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Abstract—This paper studies the effect of parameter variation
on the behavior of analog circuits at the transistor (netlist)
level. It is well known that variation in key circuit parameters
can often adversely impact the correctness and performance of
analog circuits during fabrication. An important problem lies in
characterizing a safe subset of the parameter space for which the
circuit can be guaranteed to satisfy the design specification. Due
to the sheer size and complexity of analog circuits, a formal
approach to the problem remains out of reach, especially at
the transistor level. Therefore, we present a statistical model
inference approach that exploits recent advances in statistical
verification techniques. Our approach uses extensive circuit
simulations to infer polynomials that approximate the behavior
of a circuit. A procedure inspired by statistical model checking
is then introduced to produce “statistically sound” models that
extend the polynomial approximation. The resulting model can
be viewed as a statistically guaranteed over-approximation of the
circuit behavior. The proposed technique is demonstrated with
two case studies in which it identifies subsets of parameters that
satisfy the design specifications.

I. INTRODUCTION

In this paper, we address the problem of estimating a safe
region of the parameter space that guarantees a design specifi-
cation of an analog circuit. The parameters considered by our
approach, such as capacitance, channel width of transistors and
thickness of the oxide layer, originate from process variations.
While circuits are commonly designed by assuming nominal
values of these parameters, it is often desirable to examine the
effect of process variations on important design specifications.
In this paper, we examine specifications that are of the form
φ(~p) ∈ [`, u] where φ is a performance metric and ~p is a
vector of process parameters. The choice of φ includes a wide
variety of properties ranging from time-bounded temporal logic
properties to those that are not easily expressible in temporal
logic, such as the oscillation frequency of an oscillator, the
common mode rejection ratio (CMRR) and the slew rate of an
operational amplifier. Our approach identifies a set of “safe”
parameter values that satisfy the design specifications with
high confidence.

While definite progress has been achieved using formal
verification approaches to prove properties of analog circuits,
the state-of-the-art falls short of addressing analog circuits
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at the transistor level [1]. Therefore, we explore statistical
approaches that rely on extensive simulations of the circuit
using a standard simulator such as SPICE. Our approach is
based on two main ideas: (1) We use simulation and regression
to fit a polynomial (or piecewise polynomial) approximation q
for a property φ; (2) We present a statistical hypothesis testing
approach to finding a bloat interval I so that q⊕I is guaranteed
to over-approximate φ for a given fraction θ of the parameter
space with high confidence. The interval I “bloats” the model
q to make it statistically sound. Our approach to finding this
interval has been inspired by recent developments in the theory
of statistical model checking (SMC) [2]–[4]. Whereas the
SMC approaches answer a yes/no verification question given
a circuit and a design specification, we exploit the key idea
of using hypothesis testing to find tolerance intervals over
an approximation. The final model (q, I) constructed by our
approach can be used to characterize a set of parameter values
that are statistically guaranteed to satisfy the specification with
high confidence. Such a characterization is already beyond the
realm of existing statistical model checkers.

We implemented our approach in a prototype tool that uses
an open-source circuit simulator, ngspice [5]. We demonstrate
our approach over several benchmark circuits. We show the
usefulness of our approach in identifying a region of the
parameter space that satisfies the specification with high con-
fidence. Finally, we compare our approach against standard
Monte-Carlo (MC) simulations and statistical model check-
ing in terms of the verification ability and the number of
simulations required. While our approach seeks to discover
information about circuits that is out of the scope of either
technique, we observe that the overhead, in term of either the
computational cost or the simulation cost, on top of standard
MC simulations and SMC is quite reasonable.

A. Related Work

A large volume of work exists on analog circuits verifica-
tion, ranging from testing to formal verification. We restrict
our discussion to techniques that are closely related.

Formal verification of analog circuits dates back to the
work of Kurshan et al. [6] and Hedrich et al. [7]. One of the
most important approaches is to perform reachability analysis
on a discretized state-space that approximates the original con-
tinuous, infinite state-space. Frehse et al. [8] proposed a for-
ward/backward abstraction refinement scheme for reachability.
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The approach produces accurate results, but is computationally
expensive even for small circuits. In the series of papers by
Myers et al. [9], [10], labeled hybrid Petri nets were used to
formalize and model check circuits. However, their techniques
mostly focus on the behavioral models of analog circuits. In the
work of Tiwary [11] SMT solvers were used to reason about
piecewise linearized circuits. As shown in [1], this technique
does not scale well with the size and complexity of circuits.
Althoff et al. [12] proposed a continuation technique for the
reachability analysis of phase-lock loops (PLLs). While their
result is certainly an exciting progress, the approach verifies
behavioral models rather than a transistor-level implementa-
tion. The technique for PLL verification proposed by Yin et
al. [13] has the same issue. In [14] an interesting proof about
the start-up of an even-stage ring oscillator was presented.
The authors also proposed a variable substitution technique to
lower the state-space dimension. A key shortcoming of existing
formal approaches lies in the inability to reason about circuits
with even a few transistors (e.g., less than 10) without resorting
to simplified device models in the verification process.

Another thread of research uses repeated simulations en-
riched with statistical hypothesis testing techniques to pro-
vide statistical guarantees on circuits. While the underlying
theory is well known [15], these approaches have not been
well-recognized by the verification community until recently.
Younes and Simons [2] proposed a technique called statistical
model checking (SMC). They regard the model checking of
stochastic systems as a hypothesis testing problem and solve
it using sequential probability ratio test (SPRT) [15]. Later,
Sen et al. proposed a p-value significance test [16] for the
verification of black-box systems. Zuliani et al. [4] proposed
a Bayesian estimation approach. Their approach computes an
interval estimate for the probability of satisfying a bounded
LTL (BLTL) formula. Jha et al. [3] introduced a new SMC
framework based on Bayesian hypothesis testing [17], [18].
Compared with SPRT, Bayesian hypothesis test is more con-
venient since it does not require indifference regions. Instead,
it computes Bayes factor by computing integrals over a given
prior density. Recently, Bayesian SMC was applied to the
verification of an operational amplifier [19].

An important difference between our approach and the
existing statistical techniques is that we perform model infer-
ence as opposed to verification. The resulting models provide
useful information to help with improving circuit design, which
cannot be achieved by existing techniques [2]–[4], [19]. A key
contribution of this paper is to establish the model inference
procedure under the same framework of SMC and utilize the
insights from SMC to carry out the inference.

The use of MC and Quasi MC simulations is quite standard
for the analysis of analog circuits. The approach of Singhee
and Rutenbar [20] used ideas from extreme value theory to
estimate bounds on the timings of analog circuits. The idea
is to perform random simulations while observing excesses
of previously seen timing levels. Then a generalized Pareto
distribution to these excesses is fit and used to predict values
of the extremal timings of the circuit. We are also interested
in extremal deviations of circuit metrics from a polynomial
approximation fitted through regression. However, instead of
using extreme value theory, we use a statistical hypothesis
testing approach. Comparing both approaches in terms of their
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Fig. 1: A buck converter with L and C taking values from
[1.8, 2.2]µH and [9, 11]µF respectively.

strengths and weaknesses will form an important aspect of
our future work. Besides extreme value theory, Singhee et
al. also used an interesting idea of statistical blockade to
avoid unnecessary simulations and thus sample efficiently from
the tail of the input distribution. This is another potential
interesting idea to explore in the setting of this paper.

It is also interesting to characterize the distribution of state
variables over time, which arises from the uncertainties in a
circuit. This can be tackled by techniques for uncertainty quan-
tification, such as the polynomial chaos expansion (PCE) [21].
The theory of PCE was applied by Strunz and Su [22] to build
a simulator for stochastic simulation of analog circuits. Since
the objective of this paper is to study how design properties are
affected by process variations, deriving accurate distributions
on the state variables over time may not be necessary.

Besides statistical approaches, there are other interesting
techniques originating from the hardware testing community.
Yoon et al. [23] proposed a hierarchical model inference
approach to derive statistical distributions of circuit properties.
Dang et al. [24] used motion planning techniques for rapidly-
exploring random trees (RRTs) to verify specifications of
analog circuits. Ahmadyan et al. [25] also used RRTs to
generate property-oriented test cases for analog circuits.

II. OVERVIEW

In this section, statistical model inference (SMI), is pre-
sented with a running example. We illustrate the basic flow of
this technique and defer the details to a later section.

A. Problem Setup

Let ~p be the process parameters in a circuit and P be a
parameter space. The joint distribution D of the parameters is
assumed. We present the problem setup by a running example
on a buck converter. The assumption of independence and
uniform distribution in the example are purely for illustration.
In principle, SMI places no restriction on the underlying
distribution as long as samples can be drawn accordingly.

Example II.1 (Buck Converter). Figure 1 shows a buck
converter. The nominal values of the inductor L and the
capacitor C are 2µH and 10µF, respectively. We assume that L
and C are independent random variables uniformly distributed
in the range L ∈ [1.8, 2.2]µH and C ∈ [9, 11]µF.

Assume that ~x(t|~p) is a set of circuit state variables, such as
currents and voltages, over a time interval [0, T ]. Given a set of
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Fig. 2: A diagram showing the flow of SMI.

process parameters, a property φ is a performance metric that
maps ~x(t|~p) to a real value. SMI works with a property that
can be written as a function φ(~p) that depends on the process
parameters. In practice, φ is evaluated by simulating the circuit
with specific parameter values, computing the variables ~x over
time and measuring the trajectories ~x(t) properly. We consider
design specifications of the form φ(~p) ∈ [`, u] where `, u are
the tolerance limits for φ.

Example II.2. We choose the ripple amplitude ∆v as a
property of interest in the buck converter example. For the
circuit in Figure 1,

∆v = φ(L,C) =
Vg − V
16LC

DT 2
s , (1)

where V is the DC component of the output voltage, D is the
duty cycle and Ts is the time period of the control voltage. We
assume that V = 3V , D = 0.25 and Ts = 2µs.

We are interested in choosing L and C such that ∆v ≤
30mV. Equation (1) yields LC ≥ 18.75. However, such an
analytic solution is only possible for simple circuits since φ
generally has a complicated dependence on ~p. Therefore, we
seek approaches to approximate φ in terms of ~p.

Let q be a polynomial of a given degree d, and I an interval.
SMI approximates a property φ by showing

φ(~p) ∈ q(~p)⊕ I ,

where ⊕ denotes the Minkowski sum. The interval I (called
the bloat) is found by a statistical hypothesis testing procedure
explained in the following. Given (q, I), we wish to identify
a set S ⊆ P such that for all ~p ∈ S, q(~p)⊕ I ⊆ [`, u].

B. Overview of Statistical Model Inference

Figure 2 shows a diagram for the flow of SMI. We assume
that the circuit under consideration can be simulated efficiently
using a standard simulator. SMI employs two phases: (1) a
regression phase in which we fit a polynomial q, and (2) a
bloating phase in which we generate a bloat interval I .

Regression. A number of N > 0 samples, ~p1, . . . , ~pN ,
distributed according to D, are drawn from the parameter space
P . The circuit is simulated for each ~pi and the value φ(~pi) is
measured. We use least squares to fit a polynomial q(~p) of
degree d such that the overall L2 error is minimized:

q = arg min
N∑
i=1

(φ(~pi)− q(~pi))2 .

The polynomial q is only an approximation of φ. Few guar-
antees can be placed on it. The core of our technique is

Fig. 3: Verification result of SMI on a buck converter. The
region below the solid curve is known to be unsafe. The

shaded region is the unsafe subset predicted by SMI.

a model inference technique that uses ideas from statistical
model checking, namely the sequential hypothesis testing.

Bloating. Let θ ∈ (0, 1) be a user-specified probability. Given
a polynomial q, we wish to find an interval I such that with
a probability of at least θ, we have φ(~p) ∈ q(~p) ⊕ I for a
randomly chosen ~p ∈ P . Typically, θ is chosen close to 1.

In SMI, the choice of I is treated as a hypothesis testing
problem. Given two mutually exclusive hypotheses:

H0 : Pr(φ ∈ q ⊕ I) ≥ θ and H1 : Pr(φ ∈ q ⊕ I) < θ ,

a standard statistical hypothesis testing procedure accepts H0

over H1 if I is considered large enough. Later in this paper,
we show a simple yet elegant variation of the standard tests
such as SPRT and the Jeffreys’ test, which allows us to find
such an interval I on the fly.

Identification of safe parameters. The regression and bloat-
ing steps effectively create a model (q, I) of the target property
φ such that a statistical model checker can be convinced that
φ ∈ q ⊕ I with a given probability θ. Given such a model,
identifying the safety of the parameter values ~p reduces to
checking whether q(~p)⊕ I ⊆ [`, u] holds. Furthermore, S, the
safe subset of the parameter space, can be explicitly computed
by interval arithmetic in a conservative manner.

Example II.3. Back to the buck converter example, we perform
N = 20 simulations to produce a polynomial q3(L,C) of
degree 3, as shown below, to approximate the ripple ∆v.(

0.17− 1.12× 104C + 2.80× 108C2+
8.48× 103C3 − 5.64× 104L+ 1.40× 109CL+ 3.01× 104C2L+

7.05× 109L2 + 7.66× 104CL2 + 4.23× 104L3

)
.

Next, q3 is bloated using θ = 0.95. The resulting interval is
I = [−37, 44]µV. The model (q3, I) is used to check the design
specification. ∆v ≤ 30mV. The result is shown in Figure 3.
The solid curve plots of the equation LC = 18.75, and thus
the region below is known to be unsafe. The shaded region is
the unsafe subset predicted by SMI.
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III. STATISTICAL MODEL INFERENCE

The two phases of SMI are briefly presented in the pre-
vious section. Now we discuss issues that arise in the two
phases and give a detailed algorithm for model inference.
Throughout this section, we assume that φ, a design property,
is a continuous function of the parameters ~p. The assumption
is reasonable since analog circuits are usually modeled as
continuous systems that exhibit continuous dependence on
the system parameters. Note that in some cases, φ is not
necessarily a function. But as we show later, this does not
restrict the application of SMI.

A. Polynomial Approximation

It is well known that any continuous function over a
bounded domain can be approximated “arbitrarily closely” by
a polynomial. In practice, we are interested in polynomial
approximations with a fixed degree. There are many ways
to formulate such an approximation, such as Chebyshev and
Bernstein polynomials. In our case, we consider a simple
scheme based on least squares fitting.

Let φ(~p) be a continuous function and d be the degree of
a polynomial. Formally, we want to find a polynomial

q = arg min

∫
P

(φ(~p)− q(~p))2dµ(~p) .

However, integrating over all ~p ∈ P is often hard if not
impossible. As an alternative, we instead compute

q = arg min

N∑
i=1

(φ(~pi)− q(~pi))2 ,

where ~pi, i = 1, . . . , N are samples drawn from P according
to a certain distribution D.

Choosing the number of samples. One question that arises
in practice is the number of samples, N , required to find a
“good” polynomial fit. If N is too small, q may be an artifact
of the samples rather than of the property φ itself. On the other
hand, a large N incurs overheads in simulation as well as in
the least squares regression.

We present a simple heuristic called resampling, which is
inspired by k-fold cross validation. For a set of N samples, we
partition it into k folds (typically k ∈ [4, 10]) of N

k samples.
We create k different sets, each with k−1

k N samples, such that
each fold is left out exactly once. A set of polynomials q(i), i =
1, . . . , k are constructed by least squares fitting on each set of
samples. The number of samples N is considered adequate if
the differences between the polynomial coefficients are within
some tolerance. In this case, we obtain q = 1

k

∑k
i=1 q

(i). If N
is judged not enough, we draw more samples and repeat the
above procedure. Clearly, the resampling technique provides a
systematic way to determine the sample size and reduces the
bias of the resulting approximation.

The computational complexity of finding a polynomial
approximation is dominated by least squares fitting which
is known to be O(NV 2), with N the number of samples
and V the number of unknown coefficients. Therefore, as
the number of variations grows, least squares regression can
become inefficient. Employing more sophisticated regression
algorithms is important in the future work.

Data: Parameter Space P, Polynomial q, Run Length K
Result: Bloat Interval I
count := 0 ;
I := [0, 0] ;
while count < K do

~p := do random sampling(P) ;
φ := simulate and measure property(~p) ;
if φ 6∈ q(~p)⊕ I then

count := 0 ;
I := update interval(I, φ− q(~p)) ;

else
count := count+ 1 ;

end
end

Algorithm 1: Deriving a bloat interval I by observing K
consecutive successes.

B. Bloating via Hypothesis Testing

Now consider the problem of finding the bloat I given a
probability θ. As mentioned earlier, given a bloat I , we can
use hypothesis testing techniques to determine whether it is
good enough. The two mutually exclusive hypotheses

H0 : Pr(φ ∈ q ⊕ I) ≥ θ and H1 : Pr(φ ∈ q ⊕ I) < θ .

are known as the null and the alternative hypothesis. Such a
technique uses repeated simulations to decide between the two
hypotheses. In our case, we choose to use the Bayesian test,
which proceeds by computing the Bayes factor [18]

B =
Pr(d|H0)

Pr(d|H1)
,

where d is a collection of Bernoulli random variables denoting
the outcome of the inclusion test φ(~pi) ∈ q(~pi)⊕I with random
samples ~pi. If B becomes larger than a given threshold T , H0

is accepted. The threshold T is known as the Bayes factor
threshold. Bayesian test also assumes that θ, which can be
regarded as a random variable ranging from (0, 1), distributes
according to a prior density. In practice, when no knowledge
is available, we often assume a uniform prior for θ.

The goal of SMI, however, is to discover such a bloat
interval. We adopt a procedure based on hypothesis testing to
achieve this, which is summarized in Algorithm 1. Denoting
a bloat I = [Il, Iu], the procedure starts with a zero bloat
such that Il = Iu = 0. It then repeatedly checks the formula
φ(~pi) ∈ q(~pi)⊕ I with samples ~pi drawn from the parameter
space P according to the distribution D. We say that the
inclusion test is a success if the above formula holds, and a
failure otherwise. Upon each success, we increment the counter
and continue with fresh samples until a failure occurs. In
this case, we update the bloat I := [min(r, Il),max(r, Iu)]
with r = φ(~pi) − q(~pi), to include the sample ~pi that causes
the failure. Also, the counter is reset to zero. The procedure
terminates when a run of K > 0 consecutive successes is seen.

Deriving K for Bayesian test. A standard Bayesian hypoth-
esis testing procedure does not compute K since the compu-
tation of the Bayes factor effectively serves the same purpose.
In SMI, we are only interested in consecutive successes since
those samples that fail the inclusion tests are used to update
the interval I . This simplifies the computation of the Bayes
factor. Furthermore, for a given θ and T , we can derive a
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proper length K such that a run of K consecutive successes
is sufficient for the Bayesian test to accept H0 over H1. Here
we show a simple case that θ has a uniform prior. In practice,
K can be computed for any given prior.

Given an observed sequence of n consecutive successes,
the corresponding Bayes factor is given by

B =

∫ 1

θ
xndx∫ θ

0
xndx

=
1− θn+1

θn+1
.

Since H0 is accepted as soon as B ≥ T , we have

K ≥ − log T + 1

log θ
− 1 .

Therefore, once we observe a run of K consecutive successes,
we can stop the bloating. Table I shows some of the values for
K given the desired probability θ and threshold T . Increasing
θ and T requires a larger K, leading to a model with better
statistical guarantee. In practice, we find that θ = 0.95 and
T = 100 often provide a good trade-off between statistical
guarantee and computational cost.

TABLE I: Run length K for common values of θ and T .

T = 100 500 1000
θ = 0.9 43 59 65

0.95 89 121 134
0.99 459 618 687

IV. CASE STUDY

In this section, two case studies on the application of SMI
are presented. The first one is on a three-stage ring oscillator.
We use SMI to verify that the oscillation frequency is within a
specified range. The other case is on a two-stage operational
amplifier (opamp). Several interesting design specifications of
this circuit are verified. We use an open source program,
ngspice (revision 25) [5], as the circuit simulator. All the
experimental results are measured on a quad-core 2.8GHz
machine running Debian 6.0.

A. Ring Oscillator

A three-stage ring oscillator is shown in Figure 4. The
circuit is designed to work at a frequency of 3.85GHz with a
tolerance of ±50MHz. To find the oscillation frequency, we
use the periodic steady-state (PSS) analysis in ngspice. The
oscillation frequency of this circuit is determined by various
process parameters of each transistor Mi, i = 1, . . . , 6. In our
case, we choose to fix other parameters and let the channel
width wi of each transistor have 5% variation uniformly
distributed around the nominal value.

The verification builds a statistically sound model of the
oscillation frequency with respect to the 6 parameters, with θ =
0.95 and T = 100. The polynomial in the model is of degree
3. Table II shows the number of simulations required for the
first and the second phase of SMI and the corresponding times.
The column “#SIMS” shows the number of simulations. The
column “SIM-TIME” indicates the simulation time. “OTHER-
TIME” refers to the time cost of the computation each phase
besides simulation, i.e., resampling and least squares fitting in
the first phase and bloating in the second phase.

M2

M1 M3

M4

M5

M6

Vout

Fig. 4: A three-stage ring oscillator.

M1 M2

M3IBias

M5 M7

M6

Cc

M8

VpVn

Vout

M4

Fig. 5: A two-stage operational amplifier.

SMI computes a bloat I = [−19, 23]MHz. It is verified that
the oscillation frequency is within the range 3.85GHz±50MHz
with the given process variations.

TABLE II: The number of simulations and computation
times for the oscillator verification.

#SIMS SIM-TIME OTHER-TIME
Phase 1 150 725s 3s
Phase 2 265 1280s 0.4s

B. Two-Stage Operational Amplifier

Opamps are key components in many analog circuits. They
often have two inputs, a positive and a negative power supply,
and an output. An opamp can serve two purposes. The first is
to amplify small input signals. In this case, the opamp works
in linear mode such that the output approximately equals the
difference between the two input signals multiplied by the gain
of the opamp. The other mode of operation is as a comparator
in which the output is driven close to either the positive or the
negative supply voltage, depending on which input is larger.

Experimental setup. The schematic of a commonly used
two-stage opamp is shown in Figure 5. The performance of
an opamp is characterized by many properties, as shown in
Table III. Usually, each property is measured using a specific
type of simulation and circuit configuration. For example, the
input offset voltage is often measured by arranging the opamp
in the unity-gain configuration and sweeping DC input voltage.
On the contrast, the measurement of the slew rate requires
transient simulation. In Table III, we also list the type of
simulation for each property. For a detailed description on
how to simulate these properties, we refer the interested reader
to [26] (Chapter 6.6).
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We select 8 process parameters to study, including the
oxide thickness tox , threshold voltage under zero bias vt0,
channel width w and channel length l for the transistors
M1 and M2. To distinguish between parameters for different
transistors, we add subscripts i = 1, 2 at the end of the
parameter names. All the 8 parameters are assumed to be
uniform and have 5% variations around nominal values.

Table III summarizes the set of properties that we are
interested in. Table IV summarizes the set of parameters, the
type and degree of polynomial for each property. We now
provide a detailed rationale for these choices.

Choosing parameters. A common object of study is the
mismatch in the transistor parameters between M1 and M2 in
Figure 5. Therefore, rather than treating parameters p1 and p2
separately, it may be more interesting to study the performance
metric directly as a function of p1−p2. However, this needs to
be considered on a case-by-case basis. For instance, Figure 6a
shows the unity-gain bandwidth as a function of w1 and w2

(the transistor widths) separately while Figure 6b shows it as
a function of w1 −w2. It can be observed that the bandwidth
has a nearly linear dependence on w1 and w2. However, it is
hard to find a simple relationship between the bandwidth and
w1−w2. In practice, the latter choice (using w1−w2) provides
a poor model with a large bloating interval. In such a situation,
we use w1 and w2 as the parameters in our SMI algorithm.

By contrast, the data for the DC voltage gain are shown
in Figure 7. In this case, the relationship between w1 − w2

(the width mismatch) and the DC voltage gain is quite clear.
Note that the relationship is not functional. But this does not
restrict us from applying the regression algorithm. In practice,
we observe that in SMI, using w1 − w2 as the parameter
provides us a simple polynomial approximation with a small
bloat interval. Also, much fewer simulations are required to
fit this polynomial than the case for using w1 and w2 as
separate parameters. Therefore, it is clear that a careful choice
of parameters is essential to generate good models with as few
simulations as possible.

Choosing the type of polynomials. Choosing the degree of the
approximations is yet another challenge. In some cases, using
piecewise polynomial approximations is beneficial, allowing
us to fit polynomials with smaller degrees. Figure 8 shows
a situation involving the DC voltage gain. It clearly shows
that a degree 3 piecewise polynomial approximation with 2
pieces outperforms larger degree approximations in terms of
the approximation error. Also, the generation of the piecewise
polynomial requires fewer number of simulations.

In general, we may use powerful machine learning tech-
niques such as random forests to learn piecewise approxima-
tions. In SMI, however, we use a simple visual plot as in
Figure 8 to determine the number of pieces and the points of
discontinuity in our regression routine. Integrating our work
with more sophisticated piecewise polynomial regression will
be considered in the future.

Experimental results. The experimental results are summa-
rized in Table V under the column “SMI”. For each property,
a statistically sound model is constructed using θ = 0.95 and
T = 100. The columns “#SIMS-1” and “#SIMS-2” show the
numbers of simulations and the total simulation time in the
first and the second phase of SMI, respectively. The column

Fig. 8: Comparison between a 2-piece third-order polynomial
and a degree 10 polynomial fit for the same data.

TABLE IV: The set of parameters and the type of
polynomial for each property. The column “#PIECES”

indicates the number of pieces used (1 indicates that a single
polynomial was used). The degree of polynomial is fixed to

3 for all the properties.

ID PARAMETERS # PIECES
1

tox 1 − tox 2, vt01 − vt02, w1 − w2, l1 − l2
1

2 4
3

tox 1 − tox 2, vt01 − vt02, w1, w2, l1, l2

1
4 1
5 1
6 1
7 1
8

tox 1, tox 2, vt01, vt02, w1, w2, l1, l2
1

9 1

“TIME-1” shows the time spent on resampling and least
squares fitting. The column “TIME-2” shows the time spent
on the computation of bloat intervals. The verification results
are shown in the last column. If a property fails to satisfy
the corresponding specification, we compute a safe subset of
the parameters using the inferred model. The table reports the
probability of satisfaction by computing the area of this safe
subset. For comparison, we also include the results for 1000
Monte-Carlo (MC) simulations and the Bayesian statistical
model checking (SMC) with θ = 0.95 and T = 100.

First, we compare SMI with the MC simulations. Observe
that the verification results of the two approaches are the same
in the sense that SMI correctly shows which specification is
satisfied and which is not. For the two unsatisfied specifica-
tions, the probabilities of satisfaction predicted by SMI are
lower than the yield of MC simulations. This is because SMI
provides under-approximations of the safe subsets.

Next, SMI is compared with SMC. We observe that SMI
generally needs more simulations than SMC, especially when
a specification is satisfied. It is because SMI is not just a
verification technique but also does model inference. A key
difference between SMI and SMC is that SMI can show which
part of the parameter space is safe, while SMC does not have
this ability, in general. Note that there is one case that SMC
requires more simulations. It reveals one drawback of SMC.
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TABLE III: A list of opamp properties and the types of simulation used for measurement.

ID PROPERTY UNIT SIMULATION DESCRIPTION
1 Input offset voltage mV DC DC input voltage that must be applied to cancel the DC offset within the opamp.
2 DC voltage gain dB AC Small-signal voltage gain at DC.
3 Unity-gain bandwidth MHz AC Frequency at which the small-signal gain first equals one.
4 Phase margin ◦ AC Phase shift of the output voltage at the unity-gain bandwidth frequency.
5 Common-mode rejection ratio (CMRR) dB AC Rejection to the change of the common-mode input voltage.
6 Positive power supply rejection ratio (PSRR+) dB AC Rejection to the change of the positive supply voltage.
7 Negative power supply rejection ratio (PSRR−) dB AC Rejection to the change of the negative supply voltage.
8 Positive slew rate (SR+) V/µs Transient Rate of change in the output voltage for a rising step change in the input.
9 Negative slew rate (SR−) V/µs Transient Rate of change in the output voltage for a falling step change in the input.

(a) w1 and w2 as parameters (b) w1 − w2 as parameter

Fig. 6: Relationship between unity-gain bandwidth, w1 and w2.

(a) w1 and w2 as parameters (b) w1 − w2 as parameter

Fig. 7: Relationship between DC voltage gain, w1 and w2.

When θ is close to the actual probability that the specification
is satisfied, the convergence becomes slow and requires a large
number of simulations. On the contrast, SMI is not affected
in those cases because it performs model inference rather than
hypothesis testing.

Finally, we note that the number of simulations is highly
dependent on the number of parameters. The two properties
with 8 parameters, the positive and the negative slew rate,
require the largest number of simulations. It is clear that
decreasing the number of parameters has a significant effect
on reducing the number of simulations. One exception is the
property DC voltage gain. In this case, a 4-piece polynomial
is employed, in which each piece is generated from 60 simu-
lations. Thus, a total of 240 simulations is performed.

Now we derive the set of parameters that are safe for the
first two specifications. For visualization purpose, we fix the
parameters tox 1−tox 2 and vt01−vt02 and search for the values
of w1−w2 and l1− l2 that satisfy each specification. Figure 9

shows the results. Clearly, the intersection of the two shaded
regions are safe for both of them.

V. CONCLUSION

In this paper, a statistical verification technique, statistical
model inference, is proposed to handle the verification of
analog circuits under process variation. SMI constructs sta-
tistically sound models that contain useful information about
how process parameters affect design properties. They can be
used to characterize a safe subset of the parameter values that
satisfy all the design properties. Our contribution is to extend
the ability of statistical verification from answering a yes/no
question to model inference.

There are several possible directions for future work. First,
we are interested in comparing the application of extreme value
theory and statistical model checking in the context of analog
circuit verification. Attempts will be made to combine the
strengths of the two approaches. Second, we plan to integrate

668



TABLE V: Verification result of the opamp. Table III describes the property IDs. Note that each property may involve a
different type of simulation and circuit configuration.

ID SPEC MONTE-CARLO SMC SMI
MEAN STDDEV YIELD #SIMS VERIFIED #SIMS-1 TIME-1 #SIMS-2 TIME-2 VERIFIED

1 < 30 mV 24.4 17.4 65% 32, 6s 5 60, 10s 0.7s 187, 31s 0.2s 5, > 57%
2 > 65 dB 75.6 9.7 96% 1104, 59s 5 240, 11s 3s 201, 10s 0.4s 5, > 89%
3 > 5MHz 5.3 0.074 100% 89, 5s 3 125, 6s 2s 111, 6s 0.1s 3
4 > 60◦ 64.1 0.35 100% 89, 5s 3 125, 6s 2s 117, 6s 0.1s 3
5 > 80dB 87.2 4.1 100% 89, 7s 3 125, 9s 2s 134, 10s 0.1s 3
6 > 80dB 90.7 2.3 100% 89, 7s 3 125, 9s 2s 119, 9s 0.2s 3
7 > 100dB 105.2 1.1 100% 89, 7s 3 125, 9s 2s 98, 8s 0.1s 3
8 > 10V/µs 10.7 0.08 100% 89, 31s 3 250, 96s 5s 112, 41s 0.3s 3
9 < −7V/µs 7.25 0.01 100% 89, 31s 3 250, 99s 5s 139, 43s 0.3s 3

Fig. 9: The safe subsets of parameters for specification 1 and
2 with tox 1 − tox 2 and vt01 − vt02 fixed.

SMI with polynomial chaos expansion (PCE) technique which
serves as a powerful alternative for least square fitting. Our
preliminary research shows that PCE is a more efficient
approach to generate polynomials according to a certain input
distribution. Finally, it will be beneficial to explore machine
learning techniques to automate the construction of piecewise
polynomials when the underlying property is not well-behaved
with respect to its input parameters.
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