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Abstract

We numerically study the interfacial dynamics and instability of a thin viscoelastic film on a
substrate. We use the long wave approximation to describe the non-linear evolution of the
interface. We consider different regimes of slippage, and in each regime, we investigate the
role of the liquid viscoelasticity and of the contact angle on the thin film break-up. Numerical
solutions of the full non-linear equations are compared with the results of the linear stability
analysis.

Introduction

Numerical solutions are of fundamental importance in the understanding of the dynamics,
and in particular of the instability, of thin films of viscoelastic fluids, such as polymeric fluids.
In this study, we are interested in the instabilities that cause the dewetting of the liquid on a
solid substrate. We simplify the generalized Maxwell model of Jeffreys type for the moving
interface of viscoelastic liquids in the 2D lubrication approximation. This model describes the
non-Newtonian nature of the stress tensor, linearly interpolating a purely elastic and a purely
viscous behavior, characterized by two time constants λ1 and λ2 respectively, namely relax-
ation time and retardation time. We carry out our analysis on a thin film of fluid of constant
initial thickness h0 that is perturbed, in regimes that transit from no-slip to weak-slip and see
how the slippage together with the viscoelasticity affect the instability.

Governing Equations

The equation governing the hydrodynamics for the fluid interface of viscoelastic media is de-
rived as a long-wave approximation of the conservation laws. The liquid is considered in-
compressible, with mass density ρ. The equation of conservation of mass and continuity of
momentum are:

∇ · u = 0 ,

ρ (∂tu + u · ∇u) = −∇pR +∇ · τ ,
(1)

where u = (u, v, w) is the velocity vector field, and pR the reduced pressure such that
pR = p − Π, where p is the hydrostatic pressure, while Π is the pressure induced by body
forces of van der Waals type (attractive or repulsive). The stress tensor τ follows the Jeffreys
model for viscoelastic fluids, which describes the non-Newtonian relation τ (γ̇) between the
stress tensor τ and the strain rate γ̇:

τ + λ1∂tτ = η(γ̇ + λ2∂tγ̇) (2)

in which η is the shear viscosity coefficient and λ1, λ2 are the two relaxation times of the liquid
when it shrinks back to its original shape after deformation, with λ1 > λ2.
In figure 1 we can see a scheme of the fluid’s interface. At the solid
substrate we have Navier boundary conditions where b ≥ 0 is the slip
length (b = 0 means no slip, and b � 1 means strong-slip).
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Figure 1: Scheme of the fluid interface and boundary conditions.

We nondimensionalize these equations, using: (x, y) = L(x∗, y∗), z = Hz∗, (u, v) = U(u∗, v∗),
w = εUw∗, t = Tt∗, with T = L/U , and H/L = ε, where ε is the small parameter. In the
weak-slip regime the slip length b = O(1) and the pressure is scaled as PH/ηU ∼ ε−1 [3].

Keeping only O(1) terms in the boundary conditions we obtain pR = −∇2h−Π, and using this
together with the kinematic boundary condition into the governing equations (dropping the ?)
leads to system of equations for the fluid’s interface:
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h2
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)
ht

]
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(3)

where Q and R satisfy

Q + λ2Qt = ∇pR, R + λ2Rt = h∇pR (4)

and the van der Waals potential is defined by:

Π(h) =
σ(1− cosθ)

Mh?

[(
h?
h

)n
−
(
h?
h

)m]
,

with θ the contact angle, M = (n−m)/[(m− 1)(n− 1)] (generally n > m) [2], h? the precursor
film thickness, and σ the surface tension.

Linear Stability Analysis

To study the film’s response to a perturbation we consider h = h0 + δh0e
ikx+ωt, Q = δQ1,

R = δR1, where h0 is the flat initial thickness, k the wave number k = 2π/λ, and ω the growth
rate. Using these into equation (3) and keeping only terms up to O(δ), we obtain the following
disperion/dissipation relation:

λ2ω
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0
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ω + (k4 − k2Π′(h0))
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(5)

Solving for the two roots of this quadratic equation we obtain one root strictly negative, let
us say ω2, and one root with varying sign, call it ω1. The latter one is positive (unstable) for
−
√

Π′(h0) < ω1 <
√

Π′(h0). The most unstable mode is given by km = ±
√

Π′(h0)/2. Therefore
from the definition above we can see that both kc = ±

√
Π′(h0) and km do not depend on the

viscoelasticity times λ1 and λ2 and neither on the slip length b.
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Figure 2: (a), (b) Influence of the dispersion curve ω1(k) on λ1, λ2 respectively. (c) Influence of
the dispersion curve ω1(k) on the slippage b. (d) The direct dependence of the fastest growth
rate ωm(k) on λ1, λ2 and b respectively.

Numerical Results

We drove simulations using Newton linearization of the nonlinear terms, Crank-Nicolson
scheme for the spacial derivatives and central finite differences for the time second order
derivative. The two ODEs for the terms (4) can be solved with any Euler’s method.
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Figure 3: (a) Fluid interface instability - transition from no slip to weak-slip regime. (b),(c)
λ1 = 10, λ2 = 5, longer domain in (c) allows for a satellite droplet. (d) Growth rate of interfacial
instability given by the numerical simulations compared with the theoretical LSA.

In figure 4a we see the evolution in time of a film of initial thickness h0 = 0.1: the liquid inter-
face is perturbed and it does not returns to its flat profile, but it breaks up into two separate
rims. The instability is due to van der Waals forces’ interaction with a precursor film h? = 0.01
and contact angle θ = 45◦. In figure 4b and 4c we see the final film interface configuration
for λ1 = 10, and λ2 = 5, for fixed initial height h0 = 1, h? = 0.1 and b = 0, respectively for
shorter and longer wave-lengths. The longer wave-length allows for the formation of a satel-
lite droplet between the separate rims. In figure 4d instead we compare the growth rates of the
instabilities for different wave lengths with the theoretical results given by the Linear Stability
Analysis.

Conclusions and Future Work

The numerical results of our simulations are in agreement with the linear stability analysis. In
our future work we will implement the full Navier-Stokes equation (1) for arbitrary geometries
in the weak-slip regime and investigate how the transition from weak to moderate to strong-slip
regimes affects the instability together with the viscoelastic effects.
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[1] BLOSSEY R., MÜNCH A., RAUSCHER M., WAGNER B, Slip vs. viscoelasticity in dewetting
thin films, Eur. Phys. J. E 20, 267− 271, (2006)

[2] DIEZ C. A., KONDIC L., On the breakup of fluid films of finite and infinite extent, Phys. of
Fluids, 19, (2007)
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