
Constraint-Based Linear-Relations Analysis

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna ?

Computer Science Department
Stanford University

Stanford, CA 94305-9045
{srirams,sipma,zm}@theory.stanford.edu

Abstract. Linear-relations analysis of transition systems discovers lin-
ear invariant relationships among the variables of the system. These re-
lationships help establish important safety and liveness properties. Effi-
cient techniques for the analysis of systems using polyhedra have been
explored, leading to the development of successful tools like HyTech.
However, existing techniques rely on the use of approximations such as
widening and extrapolation in order to ensure termination. In an earlier
paper, we demonstrated the use of Farkas Lemma to provide a translation
from the linear-relations analysis problem into a system of constraints
on the unknown coefficients of a candidate invariant. However, since the
constraints in question are non-linear, a naive application of the method
does not scale. In this paper, we show that by some efficient simplifi-
cations and approximations to the quantifier elimination procedure, not
only does the method scale to higher dimensions, but also enjoys perfor-
mance advantages for some larger examples.

1 Introduction

Linear-relations analysis discovers linear relationships among the variables of a
program, that hold in all the reachable program states. Such relationships are
called linear invariants. Invariants are useful in the verification of both safety
and liveness properties. Many existing techniques rely on the presence of these
invariants to prove properties of interest. Some types of analysis, e.g., variable-

bounds analysis, can be viewed as specializations of linear-relations analysis.
Traditionally, this analysis is framed as an abstract interpretation in the do-
main of polyhedra [7, 8]. The analysis is carried out using a propagation-based

technique, wherein polyhedral iterates that converge towards the final result,
are computed. This convergence is ensured through the use of widening, or ex-

trapolation, operators. Such techniques are popular in the domains of discrete
and hybrid programs, motivating tools like HyTech [12] and improved widening
operators over polyhedra [11, 1].

? This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134
and CCR-02-09237, by ARO grant DAAD19-01-1-0723, by ARPA/AF contracts
F33615-00-C-1693 and F33615-99-C-3014, and by NAVY/ONR contract N00014-
03-1-0939.



Alternatively, the fixpoint equations arising from abstract interpretation may
be posed explicitly, and solved without relying directly on iteration or widening.
This is achieved through applications of Farkas Lemma in our earlier work [6].
Given a template inequality with unknown coefficients, our technique computes
constraints on the values of the coefficients, such that substituting any solu-
tion back into the template yields a valid invariant relationship. However, the
constraints themselves are non-linear with existentially quantified parameters.
Nevertheless, an exact elimination is possible in theory through quantifier elim-
ination techniques for the theory of reals [16, 5, 17]. In practice, however, the
technique using exact quantifier elimination does not scale to systems with more
than five variables.

Fortunately, the constraints obtained in this process, though non-linear, ex-
hibit many structural properties that can be exploited to simplify and solve
them. In many cases, a series of simplifications resolves the constraints into a
linear system. For instance, whenever the underlying transition system is a Petri
net, the system of constraints resolves into a linear system [14]. This has led us to
verify transition systems derived from Petri Nets with as many as 40 dimensions
and 50 transitions. The use of quantifier elimination is clearly inefficient in such
situations. In this paper, we provide a set of exact and heuristic rules for sim-
plifying and solving the constraints for general linear transition systems. Most
of our rules are exact, but their application may not resolve the constraints.
Therefore, some heuristics are used instead of an exact elimination as a last
resort.

At lower dimensions, our technique performs poorly in terms of time and
space, relative to the propagation-based approach. When the dimension is in-
creased, our technique not only scales but in some cases, outperforms the propagation-
based techniques. Furthermore, our technique enjoys several advantages over re-
lated approaches that are very useful for analyzing larger systems, as presented
in Section 4. The remainder of this paper consists of Section 2 on preliminaries,
Section 3 on the constraint structure and solving rules, and Section 4 on some
experimental results.

2 Preliminaries

We recount some standard results on polyhedra, and then define linear transition
systems, followed by a description of propagation-based analysis techniques. We
then demonstrate an alternative approach called constraint-based analysis.

2.1 Linear Assertions

Through this discussion, let {x1, . . . , xn} be a set of real-valued variables. Con-
stant reals are denoted by a, b with subscripts, and unknown coefficients by c, d
with subscripts. Further details about linear assertions can be obtained from
standard texts [15].



Definition 1 (Linear Assertions) A linear expression is of the form a1x1 +
· · · + anxn + b. The expression is homogeneous iff b = 0, or else it is inhomo-

geneous. A linear inequality is of the form α ./ 0, where ./ ∈ {≥, =, >}. The
inequality is strict if ./ ∈ {>}. A linear assertion is a finite conjunction of linear
inequalities. Linear assertions can be homogeneous or otherwise, depending on
the underlying linear expressions. The set of points in Rn satisfying a linear
assertion (homogeneous assertion) is called a polyhedron (polyhedral cone).

