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ABSTRACT
We present a simple yet useful technique for refining the con-
trol structure of loops that occur in imperative programs.
Loops containing complex control flow are common in syn-
chronous embedded controllers derived from modeling lan-
guages such as Lustre, Esterel, and Simulink/Stateflow. Our
approach uses a set of labels to distinguish different con-
trol paths inside a given loop. The iterations of the loop
are abstracted as a finite state automaton over these labels.
Subsequently, we use static analysis techniques to identify
infeasible iteration sequences and subtract such forbidden
sequences from the initial language to obtain a refinement.
In practice, the refinement of control flow sequences often
simplifies the control flow patterns in the loop. We have
applied the refinement technique to improve the precision
of abstract interpretation in the presence of widening. Our
experiments on a set of complex reactive loop benchmarks
clearly show the utility of our refinement techniques. Ab-
straction interpretation with our refinement technique was
able to verify all the properties for 10 out of the 13 bench-
marks, while abstraction interpretation without refinement
was able to verify only four. Other potentially useful appli-
cations include termination analysis and reverse engineering
models from source code.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Assertion checkers; model checking; formal meth-
ods; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning About Programs—As-
sertions; Invariants; Mechanical Verification; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—Program analysis
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1. INTRODUCTION
Imperative while loops with a complex control structure

are common in synchronous systems. Synchronous modeling
languages such as Lustre, Esterel or Simulink/Stateflow,
yield programs that typically consist of an initialization fol-
lowed by a while-forever loop that incorporates the tasks
of input sensing, processing, state updates, and error/special
case handling. These loops are characterized by complex
control flow, including conditional branches, nested loops,
as well as, break and continue statements. The analysis of
such loops using abstract interpretation requires the use of
widening and narrowing [13]. However, the use of widen-
ing may induce a loss in precision that is hard to recover
from. Other techniques based on software model checking
suffer from the problem of divergence or depth saturation
over long running loops [4, 6, 8, 27].

We propose simple techniques based on abstract interpre-
tation to infer a refined control structure for loops that are
present in imperative programs. Our approach first parti-
tions the paths through the loops into disjoint sets. The par-
titioning may be performed using syntactic considerations
based on key conditional branches inside loops, assertion
checks, break statements, and continue statements (or, al-
ternatively, using data predicates). Each partition Si of the
loop is given a label ai so that each iteration of the loop is
associated with the label corresponding to the partition that
contains the sequence of control states visited in the itera-
tion. The execution of the loop is then abstracted as a reg-
ular language over the labels a1, . . . , am. The initial regular
language L0 consists of all the iteration sequences that are
syntactically feasible in the original program. Subsequently,
language L0 is refined by ruling out infeasible sub-sequences,
yielding a refined language L ⊆ L0. The refinement is per-
formed using the results of abstract interpretation or other
program analysis and verification techniques. Finally, a loop
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body with a refined control structure is extracted from the
finite state automaton representing language L.

Our approach to refinement has many advantages:

• It may be performed as a local (intra-procedural) anal-
ysis on each loop by itself.

• Using the refined loop improves the results of abstract
interpretation by minimizing the precision loss due to
widening, and, in turn, enables proofs for more prop-
erties.

• Our approach is domain independent. After refining
the control structure of a loop, we may apply any
verification technique over the transformed program.
Our experimental results show that doing so definitely
helps prove more properties (see Fig. 9).

• The refinement has several other benefits, including
simpler proofs for termination [10], termination analy-
sis [11], non-termination detection [23], and automatic
complexity analysis [22].

Example 1.1 (Motivating Example). Fig. 1 shows
a code fragment that computes the current year given the
number of elapsed days since 1980. A non-termination bug
in this loop is believed to have caused the recent failure behind
many Microsoft Zune(tm) music players.1 The loop has a
head 2 and an exit E. Consider a partition of the loop paths
into the following sets:2

π1 : {2 → 3 → 4 → 7 → 2, 2 → 3 → 9 → 11 → 2}
π2 : {2 → 3 → 4 → 2}
πI : {1 → 2}
πE : {2 → E}

Sets π1, π2 consist of paths around the loop starting and
ending at the loop head. Set πI represents an initiation of
the loop and set πE represents the exits from the loop. The
regular language L0 : πI(π1|π2)

∗πE, represents the set of
all eventually terminating runs of the loop. The finite state
automaton A1 shown below represents this language:

A1 : q0 q1 q2
πI

π1

π2

πE

Using static analysis, we discover that an execution of π2

cannot be succeeded by an execution of π1 or πE . This ob-
servation allows us to refine the automaton to A2 as follows:

A2 :

q0 q1 q2

q3

πI

π1

π2

π2

πE

1www.aeroxp.org/2009/01/lesson-on-infinite-loops,
viewed Aug 7th, 2009
2Heuristics for loop partitioning are discussed in Section 4.1.

The refinement A2 derived by our approach can be shown
to be a valid abstraction of the sequence of iterations of the
loop. Notice that π2 does not change the values of any of
the program variables. Therefore, if state q3 in the automa-
ton were to be reached, we may conclude the possibility of
non-termination of the loop due to repeated iterations of π2.
Note, however, that this is a potential non-termination. Its
feasibility can be established using a tool such as F-Soft that
can present concrete witnesses to reachability [27].

