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Abstract—This paper presents a case study of a data driven
approach to verification and parameter synthesis for artificial
pancreas control systems which deliver insulin to patients with
type-1 diabetes (T1D). We present a new approach to tuning pa-
rameters using non-deterministic data-driven models for human
insulin-glucose regulation, which are inferred from patient data
using multiple time scales. Taking these equations as constraints,
we model the behavior of the entire closed loop system over a
five-hour time horizon cast as an optimization problem. Next, we
demonstrate this approach using patient data gathered from a
previously conducted outpatient clinical study involving insulin
and glucose data collected from 50 patients with T1D and 40
nights per patient. We use the resulting data-driven models to
predict how the patients would perform under a PID-based closed
loop system which forms the basis for the first commercially
available hybrid closed loop device. Futhermore, we provide a
re-tuning methodology which can potentially improve control for
82% of patients, based on the results of an exhaustive reachability
analysis. Our results demonstrate that simple nondeterministic
models allow us to efficiently tune key controller parameters, thus
paving the way for interesting clinical translational applications.

I. INTRODUCTION

Type-1 Diabetes (T1D), a condition affecting millions of
individuals, is treated by external delivery of insulin to keep
the blood glucose levels in an acceptable range. However, the
insulin dosing decision is currently manual, placing a high
burden on the patient. Artificial pancreas (AP) controllers that
automatically adjust insulin delivery to maintain blood glucose
levels within acceptable ranges promise to improve quality of
life and reduce potential complications [6], [10]. However, the
AP is a safety-critical system with excess insulin risking the
patient to coma or even death.

The control algorithms used in the artificial pancreas rely
on parameters such as gains and thresholds which affect the
safety and performance of the closed-loop system. At the same
time, patients with T1D exhibit a large range of variations in
relevant physiological characteristics such as gender, weight,
and insulin sensitivity, all of which affect their response to
blood glucose levels. Thus, a parameter setting that is safe
for person A may be dangerous for person B. Personalization
requires the careful tuning of parameters to ensure safety and
optimal control performance for a given patient.

Many AP control algorithms have been proposed, at various
stages of clinical trials [28]. Recently, the US FDA approved
the Medtronic 670G system that uses a PID-based control
algorithm [19], [23], [45], [48]. However, the tuning process

presents the greatest challenge for translating the artificial
pancreas from the laboratory to the general market. Currently,
the tuning practice is performed manually by clinicians using
a rule of thumb (eg., divide the person’s daily insulin dose
by 135). Unfortunately, despite this guideline, physicians still
spend months manually re-tuning the controller in a guess-
and-check method. This process is a large time burden on the
physician and patient, and leaves significant room for human
error. While there is ongoing work to determine efficacy of
one control scheme over another, to our knowledge, very little
work has been done to verify safety of parameter settings on
a patient-by-patient basis [5], [6], [9], [30], [46].

In this work, we present an approach that integrates data-
driven modeling with reachability analysis to analyze the
efficacy of the tuning procedure for the PID-based AP con-
troller proposed by Steil et al [45], [48], [50], which forms
the basis for the commercial product 1. Using data from an
unrelated outpatient study of a different AP controller proposed
by Cameron et al [8], [34], we construct linearized data-
driven models that predict a range of possible glucose values
accounting for the modeling and measurement uncertainties.
Furthermore, rather than use a single model, we combine
the outputs of multiple models that use different parts of the
patient’s historical blood glucose and insulin values. Next, we
perform reachability analysis on the resulting models in closed
loop with the PID control scheme taken from the literature.
This allows us to try various parameter values for the controller
against the data driven models. Thus, we derive a new, concise,
and patient-specific parameter tuning methodology for the PID
controller proposed by Steil et al. Our approach predicts that
the new methodology will significantly improve the overall
control for 83% of the patients in the dataset.

Contributions: (a) We present a data-driven modeling and
verification framework applied to model the artificial pancreas,
and perform worst-case analysis on closed loop controllers.
Our approach reproduces interesting trends in controller effi-
cacy across patients that have been discussed in the clinical
literature. (b) We use the results to quantitatively predict how
the controller would behave on existing patients. (c) Finally,
we use the results of our analysis to derive useful rules of
thumb which seem to provide improved safety and control

1However, the exact relationship between the academic versions and the
commercially approved product is not known to us.
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Fig. 1: Overview of the key components of an artificial
pancreas control system. b(t): external insulin, u(t): insulin
infused, G(t): BG level, n(t): measurement error, Gs(t):
sensed glucose level, uc(t): insulin infusion commanded.

performance. These rules have the potential for translating to
clinical applications.

II. BACKGROUND AND MOTIVATION

In this section, we will briefly summarize the relevant back-
ground on artificial pancreas control systems and motivate the
need for a personalized, data-driven approach to verification
and parameter synthesis. Further details are available from a
variety of surveys and textbooks [10], [11], [47].

Artificial Pancreas: The artificial pancreas (AP) controller
regulates the external delivery of insulin to people with T1D.
Insulin is a hormone naturally secreted by the pancreas in
people without T1D, and by various means lowers the blood
glucose (BG) levels. Figure 1 shows a simplified closed
loop diagram for the artificial pancreas. The system delivers
insulin through a pump that can be commanded by the control
algorithm to deliver varying amounts of insulin over time. BG
levels are sensed using a continuous glucose monitor (CGM).
Together, the pump and the CGM, along with possibly other
inputs such as (impending) meal and exercise announcements,
form a closed loop that seeks to maintain the patient’s BG
levels inside a euglycemic range of [70, 180] mg/dL. If the
BG levels fall below 70 mg/dL, the resulting condition is
called hypoglycemia. This is a dangerous condition that can
lead to loss of consciousness, coma or even death. On the
other hand, levels above 180 mg/dL are called hyperglycemia.
They pose longer term dangers such as damage to organs such
as kidneys, heart, eyes, nerves and peripheral blood vessels.
Extremely high levels, ≥ 300 mg/dL, lead to a condition called
ketacidosis, which requires immediate emergency care.