We shall assume that linear assertions do not contain any strict inequalities. It is
well-known that any polyhedron is representable by a set of constraints (as a lin-
ear assertion), or by its vertices, and rays (infinite directions), collectively called
its generators. The problem of computing the generators, given the assertion,
and vice-versa have been well-studied with efficient algorithms [9]. However, the
number of generators of a polyhedron can be worst-case exponential in the num-
ber of constraints (the n-dimensional hypercube is an example). Basic operations
on these assertions are computed thus:

Intersection Combine the inequalities in both the polyhedra.
Convex Union Combine the generators of the two polyhedra.
Projection Project the generators of the polyhedron.
Containment Test every generator of ϕ1 for subsumption by ϕ2.
Emptiness A polyhedron is empty iff it has no generators.

We now state Farkas Lemma, which describes the linear consequences of a linear
assertion. A proof is available from the standard references [15].

Theorem 1 (Farkas Lemma). Consider a linear assertion S over real-valued

variables x1, . . . , xn,

S :

a11x1 + · · · + a1nxn + b1 ≥ 0
...

...
...

am1x1 + · · · + amnxn + bm ≥ 0

When S is satisfiable, it implies a given linear inequality ψ : a1x1 + · · · +
anxn + b ≥ 0, i.e, S |= ψ, if and only if there exist non-negative real numbers

λ0, λ1, . . . , λm such that ap =
∑m
i=1

λiaip, p ∈ [1, n], and b = (
∑m

i=1
λibi)+λ0

Furthermore, S is unsatisfiable if and only if the inequality −1 ≥ 0 can be derived

as shown above.

In the rest of the paper we represent applications of this lemma by a table as
shown below:

λ0 1 ≥ 0
λ1 a11x1 + · · · + a1nxn + b1 ≥ 0







S...
...

...
...

λm am1x1 + · · · + amnxn + bm ≥ 0
c1x1 + · · · + cnxn + d ≥ 0← ψ, or

−1 ≥ 0← false



The table shows the antecedents above the line and the consequences below. For
each column, the sum of the column entries above the line, with appropriate
multipliers, must be equal to the entry below the line. If a row corresponds to an
equality rather than an inequality, we drop the requirement that the multiplier
corresponding to it be non-negative.

2.2 Transition Systems and Invariants

In this section, we define linear transition systems and linear invariants. Our pre-
sentation concentrates only on linear systems. The reader is referred to standard
textbooks for a more general presentation [13].

Definition 2 (Linear Transition Systems) Let V = {x1, . . . , xn} be a set of
system variables. A linear transition system over V is a tuple 〈L, T , `0, Θ〉, where
L is a set of locations, T is a set of transitions, each transition τ ∈ T is a tuple
〈`i, `j , ρτ 〉, such that `i, `j ∈ L are the pre- and the post- locations, respectively,
and ρτ is a linear assertion over V ∪ V ′, where V denotes the current-state
variables, and V ′ the next-state variables. Location `0 ∈ L is the initial location,
and Θ is a linear assertion over V specifying the initial condition.

Example 1. Let V = {x, y} and L = {`0}. Consider the transition system shown
below. Each transition models a concurrent process, that updates the variables
x, y atomically.

Θ = (x = 0 ∧ y = 0)
T = {τ1, τ2}
τ1 =

〈
`0, `0,

[
x′ = x+ 2y ∧ y′ = 1− y

]〉

τ2 =
〈
`0, `0,

[
x′ = x+ 1 ∧ y′ = y + 2

]〉

A given linear assertion ψ is a linear invariant of a linear transition system
(LTS) at a location ` iff it is satisfied by every state reaching `. An assertion

map maps each location of a LTS to a linear assertion. An assertion map η is
an invariant map if η(`) is an invariant at `, for each ` ∈ L. In order to prove a
given assertion map invariant, we use the theory of inductive assertions due to
Floyd and Hoare [13].

Definition 3 (Inductive Assertion Maps) An assertion map η is inductive
iff it satisfies the following conditions:

Initiation: Θ |= η(`0),
Consecution: For each transition τ : 〈`i, `j , ρτ 〉, η(`i) ∧ ρτ |= η(`j)

′.

It can be shown by mathematical induction that any inductive assertion map is
also an invariant map. It is well known that the converse need not be true in
general. The standard technique for proving an assertion invariant is to find an
inductive assertion that strengthens it. For example, the assertion x + y ≥ 0 is
an invariant for the LTS in Example 1.



Propagation-based Analysis These techniques are based on the abstract-interpretation

framework formalized by Cousot and Cousot [7], and specialized for linear rela-
tions by Cousot and Halbwachs [8]. The technique starts from an inital assertion
map, and weakens it iteratively using the Post and the Widening operators.
When the iteration converges, the resulting map is guaranteed to be inductive,
and hence invariant. Termination is guaranteed by the design of the widening
operator. Often widening is not used, or replaced by an Extrapolation operator,
and the termination guarantee is traded-off against accuracy.

Definition 4 (Post-condition and Widening Operators) The post-condition

operator takes an assertion ϕ, and a transition relation ρτ .

post(ϕ, τ) = (∃V0)(ϕ(V0) ∧ ρτ (V0, V ))

Intersection, followed by quantifier elimination using projection computes post.
However, more efficient strategies for computing post exist when ρτ has a special
structure.