2. RELATED WORK
As mentioned earlier, complex control loops are common

in reactive (control) systems which maintain an ongoing in-
teraction with an environment. In practice, model-based de-
velopment of software using synchronous programming mod-
els expressed in formalisms such as Lustre and Esterel can be
translated into C programs, each consisting of a single outer
while loop that encapsulates the remaining control flow [24].
In such data-flow languages, Boolean flags are used to mimic
the control flow. This holds true, in general, for visual devel-
opment environments such as Simulink/Stateflow (tm) [30].

The automatic analysis of source code for embedded sys-
tems has become increasingly common. Formal techniques,
such as static analysis using abstract interpretation and
model checking using SAT/SMT solvers, are increasingly im-
portant for verifying properties involving timing (Absint [1]),
floating point precision (Fluctuat [21]), and run-time errors
(Astreé [7], Goanna[16], F-Soft [27]). In practice, the pres-
ence of complex loops poses a challenge for the techniques
that underlie such tools.

Abstract interpretation [13] using numerical domains, such
as intervals [12], octagons [32], and convex polyhedra [14]
necessitate the use of widening and narrowing operators to
guarantee termination over loops in the program. It is well-
known that the presence of complex loops makes the applica-
tion of widening during abstract interpretation challenging.
Complex loops are a challenge to other verification tech-
niques as well: they may lead to divergence in tools based
on software model checking.

The weaknesses in widening and narrowing can be reme-
died, in part, through the use of disjunctive domains [2]
or techniques for refining the control flow based on node,
trace or abstract state partitioning [28, 31, 34] to obtain
a degree of path sensitivity. However, in practice, disjunc-
tive domains do not handle large programs, especially in
the presence of loops. On the other hand, techniques based
on trace partitioning depend critically on user-input or the
choice of heuristics to work effectively. Further, existing
path-sensitive analysis proposals do not fare well with loops.
They resort to unrolling or unwinding, which does not prove
many properties and often results in a 10-20x slowdown [3,
34]. Our work addresses the problem specifically for loops
without resorting to simply unrolling them.

In particular, our previous work uses infeasible path infor-
mation to refine the control flow graph of the program [3].
The technique presented here specializes this idea to the case
of loops. The detection of infeasible paths in our previous
work is based on the result of many forward and backward
whole program analyses, which uses widening and narrow-
ing heuristics for convergence, and, as such, is unsuitable for
proving the infeasibility of loop iteration patterns. The work
presented in this paper provides the following improvements:
(a) it is based on a simple and local analysis that focuses
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1: year := 1980 ;
2: while (days > 365){
3: if (IsLeapYear(year)) {
4: if (days > 366) {
5: days − = 366;
6: year + = 1;
7: }
8: } else {
9: days − = 365;
10: year + = 1;
11: }
12: }
E:

1

2

E 3

4 9

7 11

year := 1980

days ≤ 365

days > 365

leapYr

¬leapYr

[
days := . . .
year := . . .

][
days := . . .
year := . . .

]days ≤ 366

Figure 1: Potentially non-terminating loop found in the clock driver of Zune(tm)

mainly on the analysis of composed loop paths, which can
be much smaller than the program as a whole, and (b) in
the absence of inner loops, widening is not needed to apply
our technique.

The problem of loop refinement was addressed recently by
Gulwani et al. to provide improved loop complexity bound
estimation [22]. Given a loop, their approach partitions the
loop paths based on the control flow inside the loop. Sub-
sequently, a loop refinement is constructed “bottom-up” by
exploring the tree of possible sequences of loop iterations
and maintaining an invariant for the set of states at each
node of the tree. Exploration of this tree is stopped at a
leaf: (a) by means of adding back-edges to a previously ex-
plored node whenever the invariant at the node subsumes
the invariant at the leaf being explored, (b) when the leaf
invariant is false, or (c) heuristically, by means of back edges
and widening if the depth of the tree exceeds a maximal per-
missible value.

Our approach solves a similar problem as that of Gulwani
et al [22]. However, we follow a “top-down” approach by
simply removing infeasible sub-sequences starting from the
initial loop representation. The key differentiation, there-
fore, lies in the nature of refinement: “top-down” in our case
vs. “bottom-up”. Unlike the bottom-up approach, each
stage of our approach creates a valid refinement of the orig-
inal loop. This is useful, in practice, wherein useful and
sound intermediate results can be obtained even upon time-
outs (resource limitations). In the absence of inner loops,
our technique can avoid the use of widening. Furthermore,
our scheme can be used in a manner complementary to that
of Gulwani et al. For instance, the technique proposed by us
may be applied to further refine their results. The timings
and overall results obtained by our approach are competitive
with that of Gulwani et al. In particular, the examples of
complex iteration patterns presented by Gulwani et al. can
be handled readily in our approach by considering infeasible
sub-sequences of length at most 2.

Widening-upto operators [25], lookahead widening [19],
guided-static analysis [20], and related approaches [35] can
also be used to improve the precision loss due to standard
widening on loops with iteration-dependent control flow.
The advantage of these approaches is that they avoid the

size blowup that can be caused by refinement. On the other
hand, the use of widening heuristics in this process makes it
difficult to control the precision.

