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Abstract

We study the linear instability of a thin viscoelastic liquid film under the influence of van der
Waals interaction. The Jeffreys model is used to describe the viscoelasticity with a relaxation
time and a retardation time. We use the thin film equation that governs the nonlinear evolu-
tion of the interface and study the linear stability of the interface in the long-wave limit. We
include the dewetting effect through the van der Waals attractive-repulsive force. The model
is simplified considering the fluid in regime of weak-slip. The role of the liquid viscoelasticity
as well as the contact angle are studied. We also study the influence of the slippage on the
length scale and time scale of the instability.

Introduction

We simplify the generalized Maxwell model of Jeffreys type for the moving interface of vis-
coelastic liquids in the 2D lubrication approximation. We study the effects of the perturbation
of a thin film of fluid in the presence of van der Waals forces. Our investigations are moti-
vated by applications of thin polymer films as in semi-conductors, solar cells, etc. We drive
our analysis in the case of weak-slip regime and see how the slippage together with the vis-
coelasticity affect the instability. A thin film of fluid of constant initial thickness h0 is perturbed
and the linear stability analysis on the governing equation describes whether the film breaks
up into separate rims (instability) or return to its initial configuration (stability). We use numer-
ical simulations to confirm the theoretical analysis in the case of absence of slippage and of
retardation time and relaxation time due to viscoelasticity.

Governing Equations

The equation governing the hydrodinamics for the fluid interface of viscoelastic media is de-
rived as a long-wave approximation of the conservation laws. The liquid is considered in-
compressible, with mass density ρ. The equation of conservation of mass and continuity of
momentum are:

∇ · u = 0 ,

ρ (∂tu + u · ∇u) = −∇pR +∇ · τ ,

where u = (u, v, w) is the velocity vector field, and pR the reduced pressure such that
pR = p − Π, where p is the hydrostatic pressure, while Π is the pressure induced by body
forces of van der Waals type (attractive or repulsive). The stress tensor τ follows the Jeffreys
model for viscoelastic fluids, which describes the nonlinear relation τ (γ̇) between the stress
tensor τ and the strain rate γ̇. This dependence in the linear Jeffreys model interpolates be-
tween a purely elastic and a purely viscous behavior (respectively in the two members of the
equation):

τ + λ1∂tτ = η(γ̇ + λ2∂tγ̇) (1)

in which η is the shear viscosity coefficient and λ1, λ2 are the two relaxation times of the
liquid when it shrinks back to its original shape after deformation, with generally λ1 > λ2.
λ1 is called relaxation time and λ2 retardation time. In figure 1 we can see a scheme
of the fluid’s interface. At the solid substrate we have Navier boundary conditions where
b ≥ 0 is the slip length (b = 0 means no slip, and b � 1 means strong-slip).

z = h(x, y, t) [n · (τ − pI) · n] = −σ∇ · n

[n · (τ − pI) · t1] = 0
[n · (τ − pI) · t2] = 0

w = 0 u = b
η
τxz v = b

η
τyzx

z
y

Figure 1: Scheme of the fluid interface and boundary conditions.

We nondimensionalize these equations, using:

(x, y) = L(x∗, y∗), z = Hz∗, (u, v) = U(u∗, v∗), w = εUw∗

t = Tt∗ , with T =
L

U
and

H

L
= ε ,

where ε is the small parameter. In the weak-slip regime the slip length b = O(1) and the pres-
sure is scaled as PH/ηU ∼ ε−1 [4]. Keeping only O(1) terms in the boundary conditions we
obtain pR = −∇2h− Π and using this together with the kinematic boundary condition into the
governing equations (dropping the ?) leads to the closed form equation for the fluid’s interface:

(1+λ2∂t)ht+(λ2−λ1)∇·

[(
h2

2
Q− hR

)
ht

]
= ∇·

{[
( +λ1∂t)

h3

3
∇pR + (1 + λ2∂t)bh

2∇pR

]}
(2)

where Q and R satisfy Q + λ2Qt = ∇pR, R + λ2Rt = h∇pR and the van der Waals

potential is defined by: Π(h) =
σ(1− cosθ)

Mh?

[(
h?
h

)n
−
(
h?
h

)m]
, with θ the contact angle,

M = (n−m)/[(m− 1)(n− 1)] (generally n > m) [2], and σ the surface tension.