Numerous AP algorithms have been proposed, and are
under various stages of clinical evaluation [28]. Major cate-
gories include PID control algorithms [45], [48]–[50], model-
predictive control (MPC) algorithms [4], and fuzzy rule-
based controllers [3], [29]. The systems are further classified
as night-time only versus full 24 hour control; insulin-only
control algorithms versus control algorithms that combine
insulin with the counter-regulatory hormone glucagon [16] and
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Fig. 2: Overview of the proposed approach to data driven
modeling and parameter synthesis for tuning controllers.

finally algorithms that vary in how much human inputs they
assume – these range from hybrid closed loops that augment
manual control [8], [23], [50] to a fully automated closed
loop [7], [18], [24].

A. Insulin-Glucose Regulation Models

A large variety of models have been proposed for mod-
eling how blood glucose levels respond to insulin and meal
inputs [14], [26], [32], [35], [36], [39], [51]. In particular, the
high-fidelity UVA-Padova model, relies on system of ODEs
with 10 variables and nearly 40 patient parameters [36]. This
model has been approved for pre-clinical trials by the US
FDA [43]. Parameter sets representing virtual patients are
available based on measurements from real patients [13].
However, for data driven approaches, these models suffer from
two drawbacks: (a) the state variables of the model are not di-
rectly observable without highly intrusive measurements [12];
and (b) the parameters are not uniquely identifiable from the
available data which consists of BG levels and insulin.

In contrast, we use data driven models that predict future
glucose values as a function of past glucose and insulin values.
This data-driven approach provides an alternative framework
for inferring governing glucose-insulin dynamics using data
that physicians already have on-hand for their patients with
diabetes. Such data-driven modeling approaches are common
in many fields including biological systems, spatio-temporal
systems, along with the simpler temporal systems, and hence
provide a robust framework for our work [31], [37], [38],
[44]. Ghorbani et al propose data driven models using ideas
from fractional calculus and derive control strategies from their
models [20]. In contrast, we propose an approach that uses
linear but non-deterministic models: i.e., the models predict a
range of possible future BG values rather than a single value.
Such a model also accounts for uncertainties that include
sensor noise, modeling errors and unmodeled externalities.



B. Proposed Approach

Figure 2 shows the overall flow of the proposed approach.
Starting from “longitudinal data” from a single patient over a
suitably long period of time that includes insulin and CGM
sensor readings, we first construct a set of mathematical mod-
els by partitioning the data into bins, wherein each bin yields
a set of models. The resulting models are non-deterministic
in nature: i.e., they predict a range of possible BG values
rather than a single point prediction. Next, we analyze these
predictive models and a control algorithm to close the loop
to predict all possible reachable sets of states over a given
time horizon. This process allows us to “tune” parameters
by systematically comparing how different parameter values
behave with respect to these models. Finally, we split patients
into test and training groups, and identify and test a re-tuning
rule based on our models and individual physiology following
a k-fold cross-validation protocol.The proposed modeling and
synthesis approach has four aspects:
Nondeterministic Models: we construct models that predict
intervals rather than points. These intervals seek to account for
the noisy BG measurements, modeling errors and the effects
of unknown externalities.
Multi Timescale Models: we will consider the combination
of multiple models each with a different time scale. This
is natural in many physiological applications wherein the
control inputs (drugs) have a longer term influence on the
physiological quantity predicted.
From Models to Constraints: we will treat each model as
providing a constraint on a future BG value. We will combine
these models naturally inside an optimization formulation to
design reachability analysis algorithms that can predict the
future range of BG values under a given control algorithm.
Specifically, for the PID controller with saturation and anti-
windup compensation proposed by Steil et al [19], [45], [48],
[50], the optimization problem reduces to an integer linear
program that can be efficiently solved by modern solvers.
Improved Tuning Methodology: we split patients into training
and test sets, and combine our models and reachability results
with clustering and regression analysis to develop a method-
ology for identifying improved parameter settings. We follow
best-practices of statistical analysis and perform k-fold cross
validation.

III. DATA-DRIVEN MODELING

In this section, we describe and justify our approach to data
driven modeling.

A. Patient Data

We obtained data from a home trial of a predictive pump
shutoff system for n = 50 anonymous patients with T1D.
For each patient, the dataset contains 40 overnight sessions
for each patient [8], [34]. For each nightly session, we obtain
CGM readings at one minute intervals along with a detailed
log of the insulin delivered through the night via the pump. The
data also records adverse hypoglycemia events that required
treatment using “rescue carbohydrates”. Such nights were
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Fig. 3: The overall model structure for a model that predicts
the value of glucose t + ∆G time into the future, using the
past history of insulin and glucose inputs.

omitted from consideration for our modeling purposes, since
details on the amount of carbohydrates are not available. The
dataset does not include meals, exercise, or insulin history
prior to the start of the recorded nightly sessions, nor is
daytime data available. In order to avoid confounding our
analysis with residual effects of meals, or exercise, which
can persist for multiple hours, we remove the first 180min
of nightly data. This allows us to deduce base glucose-insulin
dynamics and to calculate insulin-on-board, as explained in
the following subsection, [III-B].

