
Fixed Point Iteration for Computing the Time

Elapse Operator

Sriram Sankaranarayanan1,2, Henny B. Sipma2, Zohar Manna2 ?

1 NEC Laboratories America, Princeton, NJ
srirams@nec-labs.com

2 Computer Science Department, Stanford University
(sipma,zm)@theory.stanford.edu

Abstract. We investigate techniques for automatically generating sym-
bolic approximations to the time solution of a system of differential equa-
tions. This is an important primitive operation for the safety analysis of
continuous and hybrid systems. In this paper we design a time elapse
operator that computes a symbolic over-approximation of time solutions
to a continous system starting from a given inital region. Our approach
is iterative over the cone of functions (drawn from a suitable universe)
that are non negative over the initial region. At each stage, we iteratively
remove functions from the cone whose Lie derivatives do not lie inside
the current iterate. If the iteration converges, the set of states defined by
the final iterate is shown to contain all the time successors of the initial
region. The convergence of the iteration can be forced using abstract
interpretation operations such as widening and narrowing.
We instantiate our technique to linear hybrid systems with piecewise-
affine dynamics to compute polyhedral approximations to the time suc-
cessors. Using our prototype implementation TimePass, we demonstrate
the performance of our technique on benchmark examples.

1 Introduction

An invariant is a predicate that holds on every reachable state of the system. By
generating invariants, it is possible to prove a system safe or find potential bugs
in systems. For discrete systems, the generation of invariants can be performed
by a static analysis of the system; forward propagation is used to explore the
reachable states of the system starting from the initial states of the system until
an over-approximation of the reach set is generated, excluding the unsafe region.
This idea has been explored for restricted classes of hybrid systems by popular
tools such as Hytech, DDT, CheckMate and Charon.

To apply the forward propagation scheme to hybrid systems, we need a time
elapse operator ; an operator that, given an initial region Θ and a vector field
D describing the continuous dynamics, computes an over-approximation of the

? This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134,
CCR-02-09237, CNS-0411363, and CCF-0430102, by ARO grant DAAD19-01-1-
0723, and by NAVY/ONR contract N00014-03-1-0939.



time successors of Θ under D for a potentially infinite time horizon. The con-
struction of the reachable set consists of alternate applications of such a time
elapse operator for each mode, along with the standard post condition (image)
operator for discrete mode changes. To be useful, this time elapse operator must
be as accurate as possible. This paper presents a novel method to construct such
a time elapse operator.

Our method iteratively constructs a set of functions {f1, . . . , fm} over the
system variables drawn from a given universe of functions U , such that the cor-
responding assertion f1 ≥ 0∧ . . .∧fm ≥ 0 holds for all time successors of Θ. We
start with the set of all functions in U that are nonnegative over Θ, and then iter-
atively remove those functions whose Lie derivative with respect to the system’s
vector field D does not support the corresponding invariant assertion until a
fixed point is reached. We show that the fixed point is guaranteed to correspond
to an invariant assertion. Standard techniques from abstract interpretation such
as widening and narrowing [5, 6] are used to force convergence in a finite number
of steps to a set of functions that are guaranteed to be nonnegative on all the
time successors of Θ.

The method is presented as a general framework, parameterized by an ab-
stract refinement operator that performs the removal of functions from the set at
each iteration. Specialization of the refinement operator allows the method to be
applied to different function domains, thus generating different types of inequal-
ities. To illustrate the method we describe a concrete instance of the framework
for the domain of affine functions, providing an alternative way of polyhedral
analysis. We have implemented this approach in our prototype tool TimePass

with encouraging results over benchmark examples.

Related Work

The time elapse operator can be analytically computed for polyhedral initial
regions and piecewise constant dynamics. The computation is hard for linear
systems and harder for nonlinear systems. The polyhedral flowpipe approxima-
tion approach of Krogh et al. can solve the bounded time elapse problem for
arbitrary differential equations. The approach has been implemented in their
tool CheckMate [18] and used for complex systems with both linear and nonlin-
ear dynamics. The DDT system due to Dang et al. uses orthogonal polyhedra
and face lifting to compute the time elapse [1]. The PHAVer tool due to Frehse [9]
presents a technique for the safety analysis of linear system using a sophisticated
flowpipe construction for linear differential equations. Nevertheless, these tech-
nique can approximate flowpipes only upto a time bound. They also rely on
numerical integration using ODE solvers to solve a hard non convex optimiza-
tion problem numerically. Piazza et al. [13] and Ratschan et al. [15] propose
approximations to the time-elapse based on quantifier elimination over the reals
along with Taylor series expansions.

The time solutions can be symbolically computed for certain affine systems.
However, the solution typically contains terms involving exponentiations, sines
and cosines. It is computationally expensive to draw inferences from these results.



Extracting polyhedral over-approximations from the solution of linear systems
is a formidable challenge. The work of Lafferriere et al. [12] and Tiwari [19]
present interesting techniques for proving safety by integrating the dynamics of
the system. Recently, symbolic techniques for generating invariants without the
use of an explicit time elapse operator have been proposed, including the gener-
ation of nonlinear equality invariants for systems with polynomial dynamics [17,
20, 16]. These techniques can handle interesting nonlinear systems beyond the
reach of traditional automatic techniques, but the theory has so far been re-
stricted to equality invariants. Prajna and Jadbabaie [14] propose a method for
the synthesis of barrier functions (inequalities) to justify invariants of nonlin-
ear systems using convex optimization. These barrier functions are generated
by solving equations on the unknown coefficients of a parametric polynomial; in
contrast, in this paper we iteratively compute a set of functions starting from
the initial region.