Given assertions ϕ{1,2} such that ϕ1 |= ϕ2, the standard widening ϕ1∇ϕ2

is an assertion ϕ that contains (roughly) all the inequalities in ϕ1 that are
satisfied by ϕ2. The details along with key mathematical properties of widening
are described in [8, 7], and enhanced versions appear in [11, 4, 1].

As mentioned earlier the analysis begins with an initial assertion map defined
by η0(`0) = Θ, and η0(`) = ∅ for ` 6= `0. At each step, the map ηi is updated to
map ηi+1 as follows:

ηi+1(`) = ηi(`) 〈op〉



ηi(`)
⊔

τj≡〈`j ,`,ρ〉

(post(ηi(`j), τj))





where op is the convex hull (t) operator for a propagation step, and the widening
(∇) operator for a widening step. The overall algorithm requires a predefined
iteration strategy. A typical strategy carries out a predefined sequence of initial
propagation steps, followed by widening steps until termination. The choice of a
strategy is of the utmost importance for minimizing the number of propagation
and widening steps, in general.

The method described above was applied to the LTS in Example 1. Using
the standard widening [8], we obtain the sequence of iterates shown in Figure 1.
The result does not change even when the number of initial propagation steps k,
is increased to 4. Using the widening operator by Bagnara et al., implemented in
the PPL library [1], and k = 4 does not change the result, even if the number of
propagation steps is increased. Surprisingly, when the number of initial propaga-
tion steps is reduced to k = 3, it yields the invariant 11x+10y ≥ 0, 11x+12y ≥ 0,
for k = 2, the invariant 7x + 6y ≥ 0, 7x + 8y ≥ 0. k = 0, 1 also produce the
trivial invariant (true). This demonstrates that an increase in the number of
initial propagation steps does not necessarily increase the accuracy of the result.



Iteration # η(`0) Iteration Type

0 x = y = 0 Init

1 y − 2x ≥ 0, x − y + 1 ≥ 0, x ≥ 0 Propagation

2

�
5x + 3y ≤ 22, x − y + 2 ≥ 0, x ≥ 0
x + 5y ≥ 0, 2x − y + 1 ≥ 0 � Propagation

3 x ≥ 0, 2x − y + 1 ≥ 0 Widening

4 true Widening

Fig. 1. Sequence of Propagation and Widening Steps for LTS in Example 1.

Constraint-based Analysis The framework of abstract interpretation [7] shows
that any semantic analysis can be expressed as a fixpoint equation in an ab-
stract domain. Consequently, linear-relations analysis is a fixed point compu-
tation in the domain of polyhedra. This computation is done by iteration in
the propagation-based analysis of Cousot and Halbwachs [8]. We propose to
use Farkas Lemma to generate constraints from the LTS description, directly
describing the relevant fixed-point. The resulting constraints are solved using
non-linear quantifier elimination.

Let C be a set of template variables. A template is an inequality of the form
c1x1 + · · ·+ cnxn + d ≥ 0, where c1,...,n, d ∈ C. A template map, associates each
location with a template. We shall use η(`) to denote both the inequality, and
the template expression at `, disambiguated by context. We reduce the inductive
assertion generation problem to one of computing those variables for which a
given template map η is inductive. The answer consists of encoding initiation
and consecution using Farkas Lemma.

Initiation: The implication Θ |= η(`0) is encoded.
Consecution: For each τ : 〈`i, `j , ρτ 〉, the implication η(`i) ∧ ρτ |= η(`j)

′ is
encoded. We shall explore the structure of the resulting constraints in detail
through the remainder of the paper.

The definition of consecution can be relaxed into two stronger forms:

Local Consecution: For transition τ : 〈`i, `j , ρ〉, ρ |= η(`j)
′ ≥ 0,

Increasing Value: For transition τ : 〈`i, `j , ρ〉, ρ |= η(`j)
′ ≥ η(`i).

Both these conditions imply consecution. Any map in which some transitions
satisfy these stronger conditions continues to remain an inductive assertion map.

Example 2. Consider the LTS in Example 1. We fix a template map η(`0) =
c1x + c2y + d, C = {c1, c2, d} being unknown quantities. Initiation is encoded
using Farkas Lemma,

λ1 x = 0
}

Θ
λ2 y = 0

c1x + c2y + d ≥ 0← η(`0)



resulting in the constraints

(∃λ1, λ2) [c1 = λ1 ∧ c2 = λ2 ∧ d ≥ 0]

After eliminating the multipliers, we obtain d ≥ 0 for the initiation constraint.
Consecution is encoded using Farkas Lemma as

µ1 c1x + c2y + d ≥ 0← η(`0)
λ1 x + 2y − x′ = 0

}

ρτ1λ2 y + y′ − 1 = 0
c1x

′ + c2y
′ + d ≥ 0← η′(`0)

which produces the constraints

(∃µ1) [µ1c1 − c1 = 0 ∧ µ1c2 + c2 − 2c1 = 0 ∧ µ1d− d− c2 ≤ 0]

After eliminating λ1, λ2, µ1, the resulting constraint simplifies to c2 = c1 ≥ 0.
Similarly, the constraint obtained for τ2 simplifies to c1 + 2c2 ≥ 0. The overall
constraint is the conjunction of the initiation and consecution constraints, which
reduces to c1 = c2 ≥ 0, d ≥ 0. Solutions are generated by c1 = 1, c2 = 1, d = 0,
corresponding to the inductive assertion x+ y ≥ 0 at `0.