In practice, using a powerful abstract domain locally to
refine a small portion of a program can be used as a pre-
processing step for a whole-program analysis using a simpler
abstract domain. Therefore, refinement techniques proposed
here can be useful even in the presence of recently proposed
analysis techniques that do not require widening to compute
the fixed point such as constraint-based analysis [9], policy
iteration [17], and strategy iteration [18] techniques.

3. PRELIMINARIES
Programs will be represented by their control flow graph

(CFG) representation. We assume that the CFG is built
from a well-structured imperative program (without using
goto-statements). Specifically, each loop is assumed to be
reducible, consisting of a single loop head, which dominates
all the nodes inside the loop. Edges from the loop nodes
back to the head are called back edges. Edges from nodes
inside a loop to a node outside are called exit edges. We
assume that all exit edges from a loop have a single tar-
get. For simplicity of presentation, we consider loops that
do not contain function calls. Non-recursive function calls
can be handled using standard techniques such as inlining.
The techniques described here can be extended to treat re-
cursive function calls also. Formally, a CFG Π is a tuple
〈N,E, V, ρ, n0, ne〉, where N is a set of nodes, E ⊆ N × N
is a set of edges, n0 ∈ N is an initial location, ne ∈ N is
an exit location, and V is a set of typed (global) program
variables. Each edge a → b ∈ E is labeled by a transition
relation ρe(V, V

′), a first-order assertion over current-state
variables V and next-state variables denoted by V ′.

3.1 Loops and Fragments
This paper discusses control-based abstractions and re-

finements of loops inside programs. Therefore, we will for-
mally define loops in a manner that makes our assumptions
regarding their behavior explicit.

Def. 3.1 (Loops). A loop L (as a subset of a CFG Π)
consists of a tuple 〈NL, EL, nh, nx〉 of nodes NL, edges EL ⊆
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n0

nf

n0

nf

n0

nf

Figure 2: Examples of flow graphs that are not continu-
ous fragments. (Shaded nodes do not satisfy some clause in
Def. 3.2.)

n0

nf

n0, nf

Figure 3: Examples of continuous fragments.

NL × NL, a loop head nh ∈ NL, and exit node nx ∈ NL.
The subgraph induced by the nodes NL −{nx} and edges EL

form a strongly connected component. We assume that there
are no outgoing edges in EL starting from the exit nx.

A loop M is nested inside a loop L iff NM ⊆ NL and
EM ⊆ EL. As a result, the loop head and the exit node
of the loop M are a part of loop L. A loop control path π
consists of a subset of nodes and edges in the loop formed
by a simple path from the loop head nh back onto itself. If a
loop head of a nested loop M lies on such a path, the nodes
and edges in M are assumed to lie on the path π.

Def. 3.2 (Continuous Fragment). A continuous frag-
ment S of a loop between nodes n0 and nf (possibly, n0 =
nf = loop head) consists of a subset of loop nodes NS and
edges ES such that:

(a) n0, nf ∈ NS and for each edge e : m→ n, m,n ∈ NS.

(b) For each node n ∈ NS (with the exception of nf , if n0 �=
nf ), at least one outgoing edge belongs to ES.

(c) For each node n ∈ NS (with the exception of n0, if n0 �=
nf ), at least one incoming edge belongs to ES.

(d) Every node n ∈ NS is (control) reachable from n0 through
a path in (NS, ES).

(e) Every node n ∈ NS has a path to nf in (NS , ES).

Example 3.1. Figs. 2 and 3 illustrates the definition of
continuous fragment further through negative and positive
examples of the concept. The CFGs in Fig. 2 are not con-
tinuous fragments, whereas the CFGs in Fig. 3 satisfy the
definition.

Going back to the loop shown in Fig. 1, the set of nodes
{2, 3, 4, 7, 9, 11} along with the edges 2 → 3, 3 → 4, 4 → 7,
7 → 2, 3 → 9, 9 → 11 and 11 → 2 form a continuous
fragment. We depict such a fragment as:

9 11

n0: 2 3 nf : 2

4 7

Note that n0 = nf in this case. The clauses of the definition
for a continuous fragment are satisfied in this example.

Def. 3.3 (Fragment Partitioning). A fragment par-
titioning of a loop L : 〈N,E, nh, nx〉 consists of a set of loop
continuous fragments P1, . . . , Pm from nh � nh, and a set
of exit continuous fragments Q1, . . . , Qk from nh � nx,
such that (a) the set of nodes and edges in every walk (in
the graph-theoretic sense, Cf. [26]) from nh back to itself is
contained in some loop continuous fragment Pi and (b) ev-
ery walk from nh to nx is contained in some exit fragment
Qi.

Given a partitioning of a loop into fragments, the set of
edges (and nodes) visited in an iteration of a loop must
belong to some fragment and the set of paths from the loop
head to the exit node must belong to some exit fragment in
the partitioning.

Example 3.2. Sets π1, π2 form loop fragments and set
πE forms an exit fragment of a partitioning of the loop in
Example 1.1.

There are many ways of partitioning a given loop into
fragments. For instance, we may consider the set of all con-
trol paths through the CFG from nh � nh as a single loop
fragment and the set of all paths from nh � nx as a single
exit fragment. Later in our discussion, we will demonstrate
that such a partitioning does not provide a means for distin-
guishing loop iterations. Better partitioning schemes should
classify iterations based on the conditional branches, back
edges, and loop exits that are exercised in each iteration.
We will assume for the time being that such a partitioning
scheme has been specified. In section 4.1, we discuss some
heuristics for loop partitioning.