2 Preliminaries

Let R denote the set of reals. A function f : Rn 7→ R is said to be smooth
if it is continuous and differentiable to any degree. Examples of such functions
include polynomials and other analytical functions. Throughout this paper, we
consider assertions ϕ :

∧m
i=1 fi ≥ 0, such that each fi : Rn 7→ R is smooth.

Let ϕ :
∧m

i=1 fi ≥ 0 be such an assertion. We denote the set of values
satisfying ϕ by [[ϕ]], i.e, [[ϕ]] = {x ∈ Rn | ϕ(x)}. An assertion ϕ1 semantically
entails ϕ2, written ϕ1 |= ϕ2 iff [[ϕ1]] ⊆ [[ϕ2]].

Definition 1 (Cone). Let G = {f1, . . . , fi, . . .} be a set of smooth functions.
The cone generated by G is given by

Cone(G) =

{

λ0 +
N

∑

i=1

λifi | λi ≥ 0, 0 ≤ i ≤ N, N > 0

}

.

Each fi ∈ G is said to be a generator of the cone. The cone I is said to be
finitely generated iff I = Cone(G) for some finite set G. Given an assertion
ϕ :

∧m
i=1 fi ≥ 0, the expression Cone(ϕ) denotes Cone({f1, . . . , fm}).

A cone I defines a region [[I ]] = {x ∈ Rn | fi(x) ≥ 0, ∀fi ∈ I}. Given cones
I, J , note that I ⊆ J iff [[J ]] ⊆ [[I ]].

Lemma 1. Given ϕ :
∧m

i=1 fi ≥ 0, if g ∈ Cone(ϕ) then ϕ |= (g ≥ 0).

Proof. If x ∈ [[ϕ]], then fi(x) ≥ 0 for 1 ≤ i ≤ m. Also, if g ∈ Cone(ϕ), then
g = λ0 +

∑

i λifi for λi ≥ 0. Hence, g(x) =
∑

i λifi(x) ≥ 0.

Example 1. Consider J = Cone(ϕ : x ≥ 0 ∧ y ≥ 0). We note that 3x+4y ∈ J .
Thus ϕ |= 3x+4y ≥ 0. On the other hand, ϕ |= x2 +y ≥ 0. However, x2 +y 6∈ J ;
Cone(ϕ) is not necessarily a complete set of consequences.



The intersection of two cones is also a cone. However, the union of two cones
fails to be a cone. We define the conic hull I1 ] I2, to be the smallest cone
containing I1 ∪ I2. Let I1 = Cone(f1, . . . , fk) and I2 = Cone(g1, . . . , gm), then
I1 ] I2 = Cone(f1, . . . , fk, g1, . . . , gm). Therefore, Cone(ϕ1 ∧ ϕ2) = Cone(ϕ1) ]
Cone(ϕ2)

Continuous and Hybrid Systems

A vector field D over Rn associates each point x with a direction D(x) ∈ Rn.
Given a system of differential equations of the form ẋi = fi(x1, . . . , xn), we
associate a vector field D(x) = 〈f1(x), . . . , fn(x)〉.

Definition 2 (Continuous System). A continuous system 〈V,D(·), X,Θ〉 con-
sists of a set of real-valued continuous variables V , such that |V | = n; a vector
field D(·) over Rn defining the dynamics of the system; an invariant predicate
(domain) X restricting the state space of the system and an initial region Θ such
that [[Θ]] ⊆ [[X ]].

A time trajectory of a continuous system is a function τ : [0, δ) 7→ Rn for
some time δ > 0 such that

(a) τ(0) ∈ [[Θ]],
(b) τ(t) ∈ [[X ]], for all t ∈ [0, δ), and
(c) τ̇(t) = D(τ(t)).

Definition 3 (Lie Derivative). Let V (x) = 〈p1(x), . . . , pn(x)〉 be a vector
field in Rn. Let f : Rn 7→ R be continuous and differentiable. The Lie derivative
of f over V is given by LV (f) = (∇f) · V (x) =

∑n
i=1

∂f
∂xi

· pi(x).

Let τ be some time trajectory of a continuous system with dynamics given by
D(·). Consider the function u(t) = f(τ(t)). The time derivative u̇(t) is given by
the Lie derivative LD (f) evaluated at x = τ(t).

Hybrid systems generalize continuous systems by providing finitely many
modes, each with possibly different dynamics and discrete mode changes. A state
is reachable if it occurs in some computation. The set of all reachable states of
a hybrid system is denoted Reach(H). The safety analysis problem given a safe
set S, asks if Reach(H) ⊆ S. Alternatively, the reachability problem given an
unsafe set U , decides Reach(H) ∩ U = ∅.

The safety analysis problem is undecidable for a general hybrid system. In
practice, it is solved by generating an over-approximation of the set Reach(H),
also known as an invariant. The standard technique for generating invariants is
based on a symbolic simulation of the system using assertions to represent sets
of states. These techniques require the fundamental primitive of computing time
elapse on a given region.

Definition 4 (Time Elapse Problem). Given a system 〈V,D(·), X,Θ〉, com-
pute an assertion ψ that contains all the time trajectories of the system starting
from any state x0 ∈ [[Θ]].



This problem is hard to solve in general. However, for restricted cases such as
piecewise constant differential equations and polyhedral assertions, there have
been many successful approaches to approximating the time elapse operation.
In this paper, we provide a general iterative approach to computing the time
elapse operator.