3 The Constraint System and its Solution

In this section, we study the constraint structure arising from the encoding
discussed briefly in Section 2, and in detail elsewhere [6].

We fix a linear transition system Π with variables {x1, . . . , xn}, collectively
referred to as x. The system is assumed to have a single location ` to simplify
the presentation. The template assertion at location `, is α(c) = c1x1 + · · · +
cnxn + d ≥ 0. The coefficient variables {c1, . . . , cn, d} are collectively referred to
as c. The system’s transitions are {τ1, . . . , τm}, where τi : 〈`, `, ρi〉. The initial
condition is denoted by Θ. The system in Example 1 will be used as a running
example to illustrate the presented ideas.

3.1 Deriving Constraints

We use Farkas Lemma (Theorem 1) in order to derive constraints for initiation
and consecution, as shown in Example 2.

Initiation The case for initiation is relatively straightforward. We encode initi-
ation by encoding Θ |= α(c) ≥ 0. The conditions on c are obtained from the
application of Farkas Lemma after eliminating the multipliers. In practice, the
constraints are derived using Farkas’ Lemma. The result is a linear assertion
over the unknowns c, and the multipliers λ. The multipliers are eliminated us-
ing polyhedral projection. Let Θ = (x = 0 ∧ y = 0), and c1x + c2y + d ≥ 0.
The initiation constraint, obtained by using Farkas Lemma is d ≥ 0, as shown
in Example 2.



Consecution Consecution for a transition τi encodes the assertion

(α(c) ≥ 0) ∧ ρi |= (α(c)′ ≥ 0)

Using Farkas Lemma, the constraints obtained are homogeneous, and involve
an existentially quantified non-linear parameter µi. We shall term the class of
constraints thus obtained parametric linear assertions.

Definition 5 (Parametric Linear Assertion) Let c be a set of variables and
µ1, . . . , µm be parameters. A parametric linear expression (PL expression) is of
the form α1 + µiα2, where α{1,2} are (homogeneous) linear expressions over c.
A parametric linear (in)equality is of the form β ./ 0, β being a PL expression.
A PL assertion is a finite conjunction of PL equalities and inequalities.

For a transition τi, and template α(c), the consecution constraints obtained
through Farkas Lemma form a parametric linear assertion over a single param-
eter µi.

Example 3. We encode consecution for transition τ2 from Example 1.

µ2 c1x + c2y + d ≥ 0← η(`0)
λ1 x − x′ + 1 = 0

}

ρτ2λ2 y − y′ + 2 = 0
c1x

′ + c2y
′ + d ≥ 0← η′(`0)

which yields the constraints

∃(µ2, λ1, λ2)









µ2c1 + λ1 = 0
µ2c2 + λ2 = 0

−λ1 = c1
−λ2 = c2

µ2d− d+ λ1 + 2λ2 ≤ 0









Eliminating λ1, λ2 yields µ2c1−c1 = 0 ∧ µ2c2−c2 = 0 ∧ µ2d−d−c1−2c2 ≤ 0.

These constraints are parametric linear. Local and increasing consecutions can
be enforced by setting µ2 = 0, 1, respectively.

The Overall Constraint The overall constraint obtained is the conjunction of
the constraints obtained from initiation and consecution for each transition. This
constraint is a combination of several types of constraints. Initiation results in
a linear assertion, whereas each consecution condition results in PL assertions
over parameters M = {µ1, . . . , µm}, the parameter µi arising from τi. Each of
these parameters is required to be nonnegative, and is existentially quantified.
In order to compute the actual constraint over c, the parameters in M need to
be eliminated.



Example 4. The overall constraint for the system in Example 1 is now

∃(µ1, µ2)












d ≥ 0
︸ ︷︷ ︸

Initation

∧







µ1c1 − c1 = 0
µ1c2 + c2 − 2c1 = 0
µ1d− d− c2 ≤ 0

µ1 ≥ 0







︸ ︷︷ ︸

τ1

∧







µ2c1 − c1 = 0
µ2c2 − c2 = 0

µ2d− d− c1 − 2c2 ≤ 0
µ2 ≥ 0







︸ ︷︷ ︸

τ2












3.2 Exact elimination

The constraints in Example 4 are non-linear and existentially quantified. How-
ever, the theory of non-linear assertions over reals admits computable quanti-
fier elimination, as shown by Tarski [16]. Many others have improved the al-
gorithm [5, 17]. Packages like redlog and qepcad can handle small/medium
sized examples. In our earlier work, we used these techniques to handle the con-
straints derived from elimination. However, there are many drawbacks to using
these tools.