B. Model Structure

Figure 3 shows the desired overall structure of the model.
The inputs to the model at time t include the history of insulin
and glucose levels of the patient, and the output includes a
future predicted glucose level at some time t+ ∆G. However,
a key problem lies in understanding what portion of the history
is relevant to the model as a whole. Doing so helps us avoid
overfitting to the data and also control for unknown patient
activity such as meal and exercise.
Insulin-On-Board: Insulin is typically administered under the
skin and thereafter, is absorbed into the blood and transported
to the tissues where it affects glucose uptake. Additionally,
insulin has an action profile that includes a 20 minute delay
before beginning action, a peak action time of 75 minutes
and a duration of insulin action of 180 minutes. Thus, to
understand the impact of past insulin, we need to convolve
the insulin infused with the assumed action profile to obtain a
quantity called the (active) insulin on board (IOB). Calculating
the IOB requires us to understand the action profile of insulin
on a particular patient, which can be quite intrusive [12].
Therefore, the IOB is calculated on a “typical” (somewhat
idealized) population level action profile curve. For the pur-
poses of this paper, we will use the calculation provided in the
open source artificial pancreas system [41]. Let t be the current
time, δ be a small time duration (taken to be one minute in our
calculations), and let uI(t− kδ) represent the insulin infused
in the time interval (t− (k − 1)δ, t− kδ]. The IOB at time t
(denoted I(t)) is calculated using the formula∑kp

k=1 uI(t− kδ)(1− 7.4× 10−5k2δ2 + 3.75× 10−4kδ)

+
∑kd

k=kp+1 uI(t− kδ)(0.56− 0.011kδ + 5.3× 10−5k2δ2)
(1)

Here kpδ is the peak action time and kdδ is the duration
of action, taken to be 75 and 180 minutes in our calculation.
Note that the value of I(t) can be calculated for any t wherein



we have 180 minutes of past insulin data. Thus, our models
consider I(t) instead of the raw insulin input.
Partitioning the Dataset: First, we partition the available
dataset into bins wherein the model construction and the
resulting analysis are performed for the data in each bin.
Such a partitioning allows us to use simpler models inside
each bin, and mitigates against physiological factors that vary
over time and can influence the resulting glucose values. We
adopt a simple binning strategy where each nightly session
is partitioned into time windows of T minutes of data. We
consider T ∈ {120, 180, 300}minutes, deriving models for all
three choices of bin sizes.

Next, for each bin, we consider multiple models, each of
which is a linear ARMAX-based model that predicts a future
range of BG levels using a carefully selected part of the part
glucose and insulin (IOB) data.
ARMAX Models: Our approach is based on a well known
linear modeling approach, auto-regressive moving average
state-space models. Given a discrete-time process with past
states x(t), x(t − 1), . . . , and inputs u(t), u(t − 1), . . ., an
ARMAX model has the form:

x(t+ 1) =

p−1∑
i=0

aix(t− i) +

q−1∑
j=0

biu(t− j) + e(t) ,

wherein a0, . . . , ap−1 represent the coefficients of the “auto-
regressive” part of the model, b0, . . . , bq−1 represent the
“moving average” part of the model and e(t) ' 0 is the
prediction error. ARMAX models are a well studied approach
to data driven modeling for process data, with efficient algo-
rithms for finding optimal models [27], [40]. Furthermore, the
theory behind ARMAX model allows a systematic approach
to selecting an optimal history size for (p, q) using criteria
such as the Akaike Information Criterion (AIC) and Partial
Autocorrelation (PACF) [2], [22], [33]. Our approach will use
ARMAX-based models of the form

G(t+ ∆G) ∈ a0G(t) + a1G(t−∆G) + b I(t−∆I) + [L,U ] .

For our purposes, we have extended the ARMAX frame-
work to incorporate two time series, glucose and insulin. Our
model consists of a linear combination of historical glucose
data (the auto-regressive ARMAX term), historical insulin
data (akin to the moving-average ARMAX terms), plus an
uncertainty interval [L,U ]. Such a model maps predicts an
interval of possible values rather than a single value. We use
a single value of IOB input in our model since the IOB already
represents an aggregation of past insulin values. We identify
a parsimonious model order of p = 2 by computing the
partial autocorrelation, PACF, value for various combinations
of ∆G,∆I across all patients and trial nights. For all cases
∆G = 5, 30, 45, 60, we found the first two lags to be the
strongest predictors of future glucose values (see Table I).

Additionally, we incorporate the following constraints, using
known facts from the physiology of glucose and insulin [10]:

1) The future value of glucose is positively correlated with
the past values. i.e, a0, a1 > 0.

Rank Mode lag number for ∆G (percent occurrence)
5min 30min 45min 60min

1 1 (70%) 1 (87%) 1 (83%) 1 (100%)
2 2 (73%) 2 (80%) 2 (70%) 2 (77%)
3 2 (13%) 10 (20%) 2 (27%) 4 (30%)
4 60 (10%) 4 (23%) 4 (27%) 4 (40%)
5 53 (10%) 6 (20%) 4 (33%) 3 (43%)

TABLE I: Table showing top 5 values for j for the correlation
of G(t − j∆G) with G(t) over the dataset. Selecting p = 2
yields a strong PACF value for predicting future glucose values
in over 70% of all bins, whereas there is a drastic drop in
significance of p ≥ 3.

2) The model is close to being marginally stable, though not
precisely so. i.e, a0 +a1 ' 1. This is enforced by adding
a penalty term (a0+a1−1)2 to the model fitting process.

3) Insulin has a inhibitory effect on the value of glucose.
b < 0.

Model Fitting: For fixed values of the delays ∆G,∆I , the
model coefficients a0, a1, b are computed as the optimal solu-
tion to the following optimization problem:

min
∑
||e(t)||22 + λ(a0 + a1 − 1)2

s.t. a0 > 0, a1 > 0, b < 0

wherein e(t) is the residual at time t computed as

e(t) = G(t+ ∆G)− a0G(t)− a1G(t−∆G)− bI(t−∆I) ,

and λ ∈ (0, 1) is a regularization factor. This is a quadratic
optimization problem that can be solved using widely available
off-the-shelf software.

Confidence Intervals: Once a model is fit for the given
data and values of ∆G,∆I , we collect the values of the
residuals e(t) for each data point at time t. The empirical
range of residuals [mint e(t),maxt e(t)] estimates all the
observed residual values. We compute a 99% confidence
interval [L,U ] over the distribution of the residuals by first
computing the mean µ and standard deviation σ. We compute
[L,U ] : [µ − 4σ, µ + 4σ]. Using the Chebyshev-Cantelli
inequality, we note that P(|X − µ| ≥ 4σ) ≤ 1

16 . However, in
practice we observe that the residuals fit a tigher-than-Gaussian
distribution and thus, the 4σ interval chosen subsumes the
empirical range of residual values.

Composite Model with Multiple Time Scales: Next, we
address the question of choosing the time delays ∆G for
BG and ∆I for the IOB term. Once again, the choice may
be dictated by a model selection criterion such as the AIC.
However, an alternative approach is to allow multiple possible
values for (∆G,∆I) informed by the commonly assumed
durations for onset of insulin action, peak action and total
duration of action, leading to multiple models that are held to
be simultaneously correct. For example, one possible set of
combinations could include

(∆G,∆I) ∈ {(30, 60)(45, 45), (60, 30), (75, 15), (90, 0)}
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Fig. 4: Figure illustrating the prediction of a composite model
using three different ARMAX models with different combina-
tions of (∆G,∆I) values obtained as the intersection of the
individual interval ranges predicted by each model.

yielding 5 different models that predict the future values of
BG based on selecting different parts of the historical data.
The interval predicted by the composite model at some time
point t is taken to be the intersection of the intervals for each
of the individual models, as illustrated by Figure 4.

However, there is a drawback in doing so. Since each model
predicts an interval that has 99% confidence, the probability
that the BG value may lie outside the intersection of the
predicted intervals will be larger than 1%. Using Boole’s
inequality, we note that a composite model made up of 5
individual models with 99% confidence will yield an interval
with at least 95% confidence.

Thus, the composition of multiple models trades off finding
a smaller interval but at the loss of confidence that the
predicted value will lie within the composite model’s interval.
Since the regression process allows us to choose the interval
to achieve a desired confidence, it is often desirable to choose
this confidence and the number of models so that the resulting
composite model has at least 95% confidence.

Finally, we note that in theory, the models may be inconsis-
tent i.e, the intersection of the intervals predicted by the differ-
ent models may be empty, since we ascribe a small probability
that the actual value may lie outside the predicted interval.
We note that such inconsistency has not been observed on the
models inferred using the currently available patient data.

Illustrative Example: As an illustrative example, the follow-
ing models were obtained for a single bin consisting of 6 hours
of data for patient ID 1 from the very first overnight session.

G(t+ 5) ∈ G(t) + [−10, 10]

G(t+ 30) ∈ 0.29G(t− 30) + 0.81G(t) . . .

− 10.98I(t− 30) + [−41.50, 39.86]

G(t+ 45) ∈ 0.46G(t− 45) + 0.69G(t) . . .

− 15.86I(t− 45) + [−39.77, 38.57]

G(t+ 60) ∈ 0.58G(t− 60) + 0.62G(t) . . .

− 16.08I(t− 60) + [−28.22, 27.76]

G(t+ 120) ∈ 0.37G(t− 120) + 0.78G(t) . . .

− 17.12I(t− 120) + [−18.89, 18.71]

Ie(t) = Ie(t− 5) + (G(t)−G0) ← integral error

D(t) =
G(t)−G(t−5)

5
← derivative

Ip(t) = K0id(t− 5) +K1Ip(t− 5) +K2Ip(t− 10)
← insulin on board feedback

r(t) =

(
Kp(G(t)−G0) +KiIe(t)+

KdD(t)− γIp(t)

)
← raw control output

uc(t) =


0 r(t) ≤ 0

r(t) 0 ≤ r(t) ≤ imax

imax r(t) ≥ imax

← saturated control output

Fig. 5: PID-based control with insulin feedback equations that
govern the insulin delivered to the patient uc(t) based on the
glucose input G(t). The control law is based on parameters
highlighted in blue. Brief explanations for each equation is
also shown.

Each model provides a constraint that predicts a glucose
range at a future time based on different parts of the past
history. The models can be used to provide a predicted range
over a time horizon. Figure 7 demonstrates the predicted
ranges over time against the observed value over a test data set
for patient ID 1 which was not used to fit the models used.

IV. REACHABILITY ANALYSIS

In this section, we discuss the use of the composite data-
driven models inferred in the previous section to establish
worst-case bounds over the range of BG values achieved by a
given closed loop controller.

A. PID-Based Control Law

We will first briefly describe the PID-based control algo-
rithm originally proposed by Steil et al [45], [48], [50]. This
control algorithm has been extensively validated by clinical
trials and is the basis of a commercially available closed-loop
system [23].

Figure 5 shows the equations that govern the calculation of
the current insulin input, uc(t), from the input glucose signal,
G(t). The controller is governed by parameters that include
PID gains Kp: the proportional gain, Ki: the integral gain
and Kd: the derivative gain. Other gains include the insulin
feedback term gain γ. The controller also uses a maximum
insulin delivery rate imax. Weinzimer et al propose a basic
rule of thumb for setting the gains using the daily insulin
requirement of the patient [50]. We will describe these rules
further in Section [V].

B. Reachability Analysis

Given a control law and the parameter values, we wish to
compute the maximum/minimum possible values of glucose
achieved by the data driven model under the action of the
closed loop controller over a time horizon t ∈ [0, T ]. Since the
each data-driven model looks back over the historical glucose
data for time ∆G and insulin-on-board data for time ∆I , we



need to define this history for the past time [−∆, 0) before
our analysis starts.
History Assumptions: We will make the assumption that the
historical values belong to some set “reasonable” range for the
glucose and insulin on board.

1) For all t < 0, G(t) ∈ [Gmin, Gmax] wherein Gmin =
70 mg/dL and Gmax = 180 mg/dL

2) For all t < 0, I(t) ∈ [Imin, Imax] wherein Imin = 0.5 U
and Imax = 4.0 U

As such, these assumptions capture an infinite set of possible
histories before t = 0, when the controller is turned on. The
reader may notice that we assume no violations are possible
in the “near past” before the controller starts. This assumption
allows us to ascribe any violations observed at times t � 0
as properties of the controller rather than (say) large insulin
overdoses delivered before the controller was switched on.
Reachability Analysis Encoding: We will now discuss how
to encode the reachability analysis. Let us assume that we have
k models M1, . . . ,Mk with Mi described by the ARMAX law
with delays (∆G,i,∆I,i) and confidence interval [`i, ui].

G(t+∆G,i) = a0,iG(t)+a1,iG(t−∆G,i)+biI(t−∆I,i)+[`i, ui] .

The verification is run over a time horizon T with the
control law run every ∆ = 5 minutes. We will assume that ∆
divides ∆G,i,∆I,i for i ∈ {1, . . . , k} and also ∆ divides T .
Let ∆G,max : max(∆G,i)

k
i=1 and ∆I,max = max(∆I,j)

k
j=1.

Figure 6 outlines the overall optimization setup by first in-
troducing the unknown variables and constraints that describe
a valid execution of the overall closed loop over the time
horizon T .

The goal of this optimization problem is to find the largest
possible value of BG at time T provided by any execution
that conforms to each of the models M1, . . . ,Mk, and wherein
the insulin inputs are generated according to the control law
shown in Figure 5. Additionally, we provide constraints that
link the IOB at time t with the past insulin infusion history,
and provide a means to encode the saturation of the raw insulin
term by imax and 0 in the PID law (Fig. 5 last equation).
Recursive IOB: The link between IOB and insulin inputs
is provided by (1). However, this requires a long history of
past insulin values. We replace this by an “infinite impulse
response” approximation provided by the equation

I(t) =
1.89I(t− 5)− 0.9I(t− 10)+

1
12 (uc(t)− 0.9uc(t− 5) + 0.002uc(t− 10))

. (2)

Note that the recursive version assumes that the value of uc
is changed at 5-minute intervals.
Encoding Saturation: Another important aspect is the sat-
uration of the raw feedback term r(t) in Fig 5, such that
uc(t) is clamped at 0 whenever r(t) ≤ 0 and uc(t) = imax

whenever r(t) ≥ imax. This is a piecewise linear function
which can be encoded by the addition of binary indicator
variables, w(t) ∈ {0, 1}. Specifically, we use the constraints

C1 : uc(t) ≥ r(t) ∧ C2 : uc(t) ≥ 0∧
C3 : uc(t) ≤ r(t) + imaxw(t)∧
C4 : uc(t) ≤ imax(1− w(t))

Real G(−∆G,max), . . . , G(−5) History Gluc.
I(−∆I,max), . . . , I(−5) History IOB.
G(0), G(5), . . . , G(T ) Glucose
I(0), I(5), . . . , I(T ) IOB
uc(0), uc(5), . . . , uc(T ) Insulin
Ie(0), Ie(5), . . . , Ie(T ) Integral Err.
Ip(0), Ip(5), . . . , Ip(T ) Ins. feedback
r(0), r(5), . . . , r(T ) Raw ins.

Binary w(0), w(5), . . . , w(T ) 0-1 variables
maximize G(T ) minimize for lower bnd
Gmin ≤ G(t) ≤ Gmax t < 0
Imin ≤ I(t) ≤ Imax Historical range
G(t+ ∆G,i) ≤ a0,iG(t) + a1,iG(t−∆G,i + biI(t−∆I,i) + ui
G(t+ ∆G,i) ≥ a0,iG(t) + a1,iG(t−∆G,i + biI(t−∆I,i) + li

for all t = 0, 5, . . . , T, i = 1, . . . , k Model Mi constr.
I(t) = F (ud(t), ud(t− 5), I(t− 5), I(t− 10)) IOB see (2)
Ie(t) = Ie(t− 5) + (G(t)−G0) Integral error
Ip(t) = K0id(t− 5) +K1Ip(t− 5) +K2Ip(t− 10)

IOB feedback

r(t) =

(
Kp(G(t)−G0) +KiIe(t)+

Kd
(G(t)−G(t−5))

5
− γIp(t)

)
Raw ctrl. output

uc(t) ≥ r(t)
uc(t) ≤ r(t) + imaxw(t)
uc(t) ≤ imax(1− w(t))
uc(t) ≥ 0 Saturation

Fig. 6: Optimization problem for finding the maximum possi-
ble G(T ), wherein the constraints describe an execution of the
closed loop according to the data-driven models M1, . . . ,Mk

and PID control equations in Fig. 5 modified by encoding the
saturation term using 0-1 variables.

Lemma 1. The constraints C1, . . . , C4 ensure that

uc(t) =


0 r(t) < 0

r(t) 0 ≤ r(t) ≤ imax

imax o.w.

.

Proof. Suppose r(t) < 0, we note that w(t) must be 1. If
w(t) = 0 for the sake of contradiction, then C2 : uc(t) ≥ 0
conflicts with C3 : uc(t) ≤ r(t)+ imax0. Therefore, if r(t) <
0, we may substitute 1 for w(t). The constraints simplify to

C2 : uc(t) ≥ 0 ∧ C4 : uc(t) ≤ 0

In other words, uc(t) must be 0.
Suppose r(t) > 0, then we note that w(t) must be 0.

Otherwise, if w(t) were 1, then C4 : uc(t) ≤ 0 contradicts
with C1 : uc(t) ≥ r(t). Substituting 0 for wc(t), we obtain

C1 : uc(t) ≥ r(t) ∧ C3 : uc(t) ≤ r(t) ∧ C4 : uc(t) ≤ imax

Now, we can also see that if 0 < r(t) < imax then uc(t) =
r(t). Else, if r(t) ≥ imax then uc(t) = imax.

Theorem 2. The maximum (minimum) value of G(T ) obtained
by solving the optimization problem in Figure 6 yields the
largest (smallest) value of blood glucose at time T obtained
by any closed loop execution compatible with the given models
and control law.



TABLE II: Table showing percent time in range actual patient
data fits into our model estimated range for a sampling of
patients along with the standard deviation measured across
various bins.

Patient ID Mean time in Range std
001-0001 95.05% ±5.8%
001-0002 96.22% ±3.66%
002-0004 94.08% ±6.13%
001-0011 95.32% ±6.47%
002-0002 88.75% ±8.55%
001-0013 96.77% ±5.14%
002-0011 93.84% ±6.39%
004-0004 96.17% ±4.59%
002-0015 98.16% ±2.14%
001-0018 96.80% ±3.60%
002-0016 98.79% ±0.80%
002-0001 96.26% ±3.29%
001-0012 91.36% ±8.20%
001-0006 94.41% ±6.11%
001-0003 91.57% ±6.73%
002-0013 96.77% ±5.14%

V. RESULTS AND DISCUSSION

In this section, we describe the overall results of our model
fitting, reachability analysis, and the parameter tuning. The
approach described thus far has been implemented using
a combination of tools: (a) standard regression procedures
available in Matlab(tm); (b) the integer linear programming
tool Gurobi was used to perform reachability analysis and (c)
the post processing was carried out using a combination of
Python and R.
Model Fitting: The process of model fitting required us to run
a single regression problems for time windows of 120, 180 and
300 minutes. In order to section training and test data, we use
k-fold cross-validation with k = 8, leading to 8 regression
problems for each window. The overall model fitting took an
average of 2 minutes/patient on a Macbook pro laptop. Once
the models were obtained, we tested the goodness of fit to
verify that the actual data point was inside the predicted range
95% of the time, in the manner of k−fold cross-validation.
Fig. 7 presents an example bin with the predicted ranges
juxtaposed over the actual values. Table II reports the fraction
of data points that were inside the predicted range, averaged
for each patient across all the bins considered. As expected,
we observe that our model captures 95 ± 2.72% of the data
points. However, we note that variations exist across patients
and bins.
Reachability Analysis: As mentioned earlier, the reachability
analysis was carried out using the state-of-the-art Gurobi ILP
solver [21]. On average, each reachability analysis run for a
single patient and bin required 0.6 minutes of running time.
Full reachability analysis over all bins and all patients was
performed for both the “out of the box” and our improved
tuning rule settings. We observed that most of the parameters
across bins were very close to each other. Thus, to reduce
analysis burden when searching the space for “best” control
parameter, we averaged the model coefficients to produce three

Fig. 7: Example of model predictions using our non-
deterministic approach (dashed red) and actual patient blood
glucose (solid blue) for patient ID 1.

representative sets of models or each patient and performed
reachability analysis on these averaged models. Our identified
tuning law is based on these averaged results, however it was
tested on all bins and all patients. This significantly reduced
computational time as running the parameter search step across
all bins for each patient would have required nearly 30days
of CPU time on a single core.

Figure 8 depicts the results of the reachability analysis for
representative patients/bins.

A. Tuning Control Parameters

We will now investigate the use of the overall framework for
examining how patients perform under different values of the
parameters. Following the tuning rule proposed in the original
PID controller, we focus on tuning the proportional gain Kp.
Once Kp is set, the value of integral gain is set to Ki = KpTi
and derivative gain Kd = Kp/Td, following Steil et al [45],
[48], [50]. Furthermore, the original rule for Kp [50] is

Kp :
Daily Insulin

135
.

Using this tuning rule, our analysis predicts that 38 out of 44
patients analyzed are free of hyper-glycemia. However, only 2
out of 44 patients are free of the possibility of hypo-glycemia.
Figure 8(a) shows an example of a patient/bin wherein we
observe convergence of the range of possible glucose values
into the euglycemic range, whereas Figure 8(b) depicts a
patient whose blood glucose values fail to settle.

Fig. 9 plots the lower and upper bounds for patients sorted
by their Kp values (and thus the daily insulin requirement).

Improving the Controller Tuning. To improve the con-
troller tuning, we explore for different values of Kp for
each patient (keeping the relation between Kp,Ki and Kd

as originally specified by Weinzimer et al [50]). Therefore,



(a) (b) (c)

Fig. 8: Reachability analysis plots showing ranges of glucose values across time for chosen patients and bins. (a) Original
tuning that works well; (b) Original tuning that works poorly; and (c) results of improved tuning for the patient and bin in (b).

(a) (b)

Fig. 9: Bounds on reachable BG levels for patients sorted by their daily insulin requirements: (a) original tuning rule and (b)
improved tuning rule suggested by reachability analysis and regression. Open circles denote each bin for each patient, filled
circles denote mean values across all bins for each patient.

for each patient, we explore seven evenly distributed values
in the range [K0, 0.8], where K0 = Kp0 (same as the original
tuning) if this original tuning was unsafe, and otherwise,
K0 = Kp0 − 0.1. We select the value of Kp that provides
the optimal performance in terms of (a) choose all parameter
values that avoid hyperglycemia; (b) from this set, we choose
all parameter sets that avoid hypoglycemia; and (c) choose the
smallest Kp as the final result. The value of Kp discovered
for each patient is provided in the appendix (Table IV).

Next we search for a tuning rule using the optimal values
returned by the search procedure. To do this, we set aside
a test group consisting of 5 patients and on the remaining
patients, we perform linear regression to estimate the optimal
Kp value as a function of the daily insulin requirement and
HbA1C values of the patient. Doing so suggests the following
tuning rule:

Kr
p =

{
(0.52HbA1c + 0.036)

DailyInsulin
135 if HbA1c ≤ 7

(−0.08HbA1c + 2.24)
DailyInsulin

135 otherwise
.

However, the formula estimates a larger Kp value than the
results of our search procedure for 4 out of 44 patients.

Time Spent in
Category

Original Tuning
Rule mean (std)

New Tuning Rule
mean (std)

Safe Range
70− 180mg/dL

14.80% (21.60%) 84.77% (26.54%)

Severe Hypoglycemia
BG< 50mg/dL

29.14% (33.36%) 0% (0%)

Hypoglycemia
BG< 70mg/dL

85.12% (21.56%) 15.23% (26.54%)

Hyperglycemia
BG> 250mg/dL

0% (0%) 0% (0%)

TABLE III: Changes in time-in-range percentages between
out-of-the-box tuning rule and our new tuning rule.

Therefore, we set Kmax
p = 0.74 as a higher limit for Kp, I.e.,

Kp : max(Kmax
p ,Kr

p). Figure 9 show the improved bounds
wherein 82% of the patients (as opposed to 5% of the patients)
are now within bounds. Bounds are improved for each bin
and each patient, as seen in the open dots, as well as for the
means (closed dots). Also, Figure 8(c) shows the improvement
to a specific patient/bin under the new tuning rules, wherein
Figure 8(b) shows the reachability results under the older rule.

Full statistics on improved time-in-range between tuning



Fig. 10: Ratio of Kp from suggested tuning rule versus original
rule clustered by patient HbA1C.

rules given in Table III.
Figure 10 plots the ratio of the Kp values under the new

tuning rule versus the original Kp value against the patient’s
HbA1C. We find that for individuals with HbA1C> 7, the
original approach requires much less of a change than for
individuals with HbA1C≤ 7. These results are confirmed from
a 2-means clustering. A Kolmogorov-Smirnof test confirms
that the two groups are “significantly” different (p = 0.0015).

In other words, HbA1C is a strong predictor of performance
under the original tuning rule. This pattern conforms to clinical
experience: patient trials for the AP have used individuals with
high HbA1C (HbA1C = 7.7±0.84) due to significantly worse
control performance being observed for those with HbA1C
near 6 [19].

B. Limitations and Threats to Validity

We will briefly describe the threats to validity of our
approach and steps taken to mitigate against these threats.
Broadly, the threats can be partitioned into three categories:
(a) threats to the assumptions made in our modeling approach;
(b) threats arising from the nature of the dataset used; and
(c) threats due to limited information available about the
implementation of the PID control law.

Section III carefully outlines many of the assumptions
made, providing a measure of justification. The assumption of
linearity is fundamental to our modeling approach. However, it
cannot be justified unless we carefully compare our approach
with other models for the same problem. This will form
part of our future work. The use of insulin-on-board is quite
common in many artificial pancreas systems. However, this
calculation is made using a single formula for all patients,
rather than using a patient specific approach. Next, the choice
of p = 2, q = 1 for the glucose history is justified by
studying the autocorrelations. However, the choices for the
various timing delays and number of such delays are made
using population level knowledge about insulin action rather
than any insights drawn from the data.

The nature of the dataset imposes limitations and therefore,
threats to validity. First of all, our approach is limited to

nighttime data: we do not have information on meals or
exercise, which are typically daytime activities. Also, we drop
bins that involve rescue carbohydrates. This biases our models
in terms of the range of BG values used to train our models.
This bias is hard to overcome since hypoglycemia is a serious
clinical emergency and as such, requires immediate interven-
tion. Clinical studies of patient behavior under hypoglycemia
run the risk of serious harm to the patient.

A final threat lies in our modeling of the control law. Cur-
rently, our models are reconstructed from equations provided
in the relevant papers [45], [48], [50]. However, it is a well
known fact that controller implementations incorporate safety
features around the core control law: one such feature could be
a mechanism to shut off the controller if hypoglycemia is pre-
dicted. Such mechanisms could in fact make our reachability
analysis more pessimistic than what will be seen in practice.
Indeed, clinical evidence on the performance of PID-based
systems strongly indicates this possibility [19].