3.2 Abstract Interpretation
Abstract interpretation [13] provides a technique for prov-

ing properties about a program’s behavior by mapping its
behavior from the concrete domain of states onto an ab-
stract domain representing sets of states. Let Σ represent
the set of all possible states of a program P . The seman-
tics of an edge e is specified by means of its concrete post-
condition, which maps a set S ⊆ Σ to its concrete post-
condition S′ : postΣ(S, e) representing the set consisting of
all states that are reachable starting from some state s ∈ S
and executing the edge e.

Def. 3.4 (Inductive Map). A flow-sensitive map η :
N �→ 2Σ associates a set of states η(n) with each node n of
a CFG (or a loop). A flow-sensitive map is inductive (or a
fixed point) for a CFG with nodes N and edges E iff

(∀ (e : m→ n) ∈ E) postΣ(η(m), e) ⊆ η(n) .

Sets of states are represented by logical assertions over
a suitable theory (e.g., first order theory of numbers). Let
C(Σ) represent the space of such assertions (over program
states) and |= represent the semantic entailment relation
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between assertions. An assertion ϕ in this theory denotes a
set of states [[ϕ]] ⊆ Σ that satisfy ϕ.

An abstract domain Γ : (L,
, α, γ), consists of a lattice
(L,
) along with an abstraction function α : C(Σ) �→ L
mapping sets of states onto abstract objects and γ : L �→
C(Σ) mapping abstract objects onto concrete sets of states.
Corresponding to the concrete post-condition, we define the
abstract post-condition postL (or simply post) that over-
approximates the effect of executing e on a set of states:

(∀ S, e) postΣ(S, e) |= γ(postL(α(S), e)) .

Given a program P and an abstract domain Γ, the tech-
nique of abstract interpretation iteratively computes a flow-
sensitive fixed point ν : N �→ L, mapping each node to an
abstract domain object such that

(∀ (e : m→ n) ∈ E) postL(ν(m), e) 
 ν(n) .

Upon observing the similarity between the fixed point
above and the inductive map in Def. 3.4, we conclude that
ν is a fixed point in Γ iff γ ◦ ν is an inductive map (over the
concrete domain). As a result, abstract interpretation can
be seen as a technique for computing an inductive map η for
a given program.

In practice, abstract interpretation is carried out using
powerful abstract domains such as intervals, octagons, and
polyhedra [12, 32, 14]. These domains can be used separately
or in combination to compute powerful invariants that cap-
ture the behavior of a program. In the ensuing discussion,
we will assume that a powerful abstract domain or a com-
bination of many abstract domains are used to analyze pro-
gram (whole or fragments) and generate a concrete inductive
map η (over sets of states). Conceptually, applying the con-
cretization map γ on the result of the abstract interpreter,
yields such a map.

Def. 3.5 (Fragment Post-condition). Let P : ne �

nf be a continuous fragment defined by the nodes NP and
edges EP . Given an assertion ϕe ∈ C(Σ), the fragment post-
condition for P (denoted by postP

η (ϕe)) is ϕf iff there exists
a map η over NP such that ϕe |= η(ne), η(nf ) |= ϕf , and η
is inductive over (NP , EP ), i.e.,

∀ e ∈ EP , post(η(m), e) |= η(n) .

A fragment post-condition captures the concept of prop-
agating a given assertion ϕe forward through a fragment
P : ne � nf to obtain a “post-condition” ϕf that contains
all states that are reachable at location nf starting from
some state at location ne satisfying ϕe. We assume that a
fixed abstract interpreter with some suitable combination of
abstract domains is used to yield the set of states ϕf .

4. AN ABSTRACTION FOR LOOPS
In this section, we present an abstraction for representing

loop iterations. First, we introduce a technique for labeling
the iterations of a loop based on a partition of the loop into
continuous fragments. Second, we present an abstraction
that represents loop iterations as a sequence of these labels
and present techniques for verifying a given abstraction us-
ing static analysis.

4.1 Loop Partitioning Heuristics
First, we discuss some useful heuristics for automatically

partitioning loops. We assume that inner loops (if present)

are all represented as a single node for the purposes of loop
partitioning. This is achieved by removing back-edges from
the outer loop and computing a maximal strongly connected
component (MSCC) decomposition. In general, there are
numerous useful heuristics for partitioning the loop paths.
We describe a few schemes that may be useful in practical
settings:

Full Path-Partitioning: In the absence of inner loops, a
full partition places each control path around the loop
in a partition by itself. For loops with complex control
flow, this scheme can lead to a combinatorial explosion
in the number of partitions.

Backedge-specific Partition: A natural scheme for par-
titioning loops with complex control flow consists of
placing all cycles that traverse the same backedge into
a single partition. In practice, continue statements
are frequently used to handle special cases by skipping
parts of the loop.

Induction Variable Update: Many loop iterations can be
classified based on the updates to some induction vari-
able. Such a scheme may help in termination analysis
where termination depends on the updates to an in-
duction variable. The partition scheme used in Ex. 1.1
is an instance of such a scheme.

Subset of Branches: The partitioning of paths may be
based on the outcome of a subset of the branches in
the loop. Such subsets may be chosen using syntac-
tic slicing based on some variables or statements of
importance [22].

