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ABSTRACT
High-order numerical methods are widely used in PDE solvers, but
software packages that have provided high-performance implemen-
tations have often been special-purpose and intrusive. libCEED is
a new library that offers a purely algebraic interface for matrix-
free operator representation and supports run-time selection of
implementations tuned for a variety of computational device types,
including CPUs and GPUs. We introduce the libCEED API and
demonstrate how it can be used in standalone code or integrated
with other packages (e.g., PETSc, MFEM, Nek5000) to solve exam-
ples of problems that often arise in the scientific computing com-
munity, ranging from fast solvers via geometric multigrid methods
to Computational Fluid Dynamics (CFD) applications.

1 INTRODUCTION
In finite element formulations, the weak form of a PDE is evaluated
on a subdomain (element) and the local results are composed into
a larger system of equations that models the entire problem. In
particular, when high-order finite elements or spectral elements are
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used, the resulting sparse matrix representation of the global opera-
tor is computationally expensive, with respect to both the memory
transfer and floating point operations needed for its evaluation.
libCEED provides an interface for matrix-free operator descrip-
tion that enables efficient evaluation on a variety of computational
device types (selectable at run time). Moreover, libCEED’s purely
algebraic interface can unobtrusively be integrated in new and
legacy software to provide performance portable interfaces.

2 LIBCEED API
The libCEED API provides the local action of the linear or nonlinear
operator without assembling its sparse representation. Let us define
the global operator as

A = PTGT BTDBGP , (1)

where P is the parallel process decomposition operator (external
to libCEED) in which the degrees of freedom (DOFs) are scattered
to and gathered from the different compute devices. The operator
given by AL = GT BTDBG gives the local action on a compute
node or process, where G is a local element restriction operation
that localizes DOFs based on the elements, B defines the action
of the basis functions (or their gradients) on the nodes, and D is
the user-defined pointwise function describing the physics of the
problem at the quadrature points, also called the Q-function.

To achieve high performance, libCEED can take advantage of a
tensor-product structure finite-element basis and quadrature rule
to apply the action of the basis operator B or efficiently operate on
bases that are defined on arbitrary-topology elements. Furthermore,
the algebraic decomposition described in Eq. 1 can represent either
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CEED Backend Description
/cpu/ self /opt /∗ Serial/Blocked optimized C backend
/cpu/ self /avx/∗ Serial/Blocked AVX backend
/cpu/ self /xsmm/∗ Serial/Blocked LIBXSMM backend
/∗/ occa OCCA CUDA, OCL, OMP, and HIP kernels
/gpu/cuda/ref Refrence CUDA kernels
/gpu/cuda/gen Optimized CUDA JiT operator kernels

Table 1: libCEED Backends
linear/nonlinear or symmetric/asymmetric operators and exposes
opportunities for device-specific optimization.

Table 1 summarizes a subset of the backend implementations
available in libCEED. GPU implementations are available via pure
CUDA as well as the OCCA and MAGMA libraries. CPU implemen-
tations are available via pure C and AVX intrinsics as well as the
LIBXSMM library. Backends can be selected at run-time, and each
process or thread can instantiate an arbitrary number of backends.

3 PERFORMANCE BENCHMARKS
The CEED project uses Benchmark Problems to test and compare
the performance of high order finite element codes. We analyze
the performance of libCEED backends on Poisson problem with
homogeneous Dirichlet boundary conditions. We measure perfor-
mance over 20 iterations of unpreconditioned Conjugate Gradient
(CG) on hexahedral 3D elements and plot work, measured by DoFs
multiplied by CG iterations divided by compute nodes multiplied by
seconds, against problem size, points per compute node. A variety
of polynomial orders of the 1D shape functions, p, are shown in Fig
2.

4 GEOMETRIC MULTIGRID EXAMPLE
This example investigates p-multigrid for the Poisson problem, Eq.
2, using an unstructured high-order finite element discretization.
All of the operators associated with the geometric multigrid are
implemented in libCEED.

− ∇ · (κ (x) ∇x) = д (x) (2)

The Poisson operator can be specified with the decomposition
given by Eq. 1, and the restriction and prolongation operators given
by interpolation basis operations, B, and BT , respectively, act on
the different grid levels with corresponding element restrictions,
G. These three operations can be exploited by existing matrix-free
multigrid software and smoothers.

We demonstrate performance for p-multigrid examples on an
unstructured mesh. Preconditioning based on the libCEED finite
element operator decomposition is an ongoing area of research.

5 COMPUTATIONAL FLUID DYNAMICS
EXAMPLES

This example represents work being done towards the construction
of a set of libCEED miniapps that describe problems typically aris-
ing in CFD, fully exploit the libCEED capability, and highlight the
ease of library reuse for solver composition. This example solves
the time-dependent Navier-Stokes equations of compressible gas
dynamics in a static Eulerian three-dimensional frame using un-
structured high-order spectral element spatial discretization and
explicit high-order time-stepping (external to libCEED). The com-
pressible Navier-Stokes equations are solved in conservative form:
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Figure 2: libCEED LIBXSMM Performance

∂ρ

∂t
+ ∇ · U = 0 , (3a)
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∂t
+ ∇ ·

(
U ⊗ U
ρ
+ PI3

)
+ ρдk̂ = ∇ · σ , (3b)

∂E

∂t
+ ∇ ·

(
(E + P)U

ρ

)
= ∇ · (u · σ + k∇T) , (3c)

In equations (3), ρ represents the volume mass density,U the mo-
mentum density (defined as U = ρu, where u is the vector velocity
field), E the total energy density (defined as E = ρe , where e is the
total energy), д the gravitational acceleration constant, k̂ the unit
vector in the z direction, k the thermal conductivity constant, T
represents the temperature, and P is the pressure.

6 CONCLUSION
libCEED is a new library that offers a purely algebraic interface
for a matrix-free operator representation and supports run-time
selection of implementations tuned for a variety of computational
device types, including CPUs and GPUs. We demonstrate precondi-
tioning of a Poisson operator with the geometric multigrid example
and demonstrate support for nonlinear operator composition and
library reuse with examples that arise in the CFD community, such
as the compressible Navier-Stokes solver or the shallow-water equa-
tions solver.
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