3 Algorithm

We first present the general framework to construct the time elapse operator
without the use of invariant regions. After specializing this framework for the
domain of affine functions, we refine the general framework to the case of systems
with invariant regions. Proofs of theorems have been omitted in this version.
They may be obtained in an extended version of this paper.

3.1 General Framework

Let x be a vector of system variables, Θ : f1 ≥ 0∧ · · · ∧ fm ≥ 0 be the initial
region. Differential equations ẋi = pi(x), 1 ≤ i ≤ n specify the dynamics. Recall
that the dynamics induce a vector field D such that D(x) = 〈p1(x), . . . , pn(x)〉.
Assume p1, . . . , pn Lipschitz continuous.

Let U be a class of continuous and differentiable functions. Typically, U is
suggested by the class of inequalities fi ≥ 0 that appear in the system description
and those inequalities sought as potential invariants. We assume that U is a
vector space of functions, i.e, closed under addition of functions and scaling by
a real. Examples of U include the set of all affine functions over x, the set of all
polynomials of degree at most k, and the set of all polynomials.

We shall begin by formulating the notion of invariants that over-approximate
the reachable states of the continuous system. The time elapse operator that we
seek is nothing but a process of computing such invariants automatically.

Definition 5 (Bounding Invariant). An assertion ϕ : g1 ≥ 0 ∧ · · ·∧gm ≥ 0
is a bounding invariant iff (a) Θ |= ϕ and (b) g1 ≥ 0 ∧· · ·∧ gi = 0 ∧ · · ·∧ gm ≥
0 |= LD(gi) > 0, for all 1 ≤ i ≤ m.

Bounding invariants contain the time trajectories of the system starting from Θ.

Lemma 2 (Soundness). If ϕ is a bounding invariant then all time trajectories
starting from x0 ∈ [[ϕ]] satisfy ϕ.

Proof. Sketch: Consider a time trajectory τ(t) such that gj(τ(t)) < 0 for some
t > 0. Initially, each gi(τ(0)) ≥ 0 for each i. A violation for gi (if it exists) is a
time interval (ti, ti +∆i) such that gi(τ(t)) ≥ 0 for 0 ≤ t ≤ ti and gi(τ(t)) < 0
for ti < t < ti +∆.

Let gj be the “earliest” violation, i.e. tj is minimal (simultaneous violations
are not a problem). Thus, at time tj , gk(τ(tj )) ≥ 0 for all k. Since gj(τ(t)) is
smooth, we obtain gj(τ(tj)) = 0, and since gj(τ(tj + ∆t)) < 0, we have that
ġj(τ(tj)) ≤ 0, leading to a contradiction.



The set of all functions that are bounding invariants need not be convex. For
instance, if g1 ≥ 0 and g2 ≥ 0 are bounding invariants, then g1 + g2 ≥ 0
is invariant but not necessarily a bounding invariant. The notion of a relaxed
invariant provides a stronger condition that is convex.

Definition 6 (Relaxed Invariant). An assertion ϕ :
∧m

i=1 gi ≥ 0 is a relaxed
invariant for a scale factor λ ∈ R iff (a) Θ |= ϕ and (b) ϕ |= LD(gi) + λgi > 0,
for each 1 ≤ i ≤ m.

Lemma 3. If ϕ is a relaxed invariant then it is also a bounding invariant.

Proof. Since ϕ |= LD(gi) + λgi > 0, it follows that (ϕ ∧ gi = 0) |= LD(gi) > 0.

We now extend the notion of a relaxed invariant to a cone of functions.

Definition 7 (Invariant Cone). Let I = Cone({g1, . . . , gm}) be a finitely gen-
erated cone of functions such that I ⊆ U . Let λ ∈ R be a scale factor. We say
that I is an invariant cone iff it satisfies the initiation and closure condition

(1) Initiation: I ⊆ Cone(Θ), (thus [[Θ]] ⊆ [[I ]]),

(2) Lie derivative closure: (∀ f ∈ I) (∃ε > 0) (LD(f) + λf − ε ∈ I).

Lemma 4 (Soundness). Let I = Cone({g1, . . . , gm}) be an invariant cone for
scale factor λ. The assertion ϕ : g1 ≥ 0 ∧ . . . ∧ gm ≥ 0 is a relaxed invariant.

Proof. Sketch: For each gi, L(gi) + λgi − ε ∈ I for some ε > 0, we have that
ϕ :

∧

i gi ≥ 0 |= L(gi) + λgi − ε ≥ 0 |= L(gi) + λgi > 0. Thus ϕ is a relaxed
invariant, and hence an invariant.

Lemma 5. If Iλ is an invariant cone for scale factor λ, then it is also invariant
for any scale factor µ ≥ λ.

Proof. For any f ∈ Iλ, L(f)+λf − ε ∈ Iλ, for ε > 0. Also, for µ ≥ λ, (µ−λ)f ∈
Iλ. Therefore, L(f) + µf − ε ∈ Iλ and thus Iλ is invariant for any scale factor
µ ≥ λ.

The key computational step in our scheme is that of a refinement operator:

Definition 8 (Refinement Operator). Given a cone I, a vector field D and
a scale factor λ, we define the set

∂λI = {f ∈ U | λf + LD(f) − ε ∈ I, ε > 0} .

Thus, ∂λI consists of all the functions f ∈ U such that LD(f) + λf − ε ∈ I.

The notion of an invariant may be recast as follows: A cone I is invariant for
scale factor λ iff I ⊆ Cone(Θ) ∩ ∂λI . Consider the monotonic function Fλ over
cones, defined by Fλ(I) = I ∩∂λI ∩Cone(Θ). A cone I is said to be a fixed point
for Fλ iff Fλ(I) = I .



Theorem 1. Given a cone I, and the refinement operator ∂λ,

1. ∂λI is a cone.
2. The function Fλ(I) = I ∩ (∂λI)∩ (Cone(Θ)) is monotonic and decreasing in

the lattice of cones ordered by set inclusion, i.e., Fλ(I) ⊆ I.
3. If Fλ(I) = I, i.e., I is a fixed point of Fλ, then I is an invariant cone.
4. If λ ≤ µ then ∂λI ⊆ ∂µI. Thus, Fλ(I) ⊆ Fµ(I).

The space of all cones I ⊆ U forms a complete lattice and furthermore, Fλ is
a monotonic function. Tarski’s theorem (see [7]) guarantees the existence of a
greatest fixed point of Fλ: I∗λ =

⋂

i≥0 ∂
i
λCone(Θ) .

If I∗λ is finitely generated then its generators correspond to an invariant as-
sertion. Note that I∗λ ⊆ I∗µ for µ ≥ λ. Thus, it follows that [[I∗µ]] ⊆ [[I∗λ ]]. A larger
value of λ, yields a stronger invariant.

In practice, the greatest fixed point is frequently not computable and even
when it can be analytically computed, it may not be finitely generated. There-
fore, we seek fixed points that are not necessarily the greatest fixed points. Note
that such fixed points are also guaranteed to be invariant cones. This is per-
formed by under-approximating I∗λ as the limit of the following iteration:

I(0) = U

I(i+1) = Fλ(I(i)) = I(i) ∩ (∂λI
(i)) ∩ Cone(Θ)

It follows from the monotonicity of Fλ that each I(i+1) ⊆ I(i). The iteration
converges if I(i+1) = I(i). If convergence occurs in finitely many steps then the
result is a fixed point. Additionally, if the result is finitely generated then it
is also an invariant. On the other hand, convergence is not guaranteed in all
domains. Therefore, we use the narrowing operator 4 to force convergence [5,
6].

Definition 9 (Narrowing Operator [5, 6]). Let I1, I2 be two cones such that
I1 ⊇ I2. The narrowing I1 4 I2 is a cone defined as follows

1. I1 4 I2 ⊆ I1 ∩ I2 ⊆ I2.
2. Given any monotonically decreasing sequence I0 ⊇ I1 ⊇ · · · , the sequence

J0 = I0, Ji = Ji−1 4 Ii converges in finitely many steps.

The convergence of the iterative strategy to some fixed point can now be
ensured by repeated application of narrowing. For instance, consider the strategy

I0 = U

Ij+1 = Fλ(Ij), if 0 ≤ j ≤ K

Ik+1 = Ik 4 F(Ik), if k > K

This strategy known as the naive iteration computes the regular iteration se-
quence until a fixed limit K. If convergence is not achieved within this bound, the
repeated application of the narrowing operator guarantees convergence. Start-
ing from a finitely generated cone Cone(Θ), and forcing convergence in finitely
many steps (either naturally or through narrowing), we are guaranteed a finitely
generated invariant cone I .



3.2 Polyhedral Analysis of Affine Systems

As a concrete instance of the framework defined in Section 3.1, we now present
algorithms for the special case when the universe is the set of all affine expressions
cT x + c0, the initial set Θ is a polyhedron of the form Ax + b ≥ 0, and the
dynamics are affine, of the form ẋ = Px + q. The Lie derivative is given by
LD(cT x + c0) = cTPx + cT q.

Definition 10 (Finitely generated (polyhedral) cones). A cone I ⊆ U is
said to be finitely generated iff I = Cone(g1, . . . , gm). The functions g1, . . . , gm

are said to be its generators. Let I be a finitely generated cone of affine expres-
sions. We may represent I in the form of a polyhedron I = {cT x + c0 | Ac ≥ 0} ,
for a m× (n+ 1) matrix A.

More generally, the coefficients of each expression in I satisfy a linear constraint
of the form Ac ≥ 0. Note that the vector c contains coefficient ci for variables
xi along with the coefficient c0 for the constant term.

Example 2. Consider the set of all affine expressions with nonnegative coeffi-
cients. We may represent such a set as

N = {cT x + c0| c0 ≥ 0 ∧ c1 ≥ 0 ∧ · · · cn ≥ 0} .

This set is finitely generated by the expressions {x1, x2, . . . , xn}. Consider the
assertion Θ : x = 0 ∧ y ≥ 0 ∧ y ≤ 1. We may represent Cone(Θ) in two ways:

Cone(Θ) = Cone({x, −x, y, 1 − y})
= {c0 + c1x+ c2y | c0 ≥ 0 ∧ c0 + c2 ≥ 0}

Conversion between representations is achieved through a vertex enumeration.

The refinement operator can be computed in a straightforward manner for
finitely generated cones of affine expressions, as suggested by the following lemma

Lemma 6. Let I = {cT x + c0 | ϕ(c, c0)} and ε > 0. The refinement ∂λI for a
field D(x) = Px + q is a finitely generated cone given by

∂λI = {cTx + c0 | ϕ(P T c + λc, λc0 + qT c − ε)} .

Proof. The Lie derivative LD(cT x + c0) = cTPx + qT c. Therefore, given an
expression f : cT x + c0 ∈ U , (LD(f) + λf − ε) ∈ I : {cTx + c0 | ϕ(c, c0)} iff
ψ : ϕ(λc + P T c, λc0 + qT c − ε) holds.

Note: The set I = {cT x + c0 | A(c, c0)
T + b ≥ 0} is convex but not a cone unless

b = 0. If ε were given a fixed value such as 0.001 in our theory, the resulting
constraints after refinement are not homogeneous. In theory, we introduce ε as a
new variable and eliminate it from the final result. This is common in polyhedral
libraries implementing strict inequalities.

The intersection of two sets {cT x + c0 | ϕ1} and {cT x + c0 | ϕ2} is given by
{cT x + c0 | ϕ1 ∧ ϕ2}. We have now defined all the basic primitives needed to
carry out the fixed point iteration for this domain.



�

�

Θ

I(2)I(3) y

x

�

�

�

�

�

�

�

y

x

(a) (b)

Fig. 1. Fixed points for Example 3: (a) λ = 0, (b) λ = 1. The shaded figure represents
the final fixed point (not to scale). Dashed line in (b) represents upper solid line in (a).

Table 1. Iterates for Examples 3 for λ = 0.

# constraints generators

1 c0 ≥ 0, c0 + c2 ≥ 0 x = 0, 0 ≤ y ≤ 1

2 c0 ≥ 0, c0 + c2 ≥ 0, 2c2 − c1 ≥ ε x ≤ 0, y ≥ 0, 0 ≤ 2x+ y ≤ 1

3
c0 ≥ 0, c0 + c2 ≥ 0,

2c2 − c1 ≥ ε, 5c2 − 4c1 ≥ 0
x ≤ 0, y ≥ 0,

2x+ y ≤ 1, 4y + 5x ≥ 0

4
c0 ≥ 0, c0 + c2 ≥ 0,

2c2 − c1 ≥ ε, 14c2 − 13c1 ≥ 0
x ≤ 0, y ≥ 0,

2x+ y ≤ 1, 13y + 14x ≥ 0

...
...

...

∞
c0 ≥ 0, c0 + c2 ≥ 0,

2c2 − c1 ≥ ε, c2 − c1 ≥ 0

x ≤ 0, y ≥ 0,
2x+ y ≤ 1,
y + x ≥ 0

Example 3. Consider the system ẋ = 2x − y, ẏ = −x + 2y. We perform the
iterator for scale factor λ = 0. The Lie derivative of an expression c0+c1x+c2y is
given by (2c1−c2)x+(2c2−c1)y. Consider the initial regionΘ : x = 0, 0 ≤ y ≤ 1.

Cone(Θ) = {c0 + c1x+ c2y | c0 ≥ 0 ∧ c0 + c2 ≥ 0} .

Let I(0) = U , the set of all affine expressions. It follows that ∂0I
(0) = U . There-

fore, I(1) = F(I) = Cone(Θ) ∩ (∂0I
(0)) ∩ I(0) = Cone(Θ).

∂0I
(1) = ∂0 {c0 + c1x+ c2y | c0 ≥ 0 ∧ c0 + c2 ≥ 0}

= {c0 + c1x+ c2y | 2c2 − c1 ≥ ε}

I(2) = {c0 + c1x+ c2y | c0 ≥ 0 ∧ c0 + c2 ≥ 0 ∧ 2c2 − c1 ≥ ε, ε > 0}

Table shows the cones encountered along the iteration, visualized in Figure 1(a).
The fixed point I∞ is not reached in finitely many iterations. The following table
shows the fixed points for different values of the scale factor λ. Convergence was
forced by the narrowing heuristics described below. Figure 1(b) depicts the fixed



point for the case λ = 1.

λ Iλ fixed point generators
−1 x+ y ≥ 0, x ≤ 0

1
x+ y ≥ 0, x ≤ 0, 2x+ y ≤ 1, 7x+ 5y ≤ 8,
13x+ 11y ≤ 32, 25x+ 23y ≤ 128, 49x+ 47y ≤ 512

2
x+ y ≥ 0, x ≤ 0, 2x+ y ≤ 1, 6x+ 4y ≤ 5,
56x+ 44y ≤ 75, 536x+ 464y ≤ 1125

Note that the invariant for a larger value of λ subsumes that for a smaller value.
In general, the iteration does not necessarily terminate in a finite number of
steps. Furthermore, the resulting cone I may not be finitely generated. Therefore,
approximations in the form of narrowing are required to force termination in a
finite number of steps. For any two finitely generated cones, it is possible to
define a standard narrowing by dropping generators [5].

Definition 11 (Standard Narrowing). Consider two cones I1 = Cone(g1, . . . , gm)
and I2 = Cone(h1, . . . , hk) such that I1 ⊇ I2. The standard narrowing I = I14I2
is defined as I = Cone(gi | gi ∈ I2) . In other words, the standard narrowing
drops from I1 all those generators that do not belong to the cone I2.

Each application of the standard narrowing results either in convergence or the
removal of at least one generator from the first argument. This guarantees con-
vergence of the naive iteration strategy in finitely many steps.

Example 4. Consider two successive iterates from Example 3.

I1 =

(

c0 ≥ 0, c0 + c2 ≥ 0,
2c2 − c1 ≥ 0, 11c2 − 10c1 ≥ 0

)

= Cone(x,−y, 2x+ y − 1, 10y + 11x)

I2 =

(

c0 ≥ 0, c0 + c2 ≥ 0,
2c2 − c1 ≥ 0, 33c2 − 32c1 ≥ 0

)

= Cone(x,−y, 2x+ y − 1, 32x+ 33y)

Note that all but one generator (10x + 11y) in I1 also belong to I2. Therefore,
narrowing drops this generator resulting in

I1 4 I2 =

(

c0 ≥ 0, c1 ≤ 0,
c0 + c2 ≥ 0, 2c2 − c1 ≥ 0

)

= Cone(x,−y, 2x+ y − 1)

3.3 Adding Invariant Regions

We now extend the general framework by considering the evolution restricted
to an invariant region of the form X : h1 ≥ 0 ∧ h2 ≥ 0 · · ·hk ≥ 0 such that
Θ |= X . Let J = Cone(X) = Cone(h1, . . . , hk). As in Section 3.1, we assume
that U is a universe, Θ is the initial condition and D is a differential field, with
the refinement operator ∂λ. Furthermore, we assume that h1, . . . , hk ∈ U .

Definition 12 (Invariant Cone). Let I = Cone({g1, . . . , gm}) be a finitely
generated cone of functions such that I ⊆ U . We fix a scale factor λ ∈ R. We
say that I is an invariant cone under the invariant region J = Cone(X) iff it
satisfies the initiation and closure condition



Algorithm 1 Algorithmic scheme for computing Time Elapse

K: Number of steps of initial iteration. λ: Appropriate value of λ for refinement.
Narrow: function implementing narrowing scheme for forcing convergence
function ComputeTimeElapse( Θ : predicate, D: dynamics, ψ: invariant)
I(0) := ConeOfConsequences(Θ) { Form the initial cone by dualization }
J := ConeOfConsequences(ψ) { Form the cone for the invariant region}
for i = 1 to K do

{Initial iteration for K steps}
I(i) := (I(i− 1) ∩ Refinement(I(i− 1), D, λ)) ] J

end for
I := I(K)
{Start Narrowing to enforce convergence}
repeat
I ′ := (I ∩ Refinement(I,D, λ)) ] J {Refine I w.r.t. dynamics. assert(I ′ ⊆ I)}
I := Narrow(I, I ′) { Narrow successive iterations. assert(I ⊆ I ′)}

until I ′ ≡ I

return[[I]]

(1) Initiation: I ⊆ Cone(Θ) ] J ,

(2) Lie derivative closure: (∀ f ∈ I) (∃ ε > 0) (LD(f) + λf − ε ∈ I ] J).

Lemma 7 (Soundness). Let τ : [0, δ) be any time trajectory starting from
x0 ∈ [[Θ]], under the vector field D and the invariant region X. Let I be an
invariant cone (under X). It follows that for all t ∈ [0, δ), gi(τ(t)) ≥ 0.

We now extend the iterative solution in the presence of an invariant region
cone J . Let us assume a fixed scale factor λ. Let FX(I) = J ] (Fλ(I)). Also, let
I(0) = U be the initial iterate. We refine each iterate using

I(i+1) = FX(I(i)) = J ] (I(i) ∩ (∂λI
(i)) ∩ Cone(Θ)) .

FX is monotonic, and furthermore, its fixed point is an invariant under the
region X . Therefore, as before, we may use the iterative technique with heuristic
narrowing to force convergence. Algorithm 1 depicts the computation.

Given two cones I1 = {cT x + c0|A1c ≥ 0} and I2 = {cT x + c0|A2c ≥ 0},
their union is given by I1 ] I2 = {cT x + c0 | (A1c ≥ 0) t (A2c ≥ 0)} , where t
denotes the polyhedral convex hull of two polyhedra.

Hybrid Systems Analysis The time elapse operator presented so far can be used
as a primitive to perform approximate reachability analysis of hybrid systems.
While the time elapse operator is used inside each mode to compute the time
successors, the standard post condition operator is used to compute the image of
a set of reachable states under a discrete transition. Algorithm 2 presents the use
of our time elapse operator for the analysis of hybrid system. This algorithm is
widely used in the analysis of hybrid systems [11]. Note that the convergence of
this algorithm is not guaranteed for all hybrid systems. It is possible to modify



Algorithm 2 Compute reach-set for hybrid system using time elapse operator

list wlist : worklist consisting of unprocessed modes and predicates.
map reachmap : maps each location to its current reachability predicate.

function analyze-hybrid-system { compute reachable state (predicates) }
{initialize the worklist and reachmap}
wlist := {〈minitial , Θ〉} {add initial mode and start predicate to the worklist}
(∀ mode m) reahmap(m) := false
{initial reachable region is empty for each mode}
while wlist 6= ∅ do

〈m,ϕ〉 := pop(wlist) {pop an unprocessed mode/predicate from worklist.}
if [[ϕ]] 6⊆ [[reachmap(m)]] then

{if the states in the popped predicate have not already been visited}
visit(m,ϕ) {process unvisited states}

end if
end while
{No more unprocessed predicates. Hence, all states have been visited.}
end function {analyze-hybrid-system}

function visit( m :mode, ϕ : predicate) {mode m is entered with state set ϕ}
ϕ′ := computeTimeElapse(ϕ, inv(m), dynamics(m))
{apply time elapse operator to ϕ}
reachmap(m) := reachmap(m) ∨ ϕ′

{add ϕ′ to reachmap. If ϕ′ is polyhedral, ∨ may be approximated by convex hull. }
for all τ : m→ m′ outgoing discrete transitions of mode m do
ψ′ := post(ϕ′, τ ) {compute post condition}
wlist := wlist ∪ 〈m′, ψ′〉 { enqueue new 〈location, predicate〉 pair}

end for
end function {visit}

Algorithm 2 to use widening/narrowing along the lines of Algorithm 1 (see [10]).
However the loss in precision due to widening could make it less useful in prac-
tice. We have implemented the algorithm for systems with affine dynamics and
polyhedral guards/invariants maps in our prototype tool TimePass.