In practice, a partitioning scheme may be based on a com-
bination of some of the above considerations.

4.2 Representing Loop Iterations
Let L : 〈N,E, nh, nx〉 be a loop with nodes N , edges E,

loop head nh and exit nx. Let Π be a partitioning of this
loop, consisting of loop fragments P1, . . . , Pm, wherein Pi :
nh � nh and a set of exit fragments Q1, . . . , Qk where Qi :
nh � nx. Since Π is a partitioning of the loop’s control
structure, any iteration of the loop can be ascribed to some
fragment Pi and furthermore, the exit from a loop can be
ascribed to some fragment Qi. In general, this can be forced
by refining the initial partition using a Boolean completion.
We assume, for convenience, that the partition is disjoint so
that no two partitions share the same control path.

Def. 4.1 (Label Alphabet). The set Ω:

Ω = {p1, . . . , pm, q1, . . . , qk, ι} ,
forms the label alphabet for a partition Π if for each loop
fragment Pi, there exists a unique corresponding label pi ∈ Ω
and for each exit fragment Qi an exit label qi ∈ Ω. Further-
more, we assume a special label ι denoting the initial entry
into the loop.

Given a partition Π with labels Ω, each iteration of the loop
can be labeled with an alphabet pj and each exit by an
alphabet qj . Therefore, the sequence of labels encountered
in any terminating execution of the loop is a word in the
language R�:

R� : ι · (p1 | · · · | pm)∗ · (q1 | · · · | qm) .

Language RT is suggested by the natural representation
of the loop in the program. However, the set R∗ of actual
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sequences observable in any concrete execution of the loop
is, in general, a sub-language of R�. Furthermore, R∗ need
not be a regular language. Our goal here is to construct a
regular language R′ such that R∗ ⊆ R′ ⊆ R�. For this,
there are two possible approaches:

(a) An abstract interpretation over the lattice of regular lan-
guages R ⊆ R� by expressing the required language R
as a fixed point over a monotone operator. The work
of Gulwani et al. [22] is roughly an instance of this ap-
proach.

(b) A top-down refinement that simply refines the language
R� by eliminating forbidden sub-sequences up to a cer-
tain length using abstract interpretation. This is the
approach we take in this paper.

Example 4.1. Consider the loop and its partitioning dis-
cussed in Ex. 1.1. We associate labels p1 and p2 correspond-
ing to the loop fragments π1 and π2, respectively. Similarly,
the label ι corresponds to πI and finally the label q1 corre-
sponds to πE .

The language R� corresponds to that of the automaton
A1 from Ex. 1.1. Finally, a refinement of the language R�
corresponds to A2. In fact, for this example the language
L(A2) is the “best refinement” possible, i.e, R∗ = L(A2).

5. TOP-DOWN REFINEMENT
In this section, we present a scheme to refine the label lan-

guage R� that is induced by the partitioning Π of a given
loop L into loop and exit fragments. The scheme is based on
identifying forbidden sub-sequences using abstract interpre-
tation and removing words that contain such sub-sequences
from the language R�.

Let L be a loop with a given initial condition Θ ⊆ 2Σ rep-
resenting the set of all the possible initial states at the start
of its execution. Let Ω be the label alphabet corresponding
to a partitioning Π. A sub-sequence of size j > 0 consists of
a sequence of labels a1 . . . aj such that ai ∈ Ω − {ι} and for
i < j, ai �∈ {q1, . . . , qk}. An initialized sub-sequence is of the
form ιa1 . . . aj , where a1, . . . , aj is a valid sub-sequence.

Example 5.1. Returning to Ex. 4.1, legal sub-sequences
include ιp1q1, p1p2, p2p2p2. The sequences q1ι, q1p1, and
p1q1q2 are not legal sub-sequences.

Def. 5.1 (Fragment Composition). Let S1 : n1 �

n2 and S2 : n2 � n3 be continuous fragments. The compo-
sition S1 ◦ S2 consists of a graph G whose nodes are given
by the disjoint sum of the nodes:

N(S1 ◦ S2) = (N(S1) × {1}) ∪ (N(S2) × {2})
and edges are given by

E(S1 ◦ S2) : {(m, i) → (n, i)|m → n ∈ E(Si), i ∈ [1, 2]}⋃ {(n2, 1) → (n2, 2)} .

The transition relations associated with each edge remain
unchanged. The newly added edge (n2, 1) → (n2, 2) is labeled
by the identity relation nop.

The composition operation may be extended to an unini-
tialized sub-sequence s : a1 . . . aj . Let P (s) be the frag-
ment denoted by the composition of fragments in s, P (s) :
P (a1) ◦ P (a2) ◦ · · ·P (aj).

Lemma 5.1. The composition of fragments S1 : n1 � n2

and S2 : n2 � n3 forms a continuous fragment S1 ◦ S2 :
(n1, 1) � (n3, 2).

A sub-sequence a0, . . . , aj is forbidden iff no execution of
the loop may traverse the fragments represented by a0, . . . , aj

consecutively. To prove that a given sub-sequence may be
forbidden, we use abstract interpretation over the graph ob-
tained by composing the various fragments corresponding to
a0, . . . , aj .

