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Introduction
This work was carried out during the spring semester of the 2016 − 2017 school year as part of an applied
mathematics Capstone group project at NJIT. The theoretical and numerical study concerned the gravity-
driven evolution of the interface of a thin viscoelastic film laying on an inverted plane. The governing equation
was obtained as a long-wave approximation of the Navier-Stokes equations, including the gravitational body
force, and the Jeffreys model for viscoelastic stresses. The Linear Stability Analysis was performed to compare
theoretical predictions of the early stage of the dynamics, with the numerical results obtained. The competing
effects of the physical parameters involved on the length and time scales of the instabilities were analyzed, in
the linear and nonlinear regimes.
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Figure 1: Examples of viscoelastic fluids on inclined planes: (a) paint; (b) slurry.

Governing Equations
The equation governing the dynamics of the fluid interface of viscoelastic liquids on an inclined plane, is derived
as a long-wave approximation of the conservation laws. The liquid is considered incompressible, with mass
density ρ. We consider a plane inclined of an angle α with the positive x-axis (see fig. 2). The equations of
conservation of momentum and mass, respectively, are

ρ (∂tu + u · ∇u) = −∇(p + Π) +∇ · τ + F , (1a)

∇ · u = 0 , (1b)

where u = (u(x , y , t), v(x , y , t)) is the velocity field in the Cartesian xy -plane, ∇ = (∂x , ∂y), τ is the stress
tensor, p is the pressure, Π is the disjoining pressure induced by the van der Waals solid-liquid interaction force,
and F = (ρg sinα,−ρg cosα), with g > 0, is the gravitational acceleration (positive for the reference system
considered, see fig. 2).
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Figure 2: Setup and reference coordinate system.

Governing Equations (cont’d)
The Jeffreys constitutive model for viscoelastic stress follows

τ + λ1∂tτ = η(γ̇ + λ2∂t γ̇) , (2)

where γ̇ is the strain rate tensor, e.g. γ̇ij = ∂uj/∂xi + ∂ui/∂xj , η is the shear viscosity coefficient, λ1 and λ2,
the relaxation time and the retardation time, respectively, such that λ2 = λ1ηs/ηs + ηp (⇒ λ1 ≥ λ2). Here
ηs and ηp are the viscosity coefficients of the Newtonian solvent and the polymeric solute, respectively, such
that η = ηs + ηp.
We define L the characteristic length scale of the film, H the characteristic height scale, such that H/L = ε� 1
is the small parameter considered for the asymptotic approximation of the system (1). We obtain the thin film
equation
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where b is the slip coefficient with the substrate, and Q and R satisfy the ODEs:
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and where we have used S = B sinα C = B cosα, with B = ρgL2ε3/Uη = O(1) is the Bond number, and U
a characteristic scale for the velocity.

Linear Stability Analysis
To study the film’s response to a perturbation, we consider h(x , t) = h0 + δh0e

ikx+ωt , where h0 is the flat
reference thickness, δ a small amplitude, k the wave number k = 2π/λ, and ω the growth rate. We obtain
the following dispersion relation
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Considering only real roots
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For which the critical wave number satisfies k2
c = Π′(h0) − C, and the wavenumber of maximum growth is

km = kc/
√

2.
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Figure 3: Comparison of numerical growth rates (red solid dots) with LSA curve for α = 0 (flat plane), and α = π (inverted plane).

Numerical Results and Discussion
We numerically solve eq. (3) using Newton’s method of the non-linear terms, and a finite difference semi-
implicit Crank-Nicolson scheme for the second order in time and fourth order in space PDE. The two ODEs (4)
are solved with forward Euler method. We employ a fixed grid for the spacial discretization, and an adaptive
time step for computational advantage and numerical stability. We recast the governing equation to isolate
the time derivatives to apply the iterative scheme
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Figure 4: Evolution of different viscoelastic films, in the absence of the van der Waals potential with the substrate, for different
values of the retardation time: in (a) at time t = 5, in (b) at time t = 100. Evolution in the presence/absence of van der Waals
potential with the substrate for a viscoelastic film, in (c) at time t = 10, in (d) at time t = 100.

Conclusions and Future Work
We numerically solved the non-linear PDE governing the interface of viscoelastic liquids on an inverted plane.
Our numerical results agree with the theoretical predictions in the linear regime. In the non-linear phase, they
show that elastic effects enhance the dewetting of a viscoelastic film on an inverted plane, in agreement with
previous findings for flat non-inverted planes [1]. The investigation of the interfacial dynamics of viscoelastic
films on inclined planes with arbitrary angles is considered for future work.
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