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Introduction
This study is developed in the field of Computational Fluid Dynamics, focusing on thin films of viscoelastic
liquids, such as polymeric fluids. The aim in this study is to give a full mathematical analysis and to provide
numerical simulations for the moving interface of viscoelastic liquids. We are interested in the instabilities that
cause the dewetting of the liquid on a solid substrate. Through our study we find that the viscoelastic physical
parameters affect the dynamics of the instability as well as the final configuration of the fluid that reorganizes
in blobs and droplets. We investigate how the formation of these droplets is affected by viscoelasticity, and we
characterize them in number and size. Our findings are in agreement with the theoretical framework and have
been verified through the tool of Linear Stability Analysis.

Figure 1: An application of a thin polymeric liquid film. Picture from www.foodproductiondaily.com - MIT research.

Governing Equations
The equation governing the hydrodynamics for the fluid interface of viscoelastic media is derived as a long-wave
approximation of the conservation laws. The liquid is considered incompressible, with mass density ρ. The
equation of conservation of mass and continuity of momentum are:

∇ · u = 0 , ρ (∂tu + u · ∇u) = −∇pR +∇ · τ , (1)

where u = (u(x , y), v(x , y)) is the velocity vector field, ∇ = (∂x , ∂y), and pR the reduced pressure such that
pR = p − Π, where p is the hydrostatic pressure, while Π is the pressure induced by body forces of van der
Waals type (attractive or repulsive). The stress tensor τ follows the Jeffreys model for viscoelastic fluids, which
describes the non-Newtonian relation τ (γ̇) between the stress tensor τ and the strain rate γ̇:

τ + λ1∂tτ = η(γ̇ + λ2∂tγ̇) (2)

in which η is the shear viscosity coefficient and λ1, λ2 are, respectively, the relaxation time and the retardation
time (λ1 ≥ λ2). In figure 2 we can see a schematic of the fluid interface described parametrically by the
function y = h(x , t), where y = 0 is the solid substrate. At y = 0 we have Navier boundary conditions where
b ≥ 0 is the slip length (b = 0 means no slip, and b � O(1) means strong-slip). We nondimensionalize these
equations, using: x = Lx∗, y = Hy∗, u = Uu∗, v = εUv∗, t = Tt∗, with T = L/U , and H/L = ε, where ε is
the small parameter, and the pressure is scaled as PH/ηU ∼ ε−1. We derive the closed form equation for the
interface of a thin layer of viscoelastic fluid (3). The full derivation can be found in [1].
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Figure 2: Scheme of the fluid interface and boundary conditions.
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where Q and R satisfy respectively:

(1 + λ2∂t)Q = − ∂

∂x
(hxx + Π(h)) , (1 + λ2∂t)R = −hhxxx − hΠ′(h)hx (4)

and the van der Waals potential is defined by: Π(h) = σ(1− cosθ) [(h?/h)n − (h?/h)m] /Mh? ,

with θ the contact angle with the substrate, M = (n−m)/[(m−1)(n−1)] (with n > m > 1), h? the precursor
film thickness, and σ the surface tension.

Linear Stability Analysis
To study the film’s response to a perturbation we consider h = h0 + εh0e

ikx+ωt , where h0 is the flat initial
thickness, k the wave number k = 2π/λ, and ω the growth rate. Using these into equation (3) and keeping
only terms up to O(ε), we obtain the following disperion/dissipation relation:
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Solving for the two roots of this quadratic equation we obtain one root strictly negative, let us say ω2, and one
root, say ω1, with varying sign. The latter one is positive (unstable) for −

√
Π′(h0) < ω1 <

√
Π′(h0).

k
0 0.02 0.04 0.06 0.08 0.1 0.12

!

#10-5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

3 = 45/

3 = 40/

3 = 35/

Figure 3: Linear Stability Analysis. The analytical growth rates (blue lines) are compared with our numerical simulations (red dots).

Results and Discussion
We numerically solve eq. (3) using Newton linearization of the non-linear terms, Crank-Nicolson scheme for
the spacial derivatives and central finite differences for the second order derivative in time. The two ODEs for
eq. (4) can be solved with any Euler method.

Dewetting Problem
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Figure 4: (a)-(b) Evolution for h0 = 1 and h? = 0.01, b = 0, λ1 = 10, λ2 = 0.01 at two selected times. In (a) the unstable film
separates in two rims and droplets form; these droplets stay until the final steady configuration in (b). In (c) number of droplets
formed vs time, and in (d) mean droplets height vs time for five different values of λ1.

Results and Discussion (cont’d)
In figures 4(a)-4(b) we see a numerical simulation of the evolution of the fluid interface. The unstable interface,
initially flat, is perturbed, and it does not return to its initial profile, but it breaks up into two separate rims.
The high elasticity of the fluid (λ1 = 10) forms multiple wrinkles that lead to the formation of satellite droplets
between the two major blobs of fluid (figure 4(a)). These droplets remain even when the fluid reaches the
steady state final configuration (figure 4(b)). In 4(c)-4(d) the droplet analysis (in number and mean height)
versus time, for five different values of λ1.

Wetting Problem
We look at the spreading of a droplet on a solid substrate. The wetting of a droplet (or
rivulet) of a Newtonian fluid on a solid substrate has been broadly studied in the past. We
provide numerical simulations where we see the comparison of a Newtonian versus a non-
Newtonian rivulet. We can see that the dynamics for the non-Newtonian front is faster
initially (figure 5(b)), and that the two drops reach the steady configuration for large times
(figure 5(d)).
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Figure 5: (a) Spreading of a Newtonian droplet (λ1 = λ2 = 0) vs a non-Newtonian one (λ1 = 10, λ2 = 0.01).

Conclusions and Future Work
Our numerical investigations allow to predict the dynamics of the moving interface of an unstable thin layer of
polymeric liquid that dewets a solid substrate. Our findings are in agreement with the theoretical framework
and have been verified through the tool of Linear Stability Analysis in the early times in which the fluid obeys
the linear regime. We numerically solve the highly non-linear PDE governing the interface of the viscoelastic
liquid, and our simulations show for the first time the formation of satellite droplets in thin films of viscoelastic
fluids. We further analyzed and characterized the droplets in number, size and separation, depending on the
physical parameters involved. We then looked at the wetting problem of a droplet of non-Newtonian fluid
spreading on a solid substrate and compared it with the well-known case of a Newtonian liquid. This case leads
to further investigations on the velocity of the moving contact line between the fluid interface and the solid
substrate.
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