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ABSTRACT
This paper presents a controller synthesis approach using disjunctive
polyhedral abstract interpretation. Our approach synthesizes infinite
time-horizon controllers for safety properties with discrete-time,
linear plant model and a switching feedback controller that is suit-
able for time-triggered implementations. The core idea behind our
approach is to perform an abstract interpretation over disjunctions
of convex polyhedra to identify states that are potentially uncontrol-
lable. Complementing this set yