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Abstract—We introduce an approach to conservatively abstract
a nonlinear continuous system by a hybrid automaton whose
continuous dynamics are given by a decomposition of the orig-
inal dynamics. The decomposed dynamics is in the form of a
set of lower-dimensional ODEs with time-varying uncertainties
whose ranges are defined by the hybridization domains. We
propose several techniques in the paper to effectively compute
abstractions and flowpipe overapproximations. First, a novel
method is given to reduce the overestimation accumulation in
a Taylor model flowpipe construction scheme. Then we present
our decomposition method, as well as the framework of on-the-
fly hybridization. A combination of the two techniques allows us
to handle much larger, nonlinear systems with comparatively
large initial sets. Our prototype implementation is compared
with existing reachability tools for offline and online flowpipe
construction on challenging benchmarks of dimensions ranging
from 7 to 30.

I. INTRODUCTION

In this paper, we present a more scalable flowpipe con-
struction technique for the reachability analysis of nonlinear
continuous systems, with applications to Cyber-Physical Sys-
tems (CPS). Given the model of a hybrid system with initial
sets, sets of disturbance inputs and sets of model parameters,
the flowpipe construction technique seeks to compute the set
of all reachable time trajectories over a given time horizon T .
This enables the verification of bounded real-time properties.
Flowpipe construction for linear hybrid systems has been quite
successful with efficient tools such as SpaceEx [18]. However,
a closer examination of the state-of-the-art approaches for
nonlinear systems reveals two principal drawbacks: (a) many
approaches do not scale beyond systems with 5∼8 state
variables, and (b) the overestimation error can be quite large,
even for systems with few variables and small initial sets,
leading to overapproximations that may not be useful.

In this paper, we present a flowpipe construction scheme
using Taylor model arithmetic [8], that exploits the struc-
ture of the terms in the given differential equation model
to decompose a flowpipe construction for a larger system
into flowpipe construction tasks over smaller subsystems. The
main idea is to abstract the system by replacing carefully
selected state variables in the RHS of the Ordinary Differential
Equation (ODE) by intervals. As a result, these variables
are assumed to be time-varying uncertainties that lie inside
those intervals, which are taken to be an assumption. The
variables are also selected, so that the resulting abstract
system can be decomposed into a set of smaller, independent
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Fig. 1. Car platooning model showing three cars V1, V2 and V3 from
left to right, implementing a potentially unsafe control scheme for avoiding
collisions.

subsystems with no state variables in common (other than a
common notion of time). The integration is performed with
the assumption that the abstracted variables are inside the
interval. If the check passes, we prove that the resulting
flowpipe is indeed a valid overapproximation of the dynamics
over a time step. In this case, the flowpipes computed are
then used to iteratively refine/narrow the intervals, and thus
reduce the overapproximation error of the computed flowpipe.
Failing this check, the assumption intervals are enlarged and/or
the time step of integration is shortened. As a result, our
decomposition approach resembles an on-the-fly hybridization
scheme wherein only selected variables are hybridized to
decompose the system structurally.

However, using time-varying uncertainties may lead to
heavy accumulation of overapproximation error which is also
called overestimation in flowpipe construction. To avoid this,
we propose a method to symbolically track the remainder over
multiple steps.

We implement this approach on top of the tool Flow* and
compare with related tools including Flow* [11], CAPD [23]
and VNODE-LP [31] for both offline and online flowpipe
computation. The comparisons are based on some challenging
benchmarks with 7 to 30 system variables.
Motivation. As a motivating example, consider the problem of
monitoring a safety critical control system to check if starting
from a current state ~x(t), the system is guaranteed to remain
within a safe region S in the time interval [t, t+T ]. For real-
time monitoring applications, we require that the reachable set
can be computed rapidly, within the time horizon T so that a
switch to a safe control scheme can be made [7], [36].

Figure 1 shows an adaptive cruise control model for a
“platoon” of three vehicles, that controls the middle vehicle V2



TABLE I
DESCRIPTION OF DISTURBANCE INPUTS IN THE CAR PLATOONING MODEL.

Time-varying uncertainties Source Range
dθ1 , dθ2 , dθ3 steering disturbance [−5◦, 5◦]

a1, a3 acceleration of V1, V3 [−0.45, 0.45]
dv1 , dv2 , dv3 drag/friction coefficients [0.09, 0.1]

d1, d2 sensor disturbances [−0.05, 0.05]

from colliding with vehicle V1, V3 that are behind and ahead
of it, respectively. Each vehicle is modeled using the state
variables (xi, yi, vi, θi) for i ∈ {1, 2, 3} to denote its position
xi, yi, velocity vi and orientation θi.

Figure 1 shows the ODE for each of the cars. The cars
V1, V3 are assumed to be driven by humans. We assume that
the accelerations and steering angles are uncertain. The middle
car is actively controlled to avoid collisions. We assume that
the middle car is equipped with a radar to estimate the posi-
tions x1, x3 of the leading and trailing cars continuously, but
with time-varying estimation errors. It then uses proportional
control on its acceleration to avoid collisions, wherein the
collision free region is defined by x2−x1 > 2 ∧ x3−x2 > 2.

The overall model has 12 state variables in all, and is
coupled by the feedback involving x1, x3 for the acceleration
of the second car. The model also involves time-varying
disturbances shown in Table I.

At the beginning of each time period of T = 0.99 < 1
second, an estimate of the current state with uncertainty is
available to the online monitor. The goal is to predict all
possible reachable states of the system within T to decide
if a collision is imminent. If yes, evasive action or fall back to
a safe controller is taken, following the principle of a Simplex
architecture [36]. Such an application requires a fast flowpipe
construction scheme, that is capable of computing the reach-
able set within T rapidly, ideally requiring t� T computation
time. As reported in Section V, the techniques presented in this
paper can exploit the “loose coupling” between the states of
V2 and those of V1, V3 to achieve computation times ranging
in [0.68, 0.81] seconds under various initial conditions. In
comparison, the original Flow* tool under the same settings
takes around 10× more time.
Related work. Overapproximating solutions for nonlinear
ODEs plays an important role in the safety analysis of non-
linear hybrid systems and in the control of CPS in a provably
safe manner [6]. Some existing tools have already shown
their applicability to some nontrivial safety problems, such
as Flow* [11], iSAT [16], dReach [24], NLTOOLBOX [38],
C2E2 [15], HyCreate [5], and CORA [1]. Frameworks like
HYST provide convenient interfaces for performing complex
real-time CPS verification tasks using these tools [4]. However,
it is still a difficult task to handle the continuous system
defined by a nonlinear ODE beyond 10 or more variables,
especially when the initial set is relatively large, and the unsafe
set (property) lies close to the boundary of the precise reach-
able set. In contrast, computing flowpipes for linear ODEs
have been shown to scale using symbolic representations such

as support functions [18] and polynomials [34].

Whereas many approaches discussed this far perform offline
verification, Bak et al. present an application to “online ver-
ification” for implementing a Simplex architecture [7]. Their
approach checks if the system will continue to satisfy its
specification for a given real-time horizon T , starting from
its current measured/estimated state. A key requirement for
such an application is that the running time for the flowpipe
construction be less than T, so that it can be implemented in
real time. Whereas the approach of Bak et al. tackles linear
systems, we demonstrate online verification for nonlinear
systems through a combination of Taylor model flowpipe
construction and the decomposition technique presented here.