Def. 5.2 (Forbidden Sub-sequence). An uninitial-
ized sub-sequence s : a1, . . . , aj is forbidden (w.r.t a given
abstract interpreter) iff for the fragment P (s) : m � n ob-

tained by the composition of fragments in s, postP (s)([[true ]]) ≡
∅.3 In other words, an abstract interpretation of the frag-
ment P (s) with node m labeled by the assertion true estab-
lishes the invariant false at node n.

For an initialized sub-sequence s : ιa1, . . . , aj, let P (s)
be the composition of fragments corresponding to a1, . . . , aj.
The sequence is forbidden iff postP (s)([[Θ]]) ≡ ∅. In other
words, node m is initialized using the initial condition Θ.

Theorem 5.1. Let s be a forbidden sub-sequence. No ex-
ecution of the loop can visit the labels in s in sequence.

Proof. Proof follows from the soundness of abstract in-
terpretation.

Example 5.2. Returning to Ex. 1.1, we recall the frag-
ment labels from Ex 4.1. The composition is shown in Fig. 4.
The sequence p2p1 is forbidden. This may be obtained by
means of an abstract interpretation using a combination of
linear inequalities with uninterpreted predicates (leapYr). The
condition days ≤ 366 in the edge 4 → 2 directly contradicts
the condition days > 366 for the edge 4 → 7. Similarly the
condition leapYr in edge 3 → 4, directly contradicts 3 → 9.

Let s be a forbidden sub-sequence over Ω. The initial
language R� may be refined by subtracting loop iterations
that traverse s. To this end, the refinement of a language
RT w.r.t a forbidden sub-sequence s is derived by simply
subtracting the regular language Rs : Ω∗sΩ∗ of all strings
from RT that contain s as a sub-sequence. Let s1, . . . , sk be a
set of forbidden sub-sequences. We may refine the language
R� by subtracting such sub-sequences:

R′ = R� −
⋃
i

Rsi .

Example 5.3. The automaton A2 in Ex. 1.1 is obtained
by subtracting the forbidden sequences p2p1 and p2q1 from
the language R� : ι(p1|p2)

∗q1.

Loop structure refinement can therefore be achieved by
discovering forbidden sub-sequences and refining the lan-
guage of iteration labels using the forbidden sub-sequences.
A practical scheme consists of considering all possible iter-
ation sequences of up to some length K > 0 and removing
the sequences that are forbidden.

3The assertion true can be strengthened by a previously
obtained invariant of the loop L
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¬leapYr

days > 366

p2 p1

Figure 4: A composition of two fragments corresponding to loop iterations labeled p1, p2.

Intermediate Fragments
We may improve the process of refinement by computing in-
termediate fragments for each forbidden sub-sequence. The
goal here is to generalize a forbidden sub-sequence a1a2 . . .
to a general form (ai11

+ · · ·+ai1
k
)∗a1(ai21

+ · · ·+ai2
k
)∗a2 . . .

using a proof of infeasibility.

Example 5.4. Fig. 5 shows an example loop with calls to
functions foo and bar. Our goal is to establish that no calls
to foo can occur after a call to function bar. In order to
do so, we partition the loops into fragments wherein foo is
called, bar is called and neither of these functions are called:

P1 : 2
i≤N−−−→ 3 → 4

j≤M−−−→ 5
j++−−→ 7 → 13

i++−−→ 2

P2 : 2
i≤N−−−→ 3 → 9

j≥M−−−→ 10 → 12
j++−−→ 13

i++−−→ 2
P3 : 2 → 3 → {4, 9}, 4 → 7, 9 → 11, {7, 9} → 13 → 2

The notation {a, b} → c is used to denote the set of edges
a → c and b → c. Let p1, p2, p3 be the labels for P1, P2, P3

respectively.
By using abstract interpretation, we can prove that the

sub-sequence p2p1 is forbidden. The comparison j ≥ M in
the edge 9 → 10 followed by the update j ++ in the edge
5 → 7 make the comparison j ≤M in edge 4 → 5 infeasible.
Furthermore, we may establish forbidden sub-sequences of
the form p2p3p1, p2p

2
3p1, and so on.

We now present a technique for inferring a larger set of
forbidden sub-sequences from the proof of infeasibility of a
single sub-sequence. Specifically, our technique extracts a
minimal set of invariants from the composition of p2p1 and
uses these invariants to efficiently infer the infeasibility of
all sub-sequences that match p2p

∗
3p1.

For simplicity, consider a forbidden sub-sequence (possi-
bly initialized) of length 2 obtained by the composition of
two fragments S : n1 � n2 and T : n2 � n3, such that
postS◦T (ϕ) ≡ false for a suitable initial condition ϕ. The
technique presented here extends naturally to larger sub-
sequences. We recall the definition of fragment composition
from Def. 5.1. Node (n2, 2) in this composition is defined as
the interface node for S ◦ T .

Let η : N(S ◦ T ) �→ C(Σ) be some inductive invariant
map that establishes η(n3, 2) ≡ false and let ψ : η(n2, 2)
be the invariant labeling the interface node. Let R be a
fragment (different from S, T ) such that postR(ψ) |= ψ. In
other words, the fragment R preserves the invariant ψ.