1. The technique does not scale to systems of more than five variables.
2. The technique yields large formulas with many non-linear constraints that

cancel in the final result, leading to much redundant effort.
3. The structure in the constraints is not fully utilized. The constraints are of

low degree, and exhibit a uniform structure. This is lost as soon as some of
the parameters are eliminated.

4. In case the underlying LTS has some special structure, the use of elimination
may be completely unnecessary, as demonstrated for the case of Petri Net
transitions in [14]. The result can be extended to cases where a subset of the
transitions have a Petri-net like structure, as is the case with many systems.

Of course, the completeness of quantifier elimination, and Farkas Lemma lead to
theoretical claims of completeness (see [6] for details). We are not aware of any
alternative exact procedure for solving these constraints precisely. Therefore, we
shall concentrate on under-approximate elimination.

3.3 Under-approximate Elimination Technique

Any under-approximate elimination technique is sound.

Lemma 1. Let ψ(c,µ) be the overall constraints obtained from encoding induc-

tiveness. Let ϕ(c) be an assertion such that

ϕ(c) |= (∃ µ ≥ 0) ψ(c,µ)

Any solution to ϕ is an inductive assertion.

Proof. Let c = a be a solution to ϕ. Then, there exist positive parameters µ

such that ψ(a,µ) holds. The rest follows by the soundness of our constraint
generation process. See [6] for a proof.



We first split the overall constraints ψ(c,µ) into different groups: ϕ{eq,in}, γ{eq,in},
and ψµ:

– ϕeq and ϕin contain the equalities and inequalities, respectively, on c. We
assume ϕeq |= ϕin.

– γeq and γin contain the PL equalities and inequalities, respectively, over c

and µ.
– ψµ contains the constraints on µ, conjunctions of linear inequalities, equali-

ties, and disequalities, where the disequalities are produced by our constraint
solving rules.

Example 5. The constraints from Example 4 are classified as follows:

d ≥ 0
︸ ︷︷ ︸

ϕin

∧







µ1c1 − c1 = 0
µ1c2 + c2 − 2c1 = 0

µ2c1 − c1 = 0
µ2c2 − c2 = 0







︸ ︷︷ ︸

γeq

∧

[
µ1d− d− c2 ≤ 0

µ2d− d− c1 − 2c2 ≤ 0

]

︸ ︷︷ ︸

γin

∧

[
µ1 ≥ 0
µ2 ≥ 0

]

︸ ︷︷ ︸

ψµ

The linear part of a system of constraints is defined as the constraint ϕin ∧ ϕeq .
The system is unsatisfiable if ϕ{in,eq} or ψµ are, and trivial if ϕeq is of the form
c1 = . . . = cn = 0. The only inductive assertion that a trivial system can possibly
yield is 1 ≥ 0.

Constraint Simplification The simplifications involving equalities in ϕeq , ψµ, are
the following:

1. Every equality expression in ϕeq of the form a1c1 + · · ·+ ancn + an+1d = 0
forms a rewrite rule of the form ci → −

ai+1

ai
ci+1−· · ·−

an+1

ai
d, where i is the

smallest index with ai 6= 0.
2. Apply this rule to eliminate ci over the linear and PL parts. Simplify, and

repeat until all the equalities have been converted.

Similarly, a constraint of the form µ = a in ψµ is used to rewrite µ in γ{eq,in}. The
constraints added to ϕ{eq,in} can trigger further simplifications and similarly,
constraints in γeq can be used as rewrite rules in order to simplify constraints in
γin.

Factorization and Splitting A PL expression is factorizable iff it can be written
in the form (µ − a)α, where α is a linear expression over c. Deciding if an
expression is factorizable is linear time in the expression size. A PL equality
(µ − a)α = 0 factorizes into two factors µ − a = 0 ∨ α = 0. Similarly a PL
inequality (µ−a)α ≥ 0 factorizes into (µ−a ≥ 0 ∧ α ≥ 0) ∨ (µ−a ≤ 0 ∧ α ≤ 0).
Since our system of constraints is a conjunction of (in)equalities, factorization
splits a constraint system into a disjunction of two systems. The following is a
factorization strategy, for equalities:

1. Choose a factorizable expression (µ − a)α = 0, and remove it from the
constraints,



2. Create two constraint systems, each containing all the remaining constraints.
Add µ = a to one system, rewriting all occurrences of µ by a. Add α =
0 ∧ µ 6= a to the other system, and simplify.

Example 6. The constraint system in Example 4 has a factorizable equality
µ2ci − ci = 0, for i ∈ {1, 2}. We add µ2 = 1 to one child, and c1 = 0 ∧ c2 = 0
to the other, yielding













d ≥ 0
}

ϕin−c1 − 2c2 ≤ 0
µ1c1 − c1 = 0

}

γeqµ1c2 + c2 − 2c1 = 0
µ1d− d− c2 ≤ 0← γin

µ1 ≥ 0
}

ψµµ2 = 1













∨













c1 = 0
}

ϕeqc2 = 0
d ≥ 0← ϕin

µ1d− d ≤ 0
}

γinµ2d− d ≤ 0
µ1 ≥ 0

}

ψµµ2 6= 1













The constraints on the right are trivial. The system on the left can be factorized
using the equality µ1c1 − c1 = 0. We obtain:











2c2 − 2c1 = 0← ϕeq
d ≥ 0 }

ϕin−c1 − 2c2 ≤ 0
−c2 ≤ 0
µ1 = 1

}

ψµµ2 = 1











∨















c1 = 0← ϕeq
d ≥ 0

}

ϕin−c1 − 2c2 ≤ 0
µ1c2 + c2 = 0← γeq

µ1d− d− c2 ≤ 0← γin
µ1 ≥ 0






ψµµ2 = 1

µ1 6= 1















The system on the left (unsimplified) has been completely linearized. The system
on the right can be further factored using µ1c2 + c2 = 0, yielding µ1 = −1 on
one side, and c2 = 0 on the other. Setting µ1 = −1 contradicts µ1 ≥ 0, while
setting c2 = 0 makes the system trivial. Therefore, repeated factorization and
simplification yields the linear assertion c1 = c2 ∧ c1 ≥ 0 ∧ d ≥ 0, which is
equivalent to the result of the exact elimination.

Simplification and factorization can be repeatedly applied to split the initial
constraints into a tree of constraints, such that each leaf has no more rules appli-
cable. Each node in the tree is equivalent to the disjunction of its children. There-
fore, the root is equivalent to the disjunction of all the leaves. The leaves can be
either completely resolved (linear), unsatisfiable, trivial, or terminal. A terminal
leaf is satisfiable and non-trivial, but contains unresolved non-linearities, which
cannot be further split or simplified.

Handling Terminal Constraints There are many ways of handling these con-
straints, some exact and some under-approximate.
Subsumption If a terminal (or even a non-terminal branch) has its linear part
subsumed by another fully linear leaf, we can ignore it without loss of accu-
racy. Checking subsumption allows us to eliminate non-terminal nodes too. Even



# name description

1 Simplification Substitute equalities into Expressions
2 Factorization Choose a factorizable expression, and split disjuncts
3 Subsumption Test containment of linear part w.r.t fully-resolved nodes
4 Split Use lemmas 2,3 to split
5 Instantiate Set µi = 0, 1, split and proceed

Fig. 2. Constraint-simplification rules

though polyhedral containment is expensive for higher-dimensions, we find that
a significant fraction of the nodes explored are eliminated this way.
Split In some special cases, it is possible to simplify a terminal system further.
The following lemmas are inspired by our work on Petri Net Transitions [14].

Lemma 2. Let α1, α2 be linear expressions, and µ be a parameter not occurring

in α{1,2}. Then

– (∃ µ ≥ 0) (α1+µα2 = 0) ≡

[
(α1 = α2 = 0) ∨

(α1 ≤ 0 ∧ α2 > 0) ∨ (α1 ≥ 0 ∧ α2 < 0)

]

,

– (∃ µ ≥ 0) (α1 + µα2 ≥ 0) ≡ (α1 ≥ 0) ∨ (α2 > 0).

These lemmas can be extended to systematically handle more complicated con-
straints on µ. They can also be modified to apply when more than one constraint
exists, with loss of completeness.

Lemma 3. (Ac ≥ 0) ∨ (Bc > 0) |= (∃ µ ≥ 0) Ac + µBc ≥ 0

Instantiate Finally, instantiating some parameter µ to {0, 1} lets us resolve it.
Other values of µ are also possible. However, using {0, 1} restricts the template
assertion α ≥ 0 to satisfy local or increasing-value consecution, respectively, as
defined in Section 2. The advantage of this strategy is that it is efficient and
simple, especially if some invariants are to be generated in as short a time as
possible.

4 Experimental Results

We have implemented our method and evaluated it on several programs. Our
prototype implementation uses the library ppl for manipulating polyhedra [2]
supplemented with our own implementation of some of the rules in Figure 2,
discussed below. We compared our method against forward propagation with
two different widenings provided by PPL: the standard ch79 widening [8] and
bhrz03 widening [1]. The bhrz03 operator is provably more accurate, but less
efficient than the ch79 widening. Since we implemented the post-condition our-
selves, we present separately the time spent computing post-conditions and the
time spent on PPL-provided widening.

Experimenting with a few strategies, we converged on a strategy that scaled
to larger examples. Some of the salient features of the strategy are the following:



– For multi-location systems, the transitions are classified as intra-location and
inter-location. The constraints for the intra-location transitions at each lo-
cation are resolved by a subset of the rules described previously. Specifically,
factorization is performed only over equalities, and Lemmas 2 and 3 are not
used. Handling factors over inequalities requires more polyhedral reasoning
at every simplification while the use of the two lemmas requires sophisticated
reasoning involving equalites, inequalities and disequalities. Our disequality
constraint solver uses heuristic rules whose completeness remains unresolved.

– Local and increasing consecution are used for each inter-location transition.
This strategy can be proven exact for many situations.

– The constraints for each location and the inter-location transitions are com-
bined conjunctively. Converting this CNF expression to DNF is a significant
bottleneck, requiring aggressive subsumption tests.

– Constraints are solved depth-first as much as possible, favouring branches
that can be resolved faster. The collection of linear constraints from re-
solved branches enable aggressive subsumption testing. The CNF to DNF
conversion is also performed in a depth-first fashion to enable invariants to
be computed eagerly.

As an added benefit, the execution can be interrupted after a reasonable amount
of time, and still yield many non-trivial invariants. In several cases our invariants
are disjoint with the results of forward propagation, because propagation-based
techniques can compute invariants ϕ1 ∧ ϕ2 that are mutually inductive, that
is, neither ϕ1 nor ϕ2 are inductive by themselves, while our technique only
discovers single inequalities that are inductive by themselves. However, repeating
the procedure with the computed invariants added to the guards of the transition
system usually provides the stronger invariants.

4.1 Low Dimensional Systems

Figure 3 shows the experimental results for some small to medium sized examples
from the related work and some benchmarks from analysis tools such as fast [3].
The number of variables for each program is shown in the second column. The
table shows for each program the time (in seconds) of our (constraint-based)
approach, and the time taken by the ch79 and bhrz03 approach. All computa-
tion times were measured on an Intel Xeon 1.7 GHz CPU with 2 Gb RAM. The
last two columns show the strength of the invariants computed by our method
compared with those computed by ch79 and bhrz03, respectively. A + indi-
cates that our invariants are strictly stronger, or no invariants were obtained by
the other method within 1 hour. The +3 = indicates that our invariants were
stronger for three locations, while they were the same for the other locations. An
=, 6= and − indicate that our invariants are equal, incomparable, and strictly
weaker, respectively. The suffix n indicates that all the variables in the system
were constrained to be positive to increase the number of invariants discovered
in one run. The programs swim1, efm1 were obtained by adding the previously
computed invariants as guards to the transition relations.



Program Constraint-based ch79 bhrz03 C-B Invariants
method time (secs) time (secs) versus

Name vars time # br # sub total post widen total post widen ch79 bhrz03

see-saw 2 0.03 13 8 0 0 0 0 0 0 + +
robot 3 0.02 2 1 0.01 0 0.01 0.01 0.01 0 = =
train-hpr97 3 0.86 25 5 0.02 0.02 0 0.02 0.02 0 +3 = +3 =
rand 4 0.02 3 2 0.01 0 0 0 0 0 = =

berkeley 4 0.06 11 8 0.01 0 0.01 0.01 0 0.01 6= 6=
berkeley-n 4 0.04 9 4 0.01 0.01 0 0.01 0 0.01 + +
heapsort 5 0.1 21 12 0.02 0.01 0.01 0.02 0.02 0 6= 6=
train-rm03 6 1.16 193 99 0.06 0.05 0.01 0.07 0.05 0.02 + =

efm 6 0.36 57 23 0 0 0 0.01 0.01 0 − −
efm1 6 0.32 57 27 0 0 0 0.01 0.01 0 − −
lifo 7 0.88 58 51 0.29 0.27 0.02 0.32 0.29 0.03 6= 6=
lifo-n 7 10.13 1191 593 0.27 0.25 0.02 0.32 0.27 0.04 + +

cars-midpt 7 0.1 17 8 32.8 5 27.8 > 3600 + +
barber 8 1.68 125 84 0.18 0.17 0.01 20.41 0.18 20.23 + +
swim 9 0.42 36 22 0.08 0.06 0.02 0.61 0.06 0.55 − −
swim1 9 0.88 65 32 0.07 0.06 0.01 0.59 0.06 0.53 = =

Fig. 3. Experimental results for some low-dimensional systems. #br is the number of
branches, #sub is the number pruned by subsumption tests .

The figure shows that for the programs tested our invariants are mostly
superior or comparable, but at a significant extra cost in computation time for
the smaller dimensions. However, the situation changes when the dimensionality
of the systems is increased beyond ten variables, as shown in the next section.

4.2 Higher-dimensional Systems

To evaluate our method for systems with more variables we compared its per-
formance on instances of two parameterized systems.

Pre-emptive Scheduler: The first system is an n process pre-emptive scheduler
inspired by the two-process example in Halbwachs et. al. [11]. Two arrivals of
process pi are separated by at least ci time units, for a fixed ci. Process pi pre-
empts process pj for j < i. The system has n locations, where location `i denotes
that process pi is executing and that there are no waiting processes pj for j > i.

Convoy of Cars: The second system consists of n cars on a straight road whose
accelerations are controlled (as in real life), determining their velocity. The lead
car non-deterministically chooses an acceleration. The controller for each car
detects when the lead car is too close or too far, and, after a bounded reaction



Program Constraint-based ch79 bhrz03 C-B Invariants
method time (secs) time (secs) versus

Name vars time # br # sub total post widen total post widen ch79 bhrz03

scheduler

2 proc. 7 0.54 23 10 0.15 0.12 0.02 0.19 0.12 0.07 6= − 6= −
3 proc. 10 8.21 36 16 39.5 26.9 12.8 2232 27.5 2204 +3 6=3

4 proc. 13 284 55 26 > 3600 > 3600 +4 +4

5 proc. 16 > 3600 81 41 > 3600 > 3600 ? ?

cars

2 proc. 10 3.54 93 44 5.22 4.23 0.97 443 200 243 + 6=
3 proc. 14 20.5 468 239 > 3600 > 3600 + +
4 proc. 18 1006 3722 1897 > 3600 > 3600 + +

Fig. 4. Performance Comparison on parameterized examples Scheduler and Cars

time, adjusts acceleration. Time was discretized in order to linearize the resulting
transition system.