3.4 Discussion

The technique, so far, has many parameters that need to be adjusted for its
proper working. We list a few important issues that arise in practice.

Narrowing. Repeated applications of standard narrowing guarantees the termi-
nation of the iteration. However, the standard narrowing is a poor strategy for
forcing convergence. More heuristic strategies such as extrapolation are based
on “guessing” the ultimate limits of an iteration. For instance, the evolution of
a generator across successive iterations 4y + 5x, 13y + 14x, 40y + 41x, · · · ob-
served in Example 3 suggests the limit x+y, leading us to the actual fixed point.
The problem of designing precise narrowing/widening operators for polyhedral



Fig. 2. Reachable regions for benchmarks nav-04 (left) and nav-06(right). Top left
rectangle shows the unsafe region.

iterates has received a lot of attention in the (discrete) program analysis com-
munity [4, 10, 2]. Our own narrowing strategy maps generators across successive
iterates using a distance metric such as the euclidean distance. It then guesses
the ultimate limit as a weighted sum of the mapped pairs of generators rounded
to a fixed precision limit.

Iteration Scheme. There has been a significant amount of work in the program
analysis community on choosing iteration schemes for fixed point iterations. In
this paper, however, we choose the “naive iteration” scheme (Algorithm 1). The
scheme uses a pre-determined number (K) of initial iteration steps followed by
narrowing/extrapolation until convergence. The value of K needs to be suffi-
ciently large to allow our extrapolation scheme to guess the right limit to the
iteration. However, higher values of K lead to large and complex polyhedra.

Choosing λ. In theory, a larger value of λ produces a stronger invariant. This may
fail to hold due to the approximate nature of the narrowing operator. Neverthe-
less, the result holds in most examples encountered in practice. Unfortunately,
a larger value of λ yields extremely complex cones with large coefficients in its
representation. In practice, we perform many time elapses in stages, starting
from a coarser grained approximation with smaller values of λ and improving
using larger values. Such an approach provides means of focusing our narrowing
heuristic at each stage to perform no worse than the previous one. For linear
systems, using λ = 0 discovers the rays (infinite directions) of the time elapse
operator, useful for computing time elapses over infinite time horizons.

4 Applications

Our tool timepass implements the algorithms described in this paper for the case
of hybrid automata with affine dynamics and updates. Mode invariants, transi-
tion guards and initial regions are all assumed polyhedral. Our implementation
is based on the Parma Polyhedral Library [2]. The library uses exact arithmetic
to represent the coefficients of polyhedra. By default, the reachable set is rep-
resented as a list of polyhedra. However, it is possible to speed convergence of
Algorithm 2 by using a single polyhedron per location.



Table 2. Resource utilization for the NAV benchmark examples.

# λ = 0, 10 λ = 0, 100

Time Mem (Mb) Proved Time Mem (Mb) Proved

nav-01 4.4s 2.1 Yes 1m28s 5.2 Yes

nav-02 1m13s 5.2 Yes 20m12s 18 Yes

nav-03 1m18s 5 Yes 17m51s 16 Yes

nav-04 19m51s 16 Yes ≥ 45m ≥ 60 No

nav-05 2m39s 8.5 No 11m49s 30 No

nav-06 ≥ 45m ≥ 35 No 12m14s 21 No

Example 5. We consider the nav benchmark examples standardized by Fehnker
and Ivančić [8]. These benchmarks consist of an object moving through rectangu-
lar cells on a plane, each with different target velocities. Instances of these bench-
marks have been standardized and are available online3. We refer the reader to
this online repository for a detailed description. For each benchmark, we allowed
our tool 45 minutes to converge. Figure 2 depicts the final reach sets computed
for nav-04 and nav-06. In each case, the square at the top left corner is the
forbidden region whose unreachability needs to be proven. Table 2 shows the
running times and memory consumption recorded on an Intel Pentium III lap-
top with 512 Mb RAM. We were able to prove unreachability of the forbidden
region for benchmarks nav-01 to nav-04. For nav-06, the entire forbidden re-
gion but for the right most corner of the forbidden region is unreachable. As
expected, there is a performance penalty for a higher value of λ. However for the
case of nav-06, we observe a reversal of this trend. A more accurate time elapse
operator forces convergence of Algorithm 2 faster for this case.

5 Conclusion

We have presented a general framework for over approximating the flowpipe of a
continuous system given a starting region. We have provided an instance of this
framework for affine systems and polyhedral approximations. Our technique is
entirely symbolic and works by computing a greatest fixed point in the space of
finitely generated cones. As an advantage, our technique can handle unbounded
domains and construct approximations that hold without any time bounds. Our
approach is independent of the eigenstructure of the equation. On the other hand,
the technique presents many parameters, chiefly the “scale factor” involved in
the iteration. A larger value provably yields a more precise answer at the cost of
performance.

We have engineered a prototype TimePass for the analysis of affine hy-
brid systems using polyhedra to represent sets of states. Our initial results with

3 see http://www.cse.unsw.edu.au/∼ansgar/benchmark/nav inst.txt



benchmarks results are encouraging. Better narrowing strategies and careful en-
gineering should improve its performance on these benchmarks. We are also look-
ing into other representations of cones such as ellipsoids and quadratic forms
for handling non-linear systems. We hope to extend our technique to provide
a stronger framework based on sum-of-squares and positive semidefinite cones
rather than polyhedral cones.

Acknowledgments. We are grateful Franjo Ivančić and the reviewers for their
comments. Thanks to the developers of the PPL library [3] and Aaron Bradley
for the Mathematica interface to PPL.

References

1. Asarin, E., Dang, T., and Maler, O. The d/dt tool for verification of hybrid
systems. In Proc. 14th Intl. Conference on Computer Aided Verification (2002),
vol. 2404 of Lecture Notes in Computer Science, Springer–Verlag, pp. 365–370.

2. Bagnara, R., Hill, P. M., Ricci, E., and Zaffanella, E. Precise widening
operators for convex polyhedra. In Static Analysis Symposium (2003), vol. 2694 of
Lecture Notes in Computer Science, Springer–Verlag, pp. 337–354.

3. Bagnara, R., Ricci, E., Zaffanella, E., and Hill, P. M. Possibly not closed
convex polyhedra and the Parma Polyhedra Library. In Static Analysis Symposium
(2002), vol. 2477 of Lecture Notes in Computer Science, Springer–Verlag, pp. 213–
229.

4. Besson, F., Jensen, T., and Talpin, J.-P. Polyhedral analysis of synchronous
languages. In Static Analysis Symposium (1999), vol. 1694 of Lecture Notes in
Computer Science, Springer–Verlag, pp. 51–69.

5. Cousot, P., and Cousot, R. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
ACM Principles of Programming Languages (1977), pp. 238–252.

6. Cousot, P., and Cousot, R. Comparing the Galois connection and widen-
ing/narrowing approaches to Abstract interpretation, invited paper. In PLILP ’92
(1992), vol. 631 of Lecture Notes in Computer Science, Springer–Verlag, pp. 269–
295.

7. Davey, B. A., and Priestly, H. A. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

8. Fehnker, A., and Ivančić, F. Benchmarks for hybrid systems verification. In
Hybrid Systems: Computation and Control (HSCC 2004) (2004), vol. 2993 of Lec-
ture Notes in Computer Science, Springer–Verlag, pp. 326–341.

9. Frehse, G. PHAVer: Algorithmic verification of hybrid systems past HyTech.
In Hybrid Systems: Computation and Control (HSCC 2005) (2005), vol. 2289 of
Lecture Notes in Computer Science, Springer–Verlag, pp. 258–273.

10. Halbwachs, N., Proy, Y., and Roumanoff, P. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design 11, 2 (1997), 157–
185.

11. Henzinger, T., and Ho, P.-H. Algorithmic analysis of nonlinear hybrid sys-
tems. In Computer-Aided Verification, P. Wolper, Ed., vol. 939 of Lecture Notes
in Computer Science. Springer–Verlag, 1995, pp. 225–238.

12. Lafferriere, G., Pappas, G., and Yovine, S. Symbolic reachability compu-
tation for families of linear vector fields. J. Symbolic Computation 32 (2001),
231–253.



13. Piazza, C., Antoniotti, M., Mysore, V., Policriti, A., Winkler, F., and

Mishra, B. Algorithmic algebraic model checking I: Challenges from systems biol-
ogy. In Computer-aided Verification (2005), vol. 3576 of Lecture Notes in Computer
Science, Springer–Verlag, pp. 5–19.

14. Prajna, S., and Jadbabaie, A. Safety verification using barrier certificates. In
Hybrid Systems: Computation and Control (2004), vol. 2993 of Lecture Notes in
Computer Science, Springer–Verlag, pp. 477–492.

15. Ratschan, S., and She, Z. Safety verification of hybrid systems by constraint
propagation based abstraction refinement. In HSCC (2005), vol. 3414 of Lecture
Notes in Computer Science, Springer–Verlag, pp. 573–589.

16. Rodriguez-Carbonell, E., and Tiwari, A. Generating polynomial invariants
for hybrid systems. In Hybrid Systems: Computation and Control, HSCC 2005
(2005), vol. 3414 of LNCS, Springer, pp. 590–605.

17. Sankaranarayanan, S., Sipma, H. B., and Manna, Z. Constructing invariants
for hybrid systems. In Hybrid Systems: Computation and Control (HSCC 2004)
(march 2004), vol. 2993 of Lecture Notes in Computer Science, Springer–Verlag,
pp. 539–555.

18. Silva, B., Richeson, K., Krogh, B. H., and Chutinan, A. Modeling and
verification of hybrid dynamical system using checkmate. In ADPM 2000 (2000).
available online from http://www.ece.cmu.edu/∼webk/checkmate.

19. Tiwari, A. Approximate reachability for linear systems. In Hybrid Systems:
Computation and Control HSCC (2003), vol. 2623 of Lecture Notes in Computer
Science, Springer–Verlag, pp. 514–525.

20. Tiwari, A., and Khanna, G. Non-linear systems: Approximating reach sets. In
Hybrid Systems: Computation and Control (2004), vol. 2993 of Lecture Notes in
Computer Science, Springer–Verlag, pp. 477–492.