Theorem 5.2. If S ◦ T is an infeasible fragment com-
position with an interface invariant ψ, and a fragment R
preserves the invariant ψ, then compositions of the form
S ◦Ri ◦ T are infeasible for all i ≥ 0.

proofs

Instr.
Program

Abstract
Interpreter

Model
Checker

alarms

proofs unresolved

invariants

counter-examples

concrete

Figure 7: The F-Soft C program verification platform.

Example 5.5. Consider the fragments P1, P2 introduced
in Ex. 5.4. The composition P2 ◦ P1 is shown in Fig. 6(a)
along with the invariants. The invariant at the interface
node is ψ : j > M ∧ i ≤ N + 1. The preservation of this
invariant by the fragment P3 is also shown in Fig. 6(b).

It should be noted that the conjunct i ≤ N + 1 in ψ is
unnecessary for proving the infeasibility of P2 ◦ P1.

In general, the removal of invariant conjuncts superfluous to
the proof of infeasibility of a composition has the effect of
weakening the interface invariant ψ, which enables a larger
set of intermediate fragments to preserve this invariant.

Extensions to Push-Down Systems Our approach readily
extends to handling recursive functions that can be mod-
eled as a push-down system [15]. We recall that the inter-
section of a context-free language with a regular language
yields a context-free language. This property ensures that
our approach of refining iteration sequences by means of sub-
tracting an infeasible regular language can be used to treat
recursive programs.

6. IMPLEMENTATION
The algorithms discussed in this section have been imple-

mented as a part of the F-Soft C program analysis frame-
work [27]. F-Soft combines source-level instrumentation, ab-
straction, and type lowering along with static analysis using
abstract interpretation and bounded model checking using
SAT solvers. This enables us to prove properties as well as
find concrete error traces for violations.

Instrumentation. Given a C program, we systematically
instrument pointers and arrays to track their allocated sta-
tus (pointer to stack, heap, invalid, etc.), allocated extents,
and sentinels for the null terminator character. The effect of
assignments to pointers, pointer arithmetic, pointer indirec-
tion, and operations such as casting are accurately modeled.
In particular, pointer indirections ∗p are handled soundly by
adding conditional branches over the possible points-to set
of the base pointer p. Our tool abstracts the programs in
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1: (i,j) := (0,0);
2: while ( i ≤ N) {
3: if (nondet) {
4: if (j ≤ M) {
5: j := j+1;
6: foo(..);
7: }
8: } else {
9: if (j ≥ M) {
10: bar(..);

}
12: j := j +1;

}
13: i := i +1;
14: } Control Flow Graph

1

2

E 3

4 9

5 10

12

7 13

(i, j) := (0, 0)

i > N i ≤ N

j ≤ M

j ++,foo()

j ≥ M

bar()

j ++

i ++

j > M

j < M

Figure 5: Loop with calls to function foo and bar.

Enumerate
Loops

Label
Iterations

Refine
Loop

. Expand
CFG

.

Loop

CFG

A0

Afrefined CFG

Figure 8: Loop Refinement Flow.
two ways: (a) We model the contents of arrays at some spe-
cific indices (first and last, for example). (b) We expand
field accesses of recursive structures such as linked lists up
to a fixed depth. Accesses to unmodeled elements of arrays,
pointers to untracked locations, and fields beyond the depth
bound result in non-deterministic values.

After instrumentation and various other type lowering
transformations, we obtain a CFG where all variables have
basic types such as integers, floating points, and various
types of integer types such as short, unsigned, etc. This
vastly simplifies the implementation of our static analyses
and model checking engines. However, as a result, we may
obtain false alarms due to the abstraction of array elements
and recursive data structures, as described above.

Static Analysis. Abstract interpretation [13] is used in F-
Soft as the main proof engine. Our abstract interpreter is
inter-procedural, flow and context sensitive. It is built in
a domain-independent and extensible fashion, allowing for
various abstract domains such as constants, intervals [12],
octagons [32], symbolic ranges [33] and polyhedra [14]. These
domains are applied in increasing order of complexity. After
each analysis is run, the proved properties are removed and
the model is simplified by constant propagation and slicing.
The resulting model is analyzed by a more complex domain.

Loop Refinement
Figure 8 shows the refined flow on the abstract interpreter
engine that incorporates the techniques for loop refinement
discussed in this work. The refinement consists of first enu-
merating program loops. The enumeration is performed in
the order of nesting depth in the code. A loop that is nested
innermost is first refined before refining an outer loop. (With
numerical domains, the effects of widening are more pro-

nounced on the outer loops. By performing a refinement of
the inner loop, we have a better chance of improving the
invariants obtained for the outer loops with less blowup in
size. Our approach also works if outer loops are refined first.)
The loop iterations are labeled based on the assertions, exit
points (break statements), and continue statements visited
in the iteration. The initial regular approximation is formed
using the labels and the refinement is carried out as de-
scribed in section 5 by identifying forbidden sub-sequences
of depth k > 0. In our experiments, we bound k to 2.

After each loop is refined, its CFG is modified in place
using the expanded form obtained by the automaton repre-
senting the possible sequence of loop labels. The resulting
CFG is larger than the original CFG. However, with the loop
structure refined, we obtain better results from the static
analysis, especially using widening.