Linear Stability Analysis

To study the film’s response to a perturbation we consider h = h0 + δh0e
ikx+ωt, Q = δQ1,

R = δR1, where h0 is the flat initial thickness, k the wave number k = 2π/λ, and ω the growth
rate. Using these into equation (2) and keeping only terms up to O(δ), we obtain the following
disperion/dissipation relation:

λ2ω
2 +

[
1 + (k4 − k2Π′(h0))

(
λ1
h3

0

3
+ λ2bh

2
0

)]
ω + (k4 − k2Π′(h0))

(
h3

0

3
+ bh2

0

)
= 0 . (3)

Solving for the two roots of this quadratic equation we obtain one root strictly negative, let
us say ω2, and one root with varying sign, call it ω1. The latter one is positive (unstable) for
−
√

Π′(h0) < ω1 <
√

Π′(h0). The most unstable mode is given by km = ±
√

Π′(h0)/2. Therefore
from the definition above we can see that both kc = ±

√
Π′(h0) and km do not depend on the

viscoelasticity times λ1 and λ2 and neither on the slip length b.

0 0.5 1 1.5 2 2.5 3
−1

0

1

2

3

4

5

6

7

8

9
x 10

−3

k

ω

 

 

λ1 = 0

λ1 = 1

λ1 = 10

k
m

=2.23 k
c
=3.15

( a )

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

1

1.5

2

2.5

3

x 10
−4

k

ω

 

 
λ2 = 0.01

λ2 = 0.1

λ2 = 0.2

k
m

=2.23 k
c
=3.15

( b )

0 0.5 1 1.5 2 2.5 3

−5

0

5

10

15

20

25
x 10

−3

k

ω

 

 

b=0

b=0.5

b=1

b=10

k
m

=2.23 k
c
=3.15

( c )

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5
x 10

−3

ω
m

 

 

ωm as a funct of λ1, fixed λ2 = 0.1, b=0

ωm as a funct of λ2, fixed λ1 = 1, b=0

ωm as a funct of b, fixed λ1 = 1, λ2 = 0.1

( d )

Figure 2: (a) (b) and (c): Influence of the dispersion curve ω1(k) on its parameters; (d): The
direct dependence of ω1(k) on λ1, λ2 and b respectively.

In figure 2(a) and 2(b) we have plotted the dispersion curve ω1(k) for fixed values of h0 = 0.1,
h? = 0.01, b = 0 and λ2 = 0 (for 2(a)) and λ1 = 1 for 2(b) respectively. In 2(c) we see the effect
of slippage for fixed values of λ1 and λ2: the film breaks up faster with a stronger slip and
slower in absence of slip. The difference of behaviors are so marked that we need a new for-
mulation of our governing equation in the case of b� O(1). In figure 2(d) we fixed km = 2.23,
h0 = 0.1, and h? = 0.01 and see how ωm varies depending on λ1, λ2 and b respectively. The
linear dependence on λ1 is less pronounced that the one on b, suggesting that slippage has a
stronger effect on the time of the break up of the interface than the elasticity of the fluid itself.

Numerical Results

We developed simulations of the evolution of the film in the 1D case of absence
of viscoelasticity and slippage, where the governing equation (2) reduces to: ht =

− ∂

∂x

[
h3

3

(
hxxx + Π′(h)

)]
. The numerical method uses Newton linearization of the nonlin-

ear term and (implicit) Crank-Nicolson and central finite differences for the time and spacial
derivatives respectively [3]. In figure 3(a) we see the evolution in time of a film of initial thick-
ness h0 = 0.2: the liquid’s interface is perturbed and it does not returns to its flat profile, but
it breaks up into two separate rims. The instability is due to van der Waals forces’ interaction
with a precursor film h? = 0.05 and contact angle θ = 45◦.
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Figure 3: (a): Profile evolution in time; (b): Comparison of growth rates given by numerical
results with the ones derived in the linear stability analysis.

While in figure 3(b) we compare the growth rates ω of the amplitude of the interface of the film
obtained by numerical simulations (red dots) with the theoretical growth rates given by the
LSA analysis (blue solid line) for selected stable and unstable modes. We see how the most
unstable mode has a higher growth rate (shorter time of break up) respect to the stable mode
(longer time for stability).

Conclusions and Future Work

The numerical results of our simulations are in agreement with the linear stability analysis.
In our future work we will implement the full nonlinear equation (2) in the weak-slip regime
and investigate how the transition from weak to moderate to strong-slip regimes affects the
instability together with the viscoelastic effects.
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