Figure 4 shows the performance comparison In all cases above 10 variables,
our technique out-performs the other two techniques. The propagation-based
techniques ran out of time for these systems. Our method ran out of time for the
5-process scheduler. It did so while converting a large CNF formula into a DNF
formula. In fact, two different timeouts, 700s and 3600s, yielded the same (non-
trivial) invariants. A total of 19 disjuncts in the normal form conversion were
found to be relevant within the first 700 seconds, while all the 75791 disjuncts
computed in the next 2900 seconds were found to be subsumed by the original
19. This suggests that a vast majority of disjuncts in the computed DNF form
yield the same invariant, which was confirmed by other examples.

5 Conclusion

Linear programming, as a discipline has seen tremendous advances in the past
century. Our research demonstrates that some ideas from linear programming
can be used to provide alternative techniques for linear-relations analysis. Anal-
ysis carried out this way has some powerful advantages. It provides the ability to
adjust the complexity and the accuracy in numerous ways. The constraint-based
perspective for linear relations analysis can be powerful, both in theory and in
practice.

Future work needs to concentrate on increasing the dimensionality and the
complexity of the application examples for this analysis. Numerous mathemat-
ical tools remain to be explored for this domain. The use of numerical, and
interval-numerical techniques for handling robustness in polyhedral computa-
tions has remained largely unexplored. Manipulation techniques for compressed
representations along the lines of Halbwachs et al. [10] has also shown promise.
Further investigations into the geometry of these constraints will yield a precise
and faster analysis.



Acknowledgements: The authors are grateful to the people behind PPL [2]
for making this study possible, and the anonymous reviewers for their detailed
comments.

References

1. Bagnara, R., Hill, P. M., Ricci, E., and Zaffanella, E. Precise widening
operators for convex polyhedra. In Static Analysis Symposium (2003), vol. 2694 of
LNCS, Springer-Verlag, pp. 337–354.

2. Bagnara, R., Ricci, E., Zaffanella, E., and Hill, P. M. Possibly not closed
convex polyhedra and the Parma Polyhedra Library. In Static Analysis Symposium

(2002), vol. 2477 of LNCS, Springer-Verlag, pp. 213–229.
3. Bardin, S., Finkel, A., Leroux, J., and Petrucci, L. Fast: Fast accel-

ereation of symbolic transition systems. In Computer-aided Verification (July
2003), vol. 2725 of LNCS, Springer-Verlag.

4. Besson, F., Jensen, T., and Talpin, J.-P. Polyhedral analysis of synchronous
languages. In Static Analysis Symposium (1999), vol. 1694 of LNCS, pp. 51–69.

5. Collins, G. Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In Automata Theory and Formal Languages (1975), H.Brakhage,
Ed., vol. 33 of LNCS, Springer-Verlag, pp. 134–183.

6. Colón, M., Sankaranarayanan, S., and Sipma, H. Linear invariant generation
using non-linear constraint solving. In Computer Aided Verification (July 2003),
vol. 2725 of LNCS, Springer-Verlag, pp. 420–433.

7. Cousot, P., and Cousot, R. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
ACM Principles of Programming Languages (1977), pp. 238–252.

8. Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among
the variables of a program. In ACM Principles of Programming Languages (Jan.
1978), pp. 84–97.

9. Fukuda, K., and Prodon, A. Double description method revisited. In Combina-

torics and Computer Science, vol. 1120 of LNCS. Springer-Verlag, 1996, pp. 91–111.
10. Halbwachs, N., Merchat, D., and Parent-Vigouroux, C. Cartesian factoring

of polyhedra for linear relation analysis. In Static Analysis Symposium (2003),
vol. 2694 of LNCS, Springer-Verlag, pp. 355–365.

11. Halbwachs, N., Proy, Y., and Roumanoff, P. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design 11, 2 (1997), 157–
185.

12. Henzinger, T. A., and Ho, P. HyTech: The Cornell hybrid technology tool. In
Hybrid Systems II (1995), vol. 999 of LNCS, Springer-Verlag, pp. 265–293.

13. Manna, Z., and Pnueli, A. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

14. Sankaranarayanan, S., Sipma, H. B., and Manna, Z. Petri net analysis using
invariant generation. In Verification: Theory and Practice (2003), vol. 2772 of
LNCS, Springer-Verlag, pp. 682–701.

15. Schrijver, A. Theory of Linear and Integer Programming. Wiley, 1986.
16. Tarski, A. A decision method for elementary algebra and geometry. Univ. of

California Press, Berkeley 5 (1951).
17. Weispfenning, V. The complexity of linear problems in fields. Journal of Symbolic

Computation 5, 1-2 (April 1988), 3–27.