Approaches to nonlinear flowpipe construction rely on
higher-order interval arithmetic [8], [10] to minimize a po-
tentially expensive gridding of the state space. However, the
size of the Taylor model required to maintain a given precision
and avoid error accumulation can grow exponentially in the
number of system variables in the worst case. Alternatively,
many approaches hybridize the system by approximating it, to
simplify the dynamics to piecewise affine or constant hybrid
systems [20], [17], [3], [2], [12], [13]. Our method combines
both the techniques of symbolic representations and hybridiza-
tion. However, we avoid expensive flowpipe representations
through a combination of lower-dimensional polynomials with
symbolic remainder tracking. Furthermore, unlike the existing
hybridization methods [3], [2], [13], we do not hybridize the
entire state space. Instead, we target specific terms in the ODEs
to remove key dependencies between system variables that will
decompose the system.

Compositional methods have been applied to computing
approximate abstractions [35] and discrepancy functions [21]
for continuous and hybrid systems. Decomposition methods
were considered in stability analysis [37] and obtaining dif-
ferential invariants [33]. However, in this paper, we present
a novel approach combining decomposition and hybridization
to efficiently compute flowpipe overapproximations for large-
scale systems. If the given system is already provided as a
composition of smaller components, it is possible to use these
components to define a decomposition. However, many large
models are often not provided in such a way. Nevertheless,
we observe that hybridizing few select variables allows us to
decompose the model into much smaller submodels.

The rest of the paper is organized as follows. Section II
presents the preliminaries including the method of computing
Taylor model flowpipes for nonlinear ODEs. The treatment
of time-varying uncertainties is presented in Section III. We
use a symbolic remainder to minimize the accumulation of
overapproximation error. In Section IV, we first introduce
our decomposition method on ODEs, and then show the
framework of computing partial hybridizations for obtaining
decompositions. We compare our prototype tool with some
related tools on a set of benchmarks in Section V.



II. PRELIMINARIES

In the paper, we use R for the set of reals. A set of ordered
variables x1, . . . , xn or a vector (x1, . . . , xn) are collectively
represented by ~x. Given a vector or a vector-valued function
f , we denote fi or f [i] the ith component of f .

Definition II.1 (Continuous system). An n-dimensional con-
tinuous system S is defined by an ODE ~̇x = f(~x) such
that ~x is a vector representation of the state variables, and
f : Rn → Rn defines the vector field which associates each
state ~c ∈ Rn a derivative vector f(~c) ∈ Rn.

An execution of a continuous system is a solution of its
ODE. Given a continuous system S : ~̇x = f(~x) and an initial
condition ~x(0) = ~x0, we denote the solution at some time
t ≥ 0 by ϕf (~x0, t) or ~x(t) if ~x(0) is given in the context.
Throughout this paper we assume that f is at least locally
Lipschitz continuous, that is, there exists some nonempty open
set Ω containing ~x0 and a real value Lf ≥ 0 such that ‖f(~x1)−
f(~x2)‖ ≤ Lf‖~x1− ~x2‖ for all ~x1, ~x2 ∈ Ω. Here, ‖ · ‖ denotes
the infinity norm and Lf is called a Lipschitz constant of f in
Ω. Then, if the flow ϕf (~x0, t) exists, it is unique. If the initial
value of ~x is given by a set X0, we collectively denote the set
of the solutions by ϕf (X0, t) for t ≥ 0. We also call the set
of solutions over a bounded time interval a flowpipe. We call
a state ~s reachable in some time interval ∆ if there is t ∈ ∆
such that ~s = ϕf (~x0, t) for some initial state ~x0. In the rest
of the paper, we will refer to continuous systems and ODEs
interchangeably.

Since nonlinear ODEs may not have known analytic closed-
form solutions, we resort to overapproximation methods.
Widely used overapproximate representations include intervals
and Taylor models.
Interval arithmetic. A closed and bounded interval (also
called a box) {x ∈ R | a ≤ x ≤ b} is denoted by [a, b]. The
operations on reals can be extended to handling intervals. For
example, the interval addition and multiplication are defined
by [a, b]+[c, d] = [a+c, b+d] and [a1, b1]·[a2, b2] = [min{a1 ·
a2, a1 · b2, b1 · a2, b1 · b2},max{a1 · a2, a1 · b2, b1 · a2, b1 · b2}]
respectively. Intervals are used as overapproximate represen-
tations for reals in numerical computation. They can also be
organized as vectors or matrices. An interval vector (or matrix
resp.) V , denotes a set of vectors (matrices), wherein v ∈ V
iff each entry of v is contained in the corresponding interval
entry of V . We refer to the textbook by Moore & Cloud for
further details [30]. In the paper, we also call interval vectors
intervals or boxes, and use B[i] to denote the ith component
of an interval vector B.

Definition II.2 (Taylor model [8]). An order k Taylor model
(TM) is a pair (p(~x), I) wherein p is a polynomial of degree
k over ~x, and I is the remainder interval. The variables ~x
are associated with an interval range D which is called the
domain of the TM.

TMs can be viewed as higher-order intervals, such that a
part of the uncertainty is represented by polynomials. They

are used to provide overapproximations for sets of smooth
or continuous functions. A (vector-valued) function f(~x)
with ~x ∈ D is overapproximated by the TM (p(~x), I) iff
∀~x ∈ D. f(~x) ∈ p(~x) + I . Likewise, a TM can also be
used to represent the set given by its image: {~y | ~y ∈ p(~x) +
I for some ~x ∈ D}. TMs are closed under operations such
as addition, multiplication, and integration (see [28]). Given
functions f, g that are overapproximated by TMs (pf , If ) and
(pg, Ig) respectively. A TM for f + g can be computed as
(pf+pg, If+Ig), and an order k TM for f ·g can be computed
as ( pf · pg − rk , If · B(pg) + B(pf ) · Ig + If ·Ig + B(rk) )
wherein B(p) denotes an interval enclosure of the range of p,
and the truncated part rk consists of the terms in pf · pg of
degrees > k.

A. Taylor model flowpipes

Given a continuous system S : ~̇x = f(~x) and an initial set
~x(0) ∈ X0 such that X0 is represented by a TM or interval,
the method of TM integration is to compute a finite set of TM
flowpipes (p1, R1), . . . , (pN , RN ) such that (pi(~z, t), Ri) is an
overapproximation of ϕf (~z, t + (i − 1)δ) with ~z ∈ X0, t ∈
[0, δ], for 1 ≤ i ≤ N . We recall the approach to compute these
approximations [8], [28]. For the ith integration step, the local
initial set is X0 for i = 1, and computed as a TM Xi−1 =
(pi−1(~z, δ), Ri−1) for i ≥ 2. Then, the ith TM flowpipe can
be obtained from the following steps.
(1) Compute the order k Taylor expansion Φi(~y, t) at t = 0
for the ODE solution ϕf (~y, t), with the domain ~y ∈ Xi−1.
(2) Find a proper remainder Ii such that ϕf (~y, t) is overap-
proximated by (Φi(~y, t), Ii) with t ∈ [0, δ]. It can be done
by verifying the contractiveness1 of the Picard operator on
(Φi(~y, t), Ii) (see [8], [10]).
(3) Compute the ith TM flowpipe (pi, Ri) by evaluating
(Φi(Xi−1, t), Ii) using TM arithmetic.

The polynomial part of a TM flowpipe is a vector-valued
polynomial. Its jth component defines a polynomial approxi-
mation for the flowmap ϕf in the jth dimension. In the rest of
the paper, we also call flowpipe overapproximations flowpipes
if it is clear in the context that they are overapproximations.

B. Symbolic versus interval representation for initial sets.

A TM flowpipe keeps the initial set symbolically by the n
variables ~z, and that results in a representation size at least as
large as that of a high order polynomial of n variables, and
could be exponential in n. On the other hand, the interval-
based integration method [32] uses Interval Taylor Series (ITS)
to represent a flowpipe, in which the initial set is represented
by its interval enclosure and the representation is only a
univariate polynomial in t with interval coefficients. Although
the size of an ITS is much smaller than that of a TM in
general, it can hardly track a flow accurately when the initial
set is relatively large. In that case, one may have to perform
a subdivision on the initial set and do integration for each
piece, and that often costs much more time than computing
TMs. Some experimental comparisons are given in [9].

1The resulting TM is contained in the input TM.



In this paper, we introduce an approach to partially represent
the initial set symbolically such that some of the variables in
~z are replaced by their intervals. The selection of the replaced
variables are handled by our decomposition method presented
in Section IV.

C. Time-varying uncertainties.

Our approach will deal with the nonlinear ODE terms by
means of time-varying parameters inside an interval. This
requires careful handling during the TM integration. The stan-
dard TM integration technique is further extended to dealing
with time-varying uncertain parameters in [9]. Surprisingly,
checking the contractiveness of the Picard operator with all
time-varying uncertainties replaced by their interval bounds
suffices to handle these parameters. Since the solution is
unique in the situation where each uncertainty is given by a
continuous function of t, and TMs are set-based representation
for continuous functions, the contractiveness means all unique
solutions are included by the resulting TM.

Theorem II.1 ([9]). Given a continuous system S : ~̇x =
f(~x, ~u) wherein ~u are time-varying uncertainties and bounded
by U ∈ IRm. If the Picard operator Pf (g)(~y, t) = ~y +∫ t
0
f(g(~y, s),U) ds is contractive on the TM (p(~y, t), I) with

~y ∈ X and t ∈ [0, δ], then (p(~y, t), I) is an overapproximation
of the solutions of the uncertain ODE from X in the time
interval [0, δ].

Although the above theorem provides a way to compute
TM flowpipes for uncertain ODEs, the remainder part of
each TM flowpipe is often large and the overestimation can
easily accumulate along flowpipe construction. We provide the
following example to show that even the uncertainties are very
small, it is still hard to compute overapproximations for the
solutions.

Example II.1. The model of Higgins-Sel’kov Oscillator is de-
fined by the ODE Ṡ = v0−S ·k1·r(P ), Ṗ = S ·k1·r(P )−k2·P
wherein the typical values for the parameters are v0 = 1,
k1 = 1, k2 = 1.00001, and the simplest expression for
r(P ) is P 2. Since the model describes a class of enzyme
reactions such that S, P are the concentrations of substrate
and product respectively, it is possible for the parameters
to have additive time-varying uncertainties. We assume that
all uncertainties are within the interval [−0.0002, 0.0002],
and therefore the dynamics becomes an ODE with time-
varying uncertain coefficients. We consider the initial set
S(0) ∈ [1.99, 2.01], P (0) ∈ [0.99, 1.01] and try to compute
TM flowpipes in the time horizon [0, 10]. We employ a stepsize
of 0.02 and a TM order of 6. The tool Flow* [11] fails to
wrap the reachable set at time 4.44 because of the remainder
explosion. We then reduce the stepsize to 0.002 and increase
the order to 7, however the tool still terminates with the same
failure at the time 4.510 with 182 second computation time.

The main problem here is the accumulation of overesti-
mation which makes it hard to produce a flowpipe within
the required error interval bounds and polynomial degrees.

In the next section, we present a novel method to reduce this
accumulation using symbolic remainder representation.

III. REDUCTION OF OVERESTIMATION

One of the main difficulties of flowpipe overapproximation
is to reduce the accumulation of overestimation. Since a
flowpipe is computed based on the previous one, the over-
estimation is also propagated. For linear ODEs, since the
closed-form solution is known, we may either compute each
flowpipe independently (see [9]), or use a symbolic flowpipe
representation, such as support functions [26], or TMs with
symbolic remainders [9]. However, neither of the schemes can
be applied to dealing with nonlinear ODEs.

In this section, we introduce a method to reduce the over-
estimation accumulation in TM flowpipe construction. The
purpose is to better deal with the ODEs with time-varying
uncertainties, since their TM flowpipes are often with large
remainder parts. Based on this method, we can more effec-
tively compute TM flowpipes in the decomposition scheme
that will be introduced in Section IV.

Since a local initial set in an integration step is computed
by bloating the image of the previous local initial set under a
polynomial transformation, we may split that transformation
into linear and nonlinear parts, and try to reduce the overesti-
mation accumulation under the linear part.

In the ith integration step, as we described in Section II-A,
the local initial set Xi−1 is given by pi−1(~z, δ)+Ri−1, wherein
~z ∈ X0, X0 is the initial set and δ is the time stepsize. Thus,
the local initial set Xi for the next time step is computed as
the result of Φi(pi−1(~z, δ) +Ri−1, δ) + Ii, wherein Φi is the
Taylor expansion for the solution in the ith step, and Ii is the
remainder interval for Φi. We expand the expression of Xi as
below,

pi(~z, δ) +Ri =Φi(pi−1(~z, δ) +Ri−1, δ) + Ii

=Φi,L(pi−1(~z, δ) +Ri−1, δ)+

~ci + Φi,N (pi−1(~z, δ) +Ri−1, δ) + Ii︸ ︷︷ ︸
Si(~z)+Ji

(1)

wherein Φi,L and Φi,N are the linear and nonlinear part
respectively of Φi, and ~ci is the constant part. The constant
and nonlinear part as well as the remainder Ii can be computed
as a TM Si(~z)+Ji. If the expression is recursively expanded,
we then obtain that pi(~z, δ) +Ri is equivalent to

Φi,L(Φi−1,L(pi−2(~z, δ) +Ri−2, δ) + Si−1(~z) + Ji−1, δ)

+ Si(~z) + Ji

=Φδi,L · Φδi−1,L · · · · · Φδ1,L(X0) + Si + Ji
(2)

such that Φδj,L(·) denotes the linear transformation defined by
Φj,L(·, δ), and

Si = Si(~z) + Φδi,L · Si−1(~z) + · · ·+ Φδi,L · · · · · Φδ2,L · S1(~z)

Ji = Ji + Φδi,L · Ji−1 + · · ·+ Φδi,L · · · · · Φδ2,L · J1
Therefore, if we are able to represent Jj for 1 ≤ j ≤ i symbol-
ically, there is no overestimation accumulation in computing



Ji, and Ri can be made smaller than that in the original
method. Here, we use support functions as the symbolic
representation. We give an algorithm for the above scheme,
the input ODE may have time-varying uncertainties. Unlike
the original method, in the ith step for i > 1, a local initial set
does not directly take the remainder R′i−1 from the previous
flowpipe, it computes a smaller one Ri symbolically based on
J1, . . . , Ji.

Algorithm 1 Flowpipe construction with symbolic remainders
Input: ODE: ẋ = f(~x), initial set ~x(0) ∈ X0, stepsize δ > 0,

TM order k ≥ 1, step number N
Output: Overapproximation for the reachable set in the time

interval [0, Nδ]
1: ΦL := ∅; # queue for Φδi,L
2: J := ∅; # queue for Ji
3: R := ∅;
4: for i = 1 to N do
5: Compute the Taylor approximation Φi;
6: Compute a proper remainder Ii for Φi;
7: Compute the TM Si + Ji by (1);
8: pi(~z, t) +R′i := Φi(Xi−1, t) + Ii; # the ith TM

flowpipe
9: R := R∪ {pi(~z, t) +R′i};

10: Ri := Ji;
11: for j = 1 to i− 1 do
12: ΦL[j] := Φδi,L · ΦL[j];
13: end for
14: Add Φδi,L to the end of ΦL;
15: for j = 2 to i do
16: Ri := Ri + ΦL[j] · J [j − 1];
17: end for
18: Compute Xi = pi(~z, δ) +Ri by (2);
19: Add Ji to the end of J ;
20: end for
21: return R;

Theorem III.1. The TM flowpipes computed by Algorithm 1
form an overapproximation of the reachable set in the time
interval of [0, Nδ].

Difference from the preconditioning techniques. The pre-
conditioning techniques [29] proposed for TMs have a dif-
ferent purpose. Applying a precondition to a local initial set
helps to obtain a small remainder interval for the local flow,
that is the the remainder Ii in (1). However, the purpose of our
method is to limit the accumulation of overestimation along
flowpipe construction. Hence, it can be used in a combination
with the existing preconditioning techniques.
Maximum size of the queues for Φδi,L and Ji. The com-
plexity of Algorithm 1 is quadratic in N which is the number
of steps. To reduce it, we introduce M to be the maximum
size of the queues for Φδi,L and Ji. If the size reaches M
after a step, then the queues will be cleared and the remainder
Ri in the next step will be computed nonsymbolically by the
standard TM integration method. Hence, the overestimation

Fig. 2. Flowpipe of the Higgins-
Sel’kov Oscillator with time-varying
uncertainties.

vx1
vy1

vy2vx2

Fig. 3. Variable dependency graph
of the coupled Van der Pol system.

accumulates, under linear transformation, every M steps, and
the algorithm complexity is quadratic in M but linear in N .
When M = 0, the algorithm coincides with the standard TM
integration method, and larger M gives better accuracy.

We revisit the Higgins-Sel’kov Oscillator in Example II.1.
We apply the above algorithm with the stepsize 0.02, TM order
6 and M = 400. The computed TM flowpipes along with the
numerical simulations in the time horizon [0, 10] are shown
in Figure 2. The time cost is only 18 seconds. The algorithm
can also be used with adaptive techniques [11].

IV. SYSTEM DECOMPOSITION

Given a nonlinear system with n state variables, a TM flow-
pipe of it is represented as (p(~z, t), R) such that ~z represents
in the initial set. In the worst case, p could have as many
as
(
n+k+1

k

)
terms which make its computation intractable

when the dimension n is large. Although we proposed in [9]
that a TM can be simplified by moving “small” terms into
the remainder part, those terms should still be computed
before simplification and that may not essentially improve the
scalability.

In this section, we introduce a hybridization method such
that in each hybridization domain, the original ODE is over-
approximated by a set of “independent” lower-dimensional
ODEs with time-varying uncertainties, and then a computed
TM flowpipe is essentially a set of lower-dimensional TMs.
The decomposed relations are however kept by the ranges of
the uncertainties, so that the approximation (hybridization)
error can be arbitrarily reduced by the refinement in the
dimensions of the decomposed variables. Also the stability
of the original system can be preserved. In Section V, we
show that such refinement is often not necessary if the
decomposition-hybridization approach is applied along with
the overestimation reduction scheme presented in the previous
section.

A. Dependency graph of variables.

Given an n-dimensional system S : ẋ1 = f1, . . . , ẋn = fn.
We denote GS = (VS , ES) the dependency graph of the state
variables such that VS consists of n nodes vx1 , . . . , vxn each
of which is corresponded to a variable, ES defines the edges
such that (vxi , vxj ) ∈ ES iff xj occurs in fi.



Example IV.1. The dynamics of a coupled Van der Pol system
is defined by ẋ1 = y1, ẏ1 = y1 − y1x21 − 2x1 + x2, ẋ2 = y2,
ẏ2 = y2 − y2x

2
2 − 2x2 + x1. The dependency graph of the

variables is given in Figure 3.

B. Decomposition of variable dependency graphs

The complexity of a TM flowpipe can be studied from
the variable dependency graph. Proposition IV.1 tells that if
the derivative of xi does not depend on xj then zj does
not occur in the xi-dimension of any TM flowpipe. In other
words, the single TM in the xi-dimension of a flowpipe has
at most n− 1 variables. Therefore, if we can decompose the
dependency graph into K components which are disconnected
from each other, then the system ODE can be accordingly
decomposed into K lower-dimensional ODEs which are called
a decomposed ODE (or system).

Proposition IV.1. Given an n-dimensional system S : ẋ1 =
f1, . . . , ẋn = fn. If there is no path from vxi to vxj in GS ,
then the xi-dimension of any TM flowpipe does not contain
zj which represents the range of xj(0).

We want to decompose an n-dimensional system S while
breaking as few dependencies as possible. One feasible way
is to perform a balanced (K,L) partitioning of its variable
dependency graph into K clusters with at most L nodes each,
while the cut size is minimized [19]. It can be computed by
solving the following integer linear program:

min{
∑

(vxi ,vxj )∈ES
ei,j} s.t.

(i)
∑K
k=1 vi,k = 1, for 1≤i≤n,

(ii)
∑n
i=1 vi,k ≤ L, for 1≤k≤K,

(iii) ei,j ≥ vi,k − vj,k, for 1≤i, j≤n ∧ i6=j ∧ 1≤k≤K,
(iv) vi,k, ei,j ∈ {0, 1}, for 1≤i, j≤n ∧ 1≤k≤K.

The value of vi,k is 1 when vxi belongs to the kth cluster,
otherwise vi,k = 0. The value of ei,j is 1 when the edge
(vxi , vxj ) is in the cut of the partitioning, i.e., (vxi , vxj ) is
removed by decomposition. The property (i) requires that each
node can only belong to one cluster. The property (ii) requires
that each cluster can only have at most L nodes. The property
(iii) tells that ei,j is 1 iff the nodes vxi and vxj belong to
different clusters. Notice that we only consider the value of ei,j
if (vxi , vxj ) is an edge in GS . Such a problem can be exactly
solved by an integer programming tool such as Z3 [14], or
approximately solved by greedy algorithms.

Given a system S : ẋ1 = f1, . . . , ẋn = fn, and the values
of K, L. We obtain a cut set which consists of the edges
removed in the (K,L) partitioning of the graph GS . Then a
decomposed ODE ẋ1 = g1, . . . , ẋn = gn is computed as
follows. For 1 ≤ i ≤ n, gi is computed from replacing xj
in fi by uj for all 1 ≤ j ≤ n if (vxi , vxj ) is in the cut set.
Then the decomposed ODE can be collectively represented as
~̇x = g(~x, ~u) which is essentially a set of lower-dimensional
ODEs with uncertain parameters ~u. We call those replaced
variables decomposed variables.

As an example, the system in Example IV.1 can be decom-
posed to ẋ1 = y1, ẏ1 = y1 − y1x

2
1 − 2x1 + u2, ẋ2 = y2,

ẏ2 = y2 − y2x22 − 2x2 + u1 by removing the edges (vy1 , vx2)
and (vy2 , vx1). The decomposed variables are x1, x2.

C. Hybridization with decomposition

We introduce the method to construct an overapproximate
hybrid automaton (or hybridization) for a continuous system
based on its decomposition.

Definition IV.1. An overapproximate hybrid automaton AD
is denoted by a tuple 〈~q, ~x, ~u, g, T ,U~q, X0〉 wherein ~q are
the N ordered discrete modes, ~x are the n state variables,
~u are the n time-varying uncertainties, ~̇x = g(~x, ~u) is the
decomposed dynamics such that the range of ~u in qi is
defined by the predicate Uqi(~u), we also call those ranges
hybridization domains. The set T consists of time-triggered
switches such that there is only one discrete transition from
qi to qi+1 for 1 ≤ i ≤ N − 1, and it is enabled and must be
executed when t = iδ for a stepsize δ > 0. X0 is the initial
set. Additionally, we also have t as the global timer. Notice
that only the uncertainties corresponding to the decomposed
variables are constrained by the predicates U~q .

An execution of AD is a piecewise differentiable function
ϕD(t) with ϕD(0) ∈ X0 such that for all 1 ≤ i ≤ N , ϕD(t−
(i− 1)δ) with t ∈ [(i− 1)δ, iδ] is a solution of the ODE ~̇x =
g(~x, ~u) w.r.t. ~x(0) = ϕD((i− 1)δ) while ~u(t) is a continuous
function bounded by the hybridization domain in qi. We call
a state ~v, which is a valuation of the variables, reachable if
there is some t ∈ [0, Nδ] and ~v = ϕD(t).

Given an n-dimensional system S : ~̇x = f(~x), its decom-
position ~̇x = g(~x, ~u) and a stepsize δ > 0, we compute a
hybridizationAD whose reachable set is an overapproximation
of the reachable set of S in [0, Nδ]. Starting with the initial
set X0, we iteratively construct a mode with its hybridization
domain and compute a flowpipe there.

We assume xn1
, . . . , xnγ are the decomposed variables. In

the ith iteration for i ≥ 1, assuming that the local initial set
is given by Xi−1. We do the following steps to construct the
hybridization domain Uqi and compute a flowpipe.
1. Estimate a hybridization domain. We evaluate an interval
enclosure B(Xi−1) for Xi−1, and then bloat it to Bi−1 by
pushing the upper and lower bounds in all dimensions outward
by a distance σ > 0. Then the hybridization domain Uqi is
estimated to be Uqi :

∧
j=n1,...,nγ

(aj ≤ uj ≤ bj) such that for
each j, aj is the lower bound of B(Xi−1)[j] if the derivative
of xj is positive when ~x ∈ Bi−1, otherwise aj is the lower
bound of Bi−1[j]; bj is the upper bound of B(Xi−1)[j] if the
derivative of xj is negative when ~x ∈ Bi−1, otherwise it is
the upper bound of Bi−1[j]. The signs of the derivatives can
be conservatively checked by interval arithmetic.
2. Compute a valid TM flowpipe. We compute a TM
flowpipe (Φi(~y, tD), Ii) with ~y ∈ Xi−1 and tD ∈ [0, δ] for the
solutions of ~̇x = g(~x, ~u) while ~u are time-varying uncertainties
whose range satisfies Uqi . We next validate the TM, that is,
we verify that the TM is “entirely” contained in the hybridiza-
tion domain. Since un1

, . . . , unγ are the overapproximate
substitutions of xn1

, . . . , xnγ , if the jth dimension of the
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Fig. 4. Mutual refinement for the flowpipes of the components

flowpipe is contained in the range of uj for j = n1, . . . , nγ ,
then the flowpipe is an overapproximation of the original
system reachable set. To validate it, for j = n1, . . . , nγ , if the
derivative of xj is positive (negative resp.), then we only need
to ensure that the upper (lower resp.) bound of (Φi(~y, tD), Ii)
is smaller (larger resp.) than the upper (lower resp.) bound of
Uqi in that dimension. Otherwise we verify both sides. If the
TM flowpipe is not validated, we may go to the previous step
and use a larger estimation σ.
3. Refine the hybridization domain and the TM flowpipe.
We propose a mutual refinement method to reduce the hy-
bridization domain as well as the TM flowpipe. We evaluate
the range Rng(xj) of the flowpipe in the jth dimension for all
j = n1, . . . , nγ . Since the flowpipe is valid, we must have that
Rng(xj) ⊆ [aj , bj ]. Then we reduce [aj , bj ] to Rng(xj) in Uqi
for all j = n1, . . . , nγ , and compute a smaller TM flowpipe
based on the contracted hybridization domain. We repeat this
step until no big improvement is made. Since the range of an
uncertainty is refined by one component and then fed back to
some others in each refinement iteration, it can be viewed as
that the components are mutually refined.
4. Define the switch and compute the next local initial set.
If i > 1, we define a switch from qi−1 to qi with the switch
condition t = (i − 1)δ. If i < N , the local initial set for the
next time step can be computed by the method presented in
Section III.

We give an example to illustrate the mutual refinement
method based on a 4-dimensional system decomposed to
(ẋ1, ẋ2) = g1(x1, x2, u4) and (ẋ3, ẋ4) = g2(x3, x4, u1). The
decomposed variables x1, x4 are replaced by u1, u4 in the
components. The refinement of the TM flowpipe in a step is
illustrated in Figure 4. The top most flowpipes are guaranteed
valid w.r.t. the estimation of hybridization domain, they are
the result of Step 2. The local initial set is denoted by blue
boundary. We compute the range Rng(x1) of x1 and the range

Rng(x4) of x4 in the first and second component respectively.
Since the combined flowpipe is contained in the hybridization
domain, those ranges must be contained in the ranges of u1
and u4 respectively. We then reduce the hybridization domain
to u1 ∈ Rng(x1) and u4 ∈ Rng(x4), then feed each of the
ranges to the other component where a refined flowpipe can be
computed. We repeat this mutual refinement procedure until
no big improvement can be made.

Fixing an order, assuming that the time complexity of
computing one n-dimensional flowpipe is Cfp(n) which is
exponential in n in the worst case. If the system is decomposed
into K components such that n1, . . . , nK are their dimensions,
then the complexity of computing a decomposed flowpipe is
at most CEst-HD +

∑K
i=1 Cfp(ni) + λ · (

∑K
i=1 Cfp(ni) + CRef-HD)

wherein CEst-HD is the cost of estimating a hybridization
domain (Step 1), λ is the number of refinement iterations (Step
3), CRef-HD is the cost of refining a hybridization domain. In
practice, we may set a constant upper bound for λ, and only
contract the remainder of the flowpipe instead of re-computing
it in each refinement iteration. Besides, it is also possible to
more accurately estimate the hybridization domain based on a
Lyapunov function if it can be obtained easily.

Our decomposition-hybridization algorithm terminates
when either N modes are computed or no validated TM
flowpipe could be computed when σ exceeds a user-specified
upper bound. Also, adaptive stepsizes could be used here.

Theorem IV.1. The hybrid automaton computed by the
decomposition-hybridization method is an overapproximation
of the original system in the time horizon [0, Nδ]. The TM
flowpipes form an overapproximation for the original system
reachable set in the time horizon [0, Nδ].

Proof. For the first statement, it is sufficient to show that the
solution ϕf of ~̇x = f(~x) w.r.t. ~x(0) ∈ Xi−1 for 1 ≤ i ≤ N in
the time interval [0, δ] is also a solution of ~̇x = g(~x, ~u) with
some continuous functions ~u bounded by Uqi . Assume that the
decomposed variables are xn1

, . . . , xnγ . Since all xn1
, . . . ,

xnγ are continuous and bounded by Uqi in the time [0, δ], we
have that ϕf is the solution of ~̇x = g(~x, ~u) with uj(t) = xj(t)
for j = n1, . . . , nγ . The second statement can be directly
deduced, since the TM flowpipes are overapproximations of
the hybrid automaton reachable set.

D. Hybridization error

We assume that a continuous system ~̇x = f(~x)
with the initial set X0 is decomposed and hybridized by
〈~q, ~x, ~u, g, T ,U~q, X0〉, then the dynamics error is bounded by

ED = sup
1≤i≤N

{sup{‖f(~x)− g(~x, ~u)‖ | ~x ∈ Fi, ~u ∈ Uqi}}

≤ sup
1≤i≤N

{sup{‖g(~x, ~u1)− g(~x, ~u2)‖ | ~x ∈ Fi, ~u1, ~u2 ∈ Uqi}}

such that Fi denotes the ith flowpipe. More intuitively, ED
gives the maximum difference of the derivatives of the original
and the decomposed systems in the domains F1, . . . ,FN . No-
tice that the error bound can be arbitrarily improved by refining



Uq1 , . . . ,UqN , and only the dimensions of the decomposed
variables are involved which is unlike the other hybridization
methods that often need to consider all dimensions of the state
space. Our hybridization error is given as below. It is similar to
the form given in [3] except that only decomposed dimensions
are involved.

Theorem IV.2 (Hybridization error). For any solution ~x1(t)
of ~̇x = f(~x) and any execution ~x2(t) of 〈~q, ~x, ~u, g, T ,U~q, X0〉
with ~x1(0) = ~x2(0) ∈ X0, we have that

‖~x1(t)− ~x2(t)‖ ≤ ED
Lf

(eLf t − 1), for all t ∈ [0, Nδ] (3)

such that Lf is the Lipschitz constant of f in
⋃N
i=1 Fi.

Proof. Given two piecewise differentiable functions ~z1(t) and
~z2(t) over t ∈ [0, Nδ], such that for all t ∈ [0, Nδ],
~z1(t), ~z2(t) ∈

⋃N
i=1 Fi, ‖f(~z1(t)) − ~̇z1(t)‖ ≤ ε1 wherein ~z1

is differentiable, and ‖f(~z2(t)) − ~̇z2(t)‖ ≤ ε2 wherein ~z2 is
differentiable. By fundamental inequality [22], we have that

‖~z1(t)− ~z2(t)‖ ≤ ‖~z1(0)− ~z2(0)‖eLf t +
ε1 + ε2
Lf

(eLf t − 1)

for all t ∈ [0, Nδ]. Therefore, we set ~z1 = ~x1, ~z2 = ~x2, and
then the inequality (3) is proved.

Based on the above theorem, we also have that if the
solutions of the original system reach a region A, which could
be an attractor, in the time [0, Nδ], then for any ε > 0, if we
set ED =

εLf

eLfNδ−1
, all executions of the decomposed system

reach the neighborhood {~x | ∃~a ∈ A, ‖~x − ~a‖ ≤ ε} of A. It
tells that at least the bounded time stability of the original
system is preserved by our method.

Although smaller hybridization domains could be computed
using smaller stepsizes, the size of a hybridization domain
is bounded below by the size of the local initial set in that
mode, and it can not be arbitrarily refined without performing
a subdivision. However, we will show by experiments that the
overall hybridization error can still be well controlled if we
use the symbolic remainder representation scheme presented
in Section III.

E. Running example

We apply our decomposition-hybridization method on the
following example ẋ = x+2y+0.1y2, ẏ = −6x−10y−0.1x2.
We decomposed the two dimensions, and consider the initial
set x(0) ∈ [0.9, 1.1], y(0) ∈ [0.9, 1.1]. We choose the stepsize
δ = 0.001, the TM order 4, M = 200 and σ = 0.02.
The decomposed dynamics is ẋ = x + 2uy + 0.1u2y , ẏ =
−6ux − 10y − 0.1u2x wherein ux, uy are the replacements of
x and y respectively. Their ranges in each step denotes the
value ranges of x, y there and define a hybridization domain.
By our method, the first hybridization domain is computed as
Uq1 : ux ∈ [0.899662, 1.103422]∧uy ∈ [0.883274, 1.101697].
After 1000 steps, the hybridization domain Uq1000 is ux ∈
[1.001221, 1.230034] ∧ uy ∈ [−0.768629,−0.623624]. When
we reach q4000, the hybridization domain is computed as

Fig. 5. TM flowpipes for the running example in the time horizon [0, 5].

ux ∈ [0.520089, 0.662552] ∧ uy ∈ [−0.410163,−0.322654].
In Figure 5, we show all computed flowpipe overapproxima-
tions in the time horizon [0, 5].

We can see that although the decomposed dynamics for x
shows instability without the input uy (since the eigenvalue
is 1 which is positive), it is actually stabilized by uy during
hybridization, since the original system is stable and uy is a
piecewise interval overapproximation of y.

V. EXPERIMENTS

We implemented a prototype tool based on the computation
library of Flow*. The performance of our decomposition-
hybridization method is evaluated by both offline and online
flowpipe construction.

A. Offline flowpipe construction

We construct 14 challenging tests based on 10 benchmarks
for evaluating both efficiency and accuracy of the methods to
compute flowpipe overapproximations for nonlinear systems.
The efficiency of each test is reflected by the running time in
seconds, while the accuracy is assessed by checking whether
the overapproximation set at a time T exceeds a specified
target set or not. If it does not, then the accuracy requirement
is fulfilled. Otherwise the result is too coarse.
Experimental setting. The experiments are designed as fol-
lows. For each test, we specify an initial set as well as a
target set with a time T to a system model. We try to prove,
using each tool, that all reachable set at time T is contained in
the target set, that is the property ∀~x0 ∈ X0.(ϕf (~x0, T ) ∈ S)
wherein X0 is the initial set and S is the target set. Notice that
the set S could be a real-time property that some event must
happen at T for all system executions. In our tests, T is set to
be the end of the time horizon, since overestimation eventually
accumulates during validated integration for nonlinear ODEs
(see [29]), and it is reasonable to assess the overall accuracy
just at the last flowpipe. The refinement iteration number λ is
bounded by 50 in all tests. Our platform is a laptop equipped
with an Intel i7 CPU and 16GB memory. A summary of the



experimental results is given by Table II. More explanations
are given as follows.

The tools considered by us are Flow*, VNODE-LP, CAPD,
dReach, NLTOOLBOX, C2E2 and HyCreate. The comparison
with a more user-friendly version of CORA will be our future
work.
Tuning the setting for a tool. We briefly outline the process
of obtaining parameter settings for each tool we compared
against. For each benchmark instance and tool, we attempt to
prove the given property with the computationally cheapest
setup for the tool. If this fails, we consider more expensive
settings of the parameter values by trial and error until
either (a) the property is proved or (b) the tool does not
terminate in 1 hour. If no successful setting can be found
in this manner, we subdivide the initial set into D intervals
along each system dimension. Such a subdivision simplifies
the reachability problem. We repeat the parameter selection
process, attempting to prove the reachability for each piece.
In Table II, a Dmin cell gives the subdivision size and also
denotes that the tool fails to prove the reachability property
on a D-subdivision of the initial set for any 1 ≤ D < Dmin.

We were unable to use dReach, NLTOOLBOX, C2E2 or
HyCreate to successfully tackle any of our benchmarks within
the given running time limit of 1 hour. Since dReach and C2E2
are built on top of the CAPD solver, we directly compare
our method with CAPD. In all of the tests, we let VNODE-
LP automatically select stepsizes and orders, and let CAPD
automatically select stepsizes with fixed order 20 which gives
the best numerical stability in our experience.

The system models along with the definitions of initial and
target sets are described as below.
Laub-Loomis model. The Laub-Loomis model described
in [25], [38] has 7 variables, the dynamics is given by

ẋ1 = 1.4x3 − 0.9x1
ẋ2 = 2.5x5 − 1.5x2
ẋ3 = 0.6x7 − 0.8x2x3
ẋ4 = 2− 1.3x3x4
ẋ5 = 0.7x1 − x4x5
ẋ6 = 0.3x1 − 3.1x6
ẋ7 = 1.8x6 − 1.5x2x7

We consider the initial set that is a box of width W0 (along all
dimensions) centered at x1(0)=1.2, x2(0)=1.05, x3(0)=1.5,
x4(0)=2.4, x5(0)=1, x6(0)=0.1, x7(0)=0.45, as suggested
in [38]. We define target sets S0.02 : x5 ∈ [0.265, 0.275]∧x7 ∈
[0.316, 0.326], S0.1 : x5 ∈ [0.255, 0.285]∧x7 ∈ [0.305, 0.335]
and S0.2 : x5 ∈ [0.23, 0.31] ∧ x7 ∈ [0.29, 0.35] for
W0=0.02, 0.1, 0.2 respectively. We require that the computed
overapproximation set at t = 10 should be entirely contained
in the target set. The system is decomposed as {x1, x4, x5},
{x2, x3, x6, x7} in all tests. For W0 = 0.2, we overlap the
flowpipes computed by our method and Flow* in Figure 6. It
can be seen that the result generated by the decomposition-
hybridization method is only slightly larger, but the time cost
is much less.

Flow*

decomposition

target set

Fig. 6. Flowpipes for the Laub-
Loomis model (W0 = 0.2). Nu-
merical simulations are in black.

Flow*

decomposition

target set

Fig. 7. Flowpipes for the genetic
model (W0 = 0.04). Numerical
simulations are in black.

Genetic model. We consider the genetic model described
in [39]. It is a 9-dimensional system. We adapt some of the
constant parameters and derive the dynamics

ẋ1 = 50x3 − 0.1x1x6
ẋ2 = 100x4 − x1x2
ẋ3 = 0.1x1x6 − 50x3
ẋ4 =x2x6 − 100x4
ẋ5 = 5x3 + 0.5x1 − 10x5
ẋ6 = 50x5 + 50x3 + 100x4 − x6 · (0.1x1 + x2 + 2x8 + 1)
ẋ7 = 50x4 + 0.01x2 − 0.5x7
ẋ8 = 0.5x7 − 2x6x8 + x9 − 0.2x8
ẋ9 = 2x6x8 − x9

The initial set under our consideration is a box of width
W0 centered at x1(0)=1, x2(0)=1.3, x3(0)=0.1, x4(0)=0.1,
x5(0)=0.1, x6(0)=1.3, x7(0)=2.5, x8(0)=0.6, x9(0)=1.3.
We consider W0=0.01, 0.02 and 0.04. We define the target
sets S0.01 : x4 ∈ [0.0089, 0.0102]∧x6 ∈ [0.676, 0.717], S0.02 :
x4 ∈ [0.0081, 0.0111] ∧ x6 ∈ [0.653, 0.740], S0.04 : x4 ∈
[0.0055, 0.0135] ∧ x6 ∈ [0.590, 0.805] corresponding to the
three values of W0 from small to large respectively. The sys-
tem is decomposed as {x1, x3, x5}, {x2, x4, x7}, {x6, x8, x9}.
For W0 = 0.04, we overlap the flowpipes computed by the
decomposition-hybridization method and Flow* in Figure 7.
Similar to the previous benchmark, the result of our method
is only slightly larger but the time cost is much less.
Coupling of cells. We consider the model of N coupled
cells studied by Wolf and Heinrich [40]. The dynamics of
the ith cell is defined by a 2-dimensional ODE ẋi=4−xiy2i ,
ẏi=xiy

2
i−3.84yi−3.2·(xi−C) such that C is the extracellular

concentration of the coupling metabolite whose derivative
is given by Ċ= 0.64

N · (
∑N
i=1 yi−N · C). The whole system

consists of 2N + 1 state variables if there are N cells, and
the dependency graph of the variables is fully connected:
this means all pairs of variables are connected in the graph.
For 1 ≤ i ≤ N , we define the initial condition for the ith
component as xi(0) ∈ [4.98 + 0.01i, 5 + 0.01i], yi(0) ∈
[0.88 + 0.01i, 0.9 + 0.01i], such that all components have
different behaviors for any scale, and the first component has
different behaviors in different scales. We define the target
sets S8 : x1 ∈ [4.08, 4.24] ∧ y1 ∈ [1.06, 1.13], S10 : x1 ∈
[4.09, 4.25] ∧ y1 ∈ [1.07, 1.14], S12 : x1 ∈ [4.10, 4.26] ∧ y1 ∈



TABLE II
EXPERIMENTAL RESULTS. LEGEND - VAR: # OF VARIABLES, TIME: TIME COST IN SECONDS TO PROVE THE REACHABILITY PROPERTY, δ: STEPSIZE, k:

TM ORDER, σ: BLOATING DISTANCE (SECTION IV), M: QUEUE SIZE LIMIT (SECTION III), T.O.: DOES NOT TERMINATE IN 1 HOUR.

CAPD VNODE-LP Flow* decomposition-hybridization
# benchmark var T Dmin time Dmin time δ k time δ k σ M time
1 Laub-Loomis (W0 = 0.02) 7 10 4 1401 3 67 0.02 4 32 0.02 4 0.1 100 18
2 Laub-Loomis (W0 = 0.1) 7 10 10 T.O. 6 T.O. 0.02 4 113 0.02 4 0.1 150 31
3 Laub-Loomis (W0 = 0.2) 7 10 20 Fail 10 Fail 0.02 4 557 0.02 4 0.1 200 87
4 genetic (W0 = 0.01) 9 2 3 T.O. 2 131 0.002 4 162 0.002 4 0.15 80 97
5 genetic (W0 = 0.02) 9 2 4 T.O. 3 T.O. 0.002 4 216 0.002 4 0.15 80 102
6 genetic (W0 = 0.04) 9 2 9 T.O. 5 T.O. 0.002 4 560 0.002 4 0.15 80 133
7 coupling of cells (N = 8) 17 3 10 Fail 4 T.O. 0.001 5 T.O. 0.01 4 0.1 300 389
8 coupling of cells (N = 10) 21 3 10 Fail 4 T.O. 0.001 5 T.O. 0.01 4 0.1 300 598
9 coupling of cells (N = 12) 25 3 10 Fail 4 T.O. 0.001 5 T.O. 0.01 4 0.1 300 1053
10 coupling of cells (N = 14) 29 3 10 Fail 4 T.O. 0.001 5 T.O. 0.01 4 0.05 300 1775
11 coupled oscillators (N = 3) 15 3 10 Fail 4 T.O. 0.003 4 295 0.01 4 0.05 100 117
12 coupled oscillators (N = 4) 20 3 10 Fail 5 T.O. 0.001 6 Fail 0.01 4 0.05 150 195
13 coupled oscillators (N = 5) 25 3 10 Fail 5 T.O. 0.001 6 Fail 0.01 4 0.05 150 326
14 coupled oscillators (N = 6) 30 3 10 Fail 5 T.O. 0.001 6 Fail 0.01 4 0.05 150 515

(a) Projection in the x1-y1 plane. (b) Projection in the x1-C plane.