VI. RELATED WORK

We have already discussed the background related to AP
controllers and modeling of insulin-glucose regulation. We re-
strict the discussion to closely related data driven approaches.

Personalized control has been recognized as an important
area for the artificial pancreas. Model Predictive Control
(MPC) algorithms provide for personalization by learning
model parameters from patient data. Hovorka et al propose
a nonlinear MPC scheme that updates the parameters of the
model periodically using the patient data [24], [25]. Dassau
et al use a data driven approach to derive plant models that
are used to construct an explicit MPC system [15]. Ghorbani
et al present a data-driven modeling approach using fractional
calculus and use their models to derive control strategies for
mitigating hypoglycemia [20]. Capel et al. evaluate a rule-
based approach that is based on training a neural network
model that predicts the future course of the patient glucose
values. This network is trained from historical data collected
from the patient [29]. To address patient safety concerns,
these approaches place limits on the insulin-on-board for the
patient. However, all of these approaches fail to account for
the uncertainty in the system identification process. The recent
work of Paoletti et al uses a robust MPC scheme that accounts
for meal uncertainties but uses a deterministic patient model
with numerous parameters that are hard to estimate without
highly intrusive lab measurements on the patient [42].

Abbas et al present a data-driven approach for testing
and comparing the performance of algorithms for arrythmia
detection and discrimination algorithms for implantable car-
dioverted defibrillators [1]. Their approach uses a probabilistic
generative model for various types of arrythmias learned from
patient data. As such, the goal of this paper is also similar:
use data-driven models to analyze the performance of control
algorithms in physiological closed loops. A key difference
beyond the application domain is that our approach models
a closed loop system wherein the data-driven model is in a
closed loop with a controller. In contrast, the approach of



Abbas et al is open loop wherein the data driven model drives
the control algorithms, but its decisions do not affect the inputs
to the model.

Fan et al recently presented a data-driven verification ap-
proach that learns sensitivity information from simulation
traces to drive time bounded verification of automotive models.
Here we distinguish between a simulation-based black-box
approach, wherein simulations can be run on chosen initial
states and control inputs through an existing (black-box) model
versus an approach such as ours that learns a model from
available data [17]. Also, the available clinical data is often
incomplete and noisy in contrast to simulations.

VII. CONCLUSION AND FUTURE DIRECTIONS

Thus, we have presented a data-driven modeling approach
along with reachability analysis of closed loop PID controller.
We derive simple rule of thumb whose effectiveness can be
evaluated clinically. As part of our future work, we plan to
make our approach more robust by running on larger datasets
that include daytime data as well. For this, we anticipate
adjusting model parameters based on time-of-day, due to
variability in hormones, food, etc. We also hope to work with
clinicians to use the data driven approach to make clinical
trials of future devices easier. Finally, the models derived by
our approach can be used to design controllers that use data-
driven models on the fly for predicting safe control inputs.
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APPENDIX

A. Additional Tables

TABLE IV: The value of gain Kp original setting (old),
value required to avoid hyper and/or hypo glycemia, ordered
by increasing HbA1C. We observe that retuning ratio (R =
newGain
oldGain ) increases with lower HbA1C, indicating original

tuning rule will poorly control patients with low HbA1C levels.

PtID Kp (old) Kp(hyper) Kp(hypo) R HbA1C
002-0001 0.23 0.35 0.57 2.45 5.6
002-0011 0.14 0.21 0.63 4.43 5.6
004-0004 0.35 0.44 0.62 1.78 5.9
001-0012 0.45 0.58 0.58 1.26 6.0
001-0006 0.25 0.39 0.65 2.51 6.1
002-0002 0.19 0.28 0.57 3.07 6.1
001-0003 0.16 0.24 0.56 3.43 6.2
001-0005 0.24 0.36 0.60 2.53 6.2
004-0007 0.23 0.34 0.62 2.64 6.2
004-0006 0.13 0.20 0.64 4.90 6.4
002-0003 0.21 0.31 0.63 3.07 6.4
001-0004 0.22 0.33 0.66 2.97 6.4
001-0001 0.29 0.44 0.72 2.49 6.4
001-0016 0.16 0.24 0.64 4.08 6.6
002-0006 0.20 0.30 0.60 2.95 6.6
004-0003 0.31 0.46 0.62 1.99 6.7
001-0002 0.33 0.49 0.66 1.98 6.8
002-0012 0.53 0.66 0.66 1.25 6.8
001-0011 0.27 0.42 0.70 2.54 6.9
002-0004 0.15 0.22 0.65 4.23 6.9
002-0008 0.48 0.60 0.60 1.24 7.3
002-0014 0.29 0.45 0.60 2.01 7.4
001-0008 0.44 0.68 0.68 1.53 7.4
001-0017 0.35 0.44 0.62 1.78 7.5
004-0001 0.37 0.47 0.67 1.77 7.5
002-0005 0.27 0.34 0.68 2.48 7.6
002-0010 0.43 0.54 0.65 1.51 7.6
004-0005 0.36 0.46 0.56 1.53 7.6
001-0010 0.44 0.68 0.68 1.53 7.7
001-0018 0.41 0.51 0.62 1.52 7.7
001-0013 0.44 0.56 0.56 1.26 7.8
002-0015 0.43 0.54 0.65 1.51 7.8
002-0016 0.45 0.56 0.67 1.49 7.8
001-0013 0.44 0.56 0.56 1.26 7.8
002-0013 0.40 0.50 0.60 1.48 8
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