7. EXPERIMENTS
Our implementation was evaluated on a number of small,

but challenging, loops drawn from academic benchmarks
consisting of synchronous programs [24], loop refinement
benchmarks [22], (synchronous) models of complex reac-
tive systems [5], and the C code generated corresponding
to the state-chart of the vehicle control mode distributed
as an example of larger scale embedded system design in
Simulink [29]. Each benchmark example was translated into
the C language using built-in functions such as nondet() and
assume() that are interpreted by our tool to model non-
determinism. Most of the examples consisted of a single
non-nested loop. However, some of the complex models con-
sisted of inner nested loops which were encoded using flags.
The refinement automatically discovers such nested loops.

Experiments consist of first analyzing the model with-
out loop refinements followed by an analysis of the model
after loop refinement. We used the full path-partitioning
heuristic described in section 4.1 for partitioning the loop.
The invariants computed at loop heads are reported for the
sake of comparison. All benchmarks except consprodjava
and Veh.Clim.Ctrl were (manually) annotated with a set of
safety properties.

Table 9 shows the results of our experiments. The ta-
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Figure 6: The interface invariant from the composition of P2 and P1 (shown above) is preserved by the fragment P3.

Name SLOC Num. Basic Blocks # Loop Refine Impr. # Aut. Total w/o Refinement w/ Refinement
orig. ref. simp. Seg. Time (s) Invar? States Props Prf. Time (s) +Prf. Time (s)

Loop1 [22] 36 19 43 42 3 .01 SAME 4 2 2 .02 0 .02
Loop2 [22] 46 24 80 72 4 .02 SAME 4 2 2 .04 0 .08
Loop3 [22] 45 34 118 18 5 .05 YES 4 3 2 .03 +1 .05
Loop4 [22] 43 27 80 79 4 .03 YES 4 1 1 .02 0 .04
Loop5 [22] 54 36 75 75 4 .02 SAME 4 4 4 .04 0 .08
Loop6 [22] 38 21 48 41 3 .02 INCOMP 4 2 1 .01 0 .01

Berkeley [5] 96 59 523 267 10 .5 YES 9 2 0 .3 +2 .04
Synapse [5] 62 42 353 211 9 .3 YES 9 2 1 .1 +1 .02
MESI [5] 79 66 997 316 16 1.2 YES 15 5 3 .2 +2 0.05
MOESI [5] 91 94 2711 467 23 5.2 YES 19 8 3 .8 +5 .16
consprodjava [5] 270 123 8089 542 50 15.4 YES 51 n/a n/a 6.6 n/a 5
Zune 41 25 68 58 4 .03 YES 5 2 1 .03 0 .04
Lift [28] 81 51 642 274 12 .7 YES 11 2 0 .2 +2 .2
CDCntrl [28] 88 49 1123 609 15 .55 YES 9 2 0 .3 +1 .75
Veh.Clim.Ctrl [29] 538 149 3161 964 9 72.3 YES 10 n/a n/a 9.7 n/a 45.2

Figure 9: Experimental results for the benchmarks. Legend — SLOC: Simplified Lines of Code; number of basic blocks
orig.: before refinement, ref.: immediately after refinement, simp.: after refinement and simplification; #Loop Seg.: size of
the partition; Impr. Invar? comparison of invariants before/after refinement; Prf.: Number of proofs.

ble compares the invariants, number of properties proved
(Prf.), the size of the models, and the time taken to ana-
lyze before and after refinement. Note that the number of
proofs after refinement (last but one column labeled +Prf.)
reports the number of proofs in addition to the properties
proved before refinement. In all but one example, the pro-
cess of refinement yielded an invariant that was at least as
strong as the invariant derived before refinement. For a fair
comparison, our refinement technique itself does not utilize
the invariant computed by the original analysis pass. For
one example (Loop6), the invariants after refinement were
logically incomparable with the invariants before (denoted
INCOMPAR). This happens due to the iteration strategy
and the way widening/narrowing is used by our abstract in-
terpreter. In practice, adding the invariants computed by
the first pass back into the model during refinement can
guarantee that the analysis of the refined loop produces in-
variants at least as powerful as the original loop. The table

also reports on the size of the automaton generated as part
of the refinement (#Aut. States).

The results clearly show that our loop refinement tech-
nique can scale to relatively large and complex loops in a
short amount of time. While the initial result of the refine-
ment can cause a blowup in the size of the loop, repeated
simplification of the refined loop can be applied to reduce its
size. The refinement time seems to scale exponentially with
the number of labels. Therefore, the design of heuristics to
partition the loop paths effectively is key to the application
of our technique.

In most examples, the invariants obtained by analyzing
the refined loop (using the interval, octagon and polyhedral
abstract domains) were strictly more powerful than the orig-
inal loop invariants. Furthermore, in the case of the CD con-
troller example from Jeannet et al. [28], the loop refinement
proved the property in question with a refined automaton
that was comparable to Jeannet et al.
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8. CONCLUSION
We have demonstrated a simple and elegant technique for

loop refinement in which the loop iterations are represented
by a regular language and the loop is refined by removing
infeasible sub-sequences from the initial regular language us-
ing a proof technique such as abstract interpretation. We
have applied it to many complex benchmark that are rep-
resentative of the loops present in real embedded systems.
Our experimental results demonstrate that our refinement
can enhance the power of existing static analysis techniques.
Furthermore, the proposed technique can also improve tech-
niques that prove termination or establish non-termination.
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