Fig. 8. Flowpipes of the coupling cells (N = 14). Red box denotes the target
set. Numerical simulations are in black.

[1.08, 1.15], S14 : x1 ∈ [4.11, 4.27] ∧ y1 ∈ [1.09, 1.16] for
N = 8, 10, 12, 14 respectively. Projections of the flowpipe
overapproximations for N = 14 are shown in Figure 8. In
order to make Flow* complete the computation, we have to
use the stepsize 0.001 and TM order 5, but it costs more than
1 hour in each test.
Coupled nonidentical oscillators. Another scalable bench-
mark is the coupled nonidentical oscillator studied in [27].
The model consists N oscillators each of which has 5 state
variables after our polynomialization, Ẋi = 0.1Ui − 3Xi +
10
N

∑N
j=1 Vj , Ẏi = 10Xi − 2.2Yi, Żi = 10Yi − 1.5Zi,

V̇i = 2Xi − 20Vi, U̇i = −5U2
i Z

4
i (10Yi − 1.5Zi). No-

tice that the model is composed in a different way from
the previous case study. For 1 ≤ i ≤ N , the initial set
of the ith component is given by Xi(0) ∈ [−0.003 +
0.002i,−0.001 + 0.002i], Yi(0) ∈ [0.197 + 0.002i, 0.199 +
0.002i], Zi(0) ∈ [0.997 + 0.002i, 0.999 + 0.002i], Vi(0) ∈
[−0.003 + 0.002i,−0.001 + 0.002i], Ui(0) ∈ [0.497 +
0.002i, 0.499 + 0.002i]. Then the components in a scale
do not have the same behavior, and the first component
behaves differently in different scales. We define the target
set S3 : Y1 ∈ [0.1395, 0.1425] ∧ Z1 ∈ [0.952, 0.970],
S4 : Y1 ∈ [0.1395, 0.1425] ∧ Z1 ∈ [0.951, 0.969], S5 :
Y1 ∈ [0.1395, 0.1425] ∧ Z1 ∈ [0.950, 0.968], S6 : Y1 ∈
[0.1395, 0.1425] ∧ Z1 ∈ [0.949, 0.967] for N = 3, 4, 5, 6
respectively. Projections of the flowpipe overapproximations

(a) Projection in the Y1-Z1 plane. (b) Projection in the Y5-Z5 plane.

Fig. 9. Flowpipes of the coupled nonidentical oscillators (N = 6). Red box
denotes the target set. Numerical simulations are in black.

for N = 6 are shown in Figure 9. Flow* can prove the safety
for N = 3 with a longer running time but fails in the other
tests.

B. Online Flowpipe Construction

We repeat the experiments over the benchmarks in Ta-
ble II using an “online” setting for real-time applications. We
compute flowpipes for a small time horizon T < 1 second
from an initial set of states estimated from current sensor
measurements. We use an initial set rather than a single initial
state to consider uncertainties from the sensor measurement
and state estimation.

We first motivate the choice of a real time horizon. Each
model is based on varying units of time. For instance, for the
Laub-Loomis benchmark the time unit is t = 1 minute. There-
fore, we use a time horizon T = 0.01 (minute) corresponding
to RT = 0.6 seconds in real time. For models where the
time unit is 1 hour, we set T = 0.0002 (hour) corresponding
to RT = 0.72 seconds in real time. For a feasible online
verification, we require that the flowpipe be constructed within
a time tf < RT, so that the system behavior for a time horizon
RT can be estimated in real time. The experimental results for
the online verification are shown in Table III. The real-time
horizons for each benchmark are reported in Table III under
column RT.

Next, we describe the experimental methodology used. We



compare our approach against the tools CAPD, VNODE-LP,
and Flow*. The desired accuracy of the flowpipe construction
affects the time taken to construct it. Therefore, for each test,
we adjust the settings so that the tools generate overapprox-
imation sets of comparable accuracy at the end of the time
horizon, and then compare the computational time required.
The accuracy of an overapproximation is evaluated by its
width, which is the maximum width of a bounding box in all
dimensions. We say that two overapproximations are “similar”
(or “comparable”), if their widths are within 10% of each
other. We consider the accuracy of Flow* as the baseline,
and adjust the subdivision sizes for CAPD and VNODE-LP
to provide comparable widths while minimizing their running
time. Furthermore, in order to make a more direct comparison
between Flow* and our method, we use the same parameter
settings for each benchmark.

The decomposition technique presented in this paper is
clearly more efficient: our method is able to compute flowpipes
within time that is smaller than the real time for all but
two of the benchmarks. The original Flow* tool without
decomposition takes much longer for comparable accuracy.
On the other hand, CAPD and VNODE-LP could not produce
any comparably accurate result within 200 seconds for most
of the tests.
Vehicle platoon. We apply the decomposition-hybridization
method to compute flowpipes for the vehicle platoon model
in an online fashion. The initial position of the ith car is given
by xi ∈ [ci, ci + 2], yi ∈ [−0.1, 0.1] for all i ∈ {1, 2, 3}. The
initial velocities of the first and third car are in the range
[20, 21] m/s, whereas the second car is initially moving at
[c4, c4 + 1] m/s. In the beginning, the steering angles for all
cars are in the range [−5◦, 5◦]. We consider 100 randomly
generated values for c1, c2, c3, c4 according to c1 ∈ [0, 5],
c2 ∈ [12, 17], c3 ∈ [24, 29] and c4 ∈ [19, 21], respectively. We
evaluate the maximum and minimum time cost of computing
the flowpipes for 0.99 < 1 second in real time. For this time
horizon, we wish to verify that the distance in the x-dimension
between two consecutive cars is safe: x2−x1 > 2, x3−x2 > 2.
We compare our method with Flow* based on the stepsize 0.03
and TM order 4. The decomposition-hybridization method re-
quires computation time inside the range [0.68, 0.81] seconds.
However, the original Flow* requires computation time in the
range [6.2, 8.2] seconds, about 10 times slower. Figure 10 plots
the positions of the cars for two instances.

VI. CONCLUSION AND FUTURE WORK

Thus, we have described an approach to decompose a large
monolithic system into smaller ones through hybridization. In
doing so, we also provide a solution to tackle the associated
problem of dealing with error accumulation. Our experimental
evaluation compares our implementation of the decomposition
approach with related tools to demonstrate superior perfor-
mance in terms of time for offline and online verification. In
particular, we demonstrate successful treatment of nonlinear
systems with up to 30 state variables. Future work will

Flow*

decomposition

(a) c1=5, c2=12, c3=24, c4=19

Flow*

decomposition

(b) c1=0, c2=17, c3=24, c4=21

Fig. 10. Flowpipes computed by Flow* and our method for the vehicle platoon
model. Numerical simulations are in black, and unsafe set is in red.

consider better decomposition schemes and the application of
this idea to handle larger and more challenging benchmarks.
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