPU.

Performance Benchmarks
The CEED project uses Benchmark Problems (BP) to test and compare the performance of high order finite element
codes. We analyze the performance of libCEED backends on BP3, Poisson problem with homogeneous
Dirichlet boundary conditions. We measure performance over 20 iterations of unpreconditioned Conjugate
Gradient (CG) on hexahedral 3D elements with 1 more quadrature point than the number of nodes for the shape
function in 1D. The plots below show work, measured by DoFs multiplied by CG iterations divided by compute
nodes multiplied by seconds, plotted against problem size, measured by points per compute node. A variety
of polynomial orders of the 1D shape functions, p, are shown.

101 102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

7

8

[D
oF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8
1 node × 56 ranks, /cpu/self/opt/serial

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

(a)

101 102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

7

8

[D
oF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8
1 node × 56 ranks, /cpu/self/avx/serial

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

(b)

101 102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

7

8

[D
oF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8
1 node × 56 ranks, /cpu/self/xsmm/serial

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

(c)

101 102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

7

8

[D
oF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8
1 node × 56 ranks, /cpu/self/opt/blocked

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

(d)

101 102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

7

8

[D
oF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8
1 node × 56 ranks, /cpu/self/avx/blocked

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

(e)

101 102 103 104 105 106

Points per compute node

0

1

2

3

4

5

6

7

8

[D
oF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e8
1 node × 56 ranks, /cpu/self/xsmm/blocked

p=1
p=2
p=3
p=4
p=5
p=6
p=7
p=8

(f)

Figure 3: BP3: 2x Intel Xeon Platinum 8180M CPU 2.50GHz (Skylake): In (a)-(c), internal vectorization implementation. In (d)-(f),
external vectorization implementation.

These benchmark codes are included in libCEED’s PETSc example suite. The top row shows the performance
of CPU backends utilizing an internal vectorization strategy for element basis operation (B) and QFunction (D)
evaluation, processing on element at a time. The second row shows CPU backends utilizing an external vectorization
strategy, processing batches of 8 elements at a time with data interlaced to provide vectorization friendly lengths for
the tensor contractions and QFunction evaluations. For lower order elements, the external vectorization is
more efficient, while at higher orders the elements are sufficiently large that internal vectorization
is more efficient, due to cache size limitations.

101 103 105 107

Points per compute node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[D
oF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e9
1 node × 1 ranks, /gpu/cuda/ref

p=0
p=1
p=2
p=3
p=4
p=5
p=6
p=7

(a)

101 103 105 107

Points per compute node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

[D
oF

s x
 C

G
ite

ra
tio

ns
] /

 [c
om

pu
te

 n
od

es
 x

 se
co

nd
s]

1e9
1 node × 1 ranks, /gpu/cuda/gen

p=0
p=1
p=2
p=3
p=4
p=5
p=6
p=7

(b)

Figure 4: BP3: 1x NVIDIA V100 GPU (Volta): In (a) reference CUDA implementation. In (b) CUDA code generation implementation.

These benchmarks use MFEM. The CUDA code generation backend, /gpu/cuda/gen, uses the user provided QFunc-
tion (D) code and information in the basis (B) and element restriction (G) objects to provide a single local operator
kernel (AL). This significantly improves performance over launching separate kernels to handle the action of each
API object, seen in /gpu/cuda/ref. The code generation in /gpu/cuda/gen can provide +/- 10% perfor-
mance seen in hand written CUDA code, such as the code provided in libParanumal. Collaboration
with the libParanumal team provided several performance enhancements to the libCEED CUDA backends.

Application - Geometric Multigrid
With high order finite elements, preconditioning is essential to control the condition
number and total iteration count for iterative solvers such as CG. The libCEED oper-
ator decomposition offers several opportunities for preconditioning. P-multigrid offers mesh
independent convergence for unstructured meshes. Restriction, Prolongation, and Smoothing
operators can all be implemented in libCEED. We investigate performance of p-multigrid for
BP3 on an unstructured mesh with hexahedral 3D elements.

Prolongation/Interpolation Operator
AL = GT

c I I BftocGf

Laplacian Operator
AL = GT B̂T

gradDB̂gradG

Figure 5: P-Multigrid on Unstructured Mesh

We consider BP3 on 3D hexahedral elements with 7th order polynomial basis functions on
an unstructured mesh on a cubic domain with 203 elements and 2.69 million DoFs.

Performance Unpreconditioned P-Multigrid

|| · ||∞ error 5.08x10−12 3.75x10−12

CG Iterations 80 6
CG Solve Time 8.5 sec 8.5 sec

The p-multigrid example is still in development and requires performance tuning to reduce
the time per CG iteration; however, initial results demonstrate the flexibility of the libCEED
API in offering preconditioning strategies for high-order operators on unstructured meshes.

Application - Navier-Stokes
This example solves the time-dependent Navier-Stokes equations of compressible gas dynamics in
a static Eulerian three-dimensional frame using structured high-order finite element/spectral element spatial
discretization and explicit high-order time-stepping. We solve the density current problem: a cold air bubble
drops by convection in a neutrally stratified atmosphere. The mathematical formulation is given below. The
compressible Navier-Stokes equations in conservative form are

∂ρ

∂t
+∇ ·U = 0 , (1a)

∂U
∂t

+∇ ·
(

U ⊗U
ρ

+ PI3

)
+ ρg k̂ = ∇ · σ , (1b)

∂E

∂t
+∇ ·

(
(E + P)U

ρ

)
= ∇ · (u · σ + k∇T) , (1c)

where σ = µ(∇u + (∇u)T +λ(∇·u)I3) is the Cauchy (symmetric) stress tensor, with µ the dynamic viscosity
coefficient, and λ = −2/3 the Stokes hypothesis constant. In equations (1), ρ represents the volume mass
density, U the momentum density (defined as U = ρu, where u is the vector velocity field), E the total
energy density (defined as E = ρe, where e is the total energy), I3 represents the 3× 3 identity matrix, g the
gravitational acceleration constant, k̂ the unit vector in the z direction, k the thermal conductivity constant,
T represents the temperature, and P = (cp/cv − 1) (E −U ·U/(2ρ)− ρgz) is the pressure, where cp is the
specific heat at constant pressure and cv is the specific heat at constant volume (that define γ = cp/cv , the
specific heat ratio).

(a) (b)

Figure 6: Solution of the compressible Navier-Stokes equations. In (a) the initial condition; In (b) the evolution
at time t = 50 s.

Development Outlook
Status: Ready for collaborators and friendly users.

Further performance tuning for CPU and GPU

Improved non-conforming and mixed-mesh support

Preconditioning based on libCEED decomposition

Algorithmic differentiation of Q-functions

HIP, OpenCL, and OpenMP Backends with OCCA

Grant: Exascale Computing Project (17-SC-20-SC)

Contact Information:
https://ceed.exascaleproject.org
https://github.com/CEED/libCEED
email: valeria.barra@colorado.edu
email: jeremy.thompson@colorado.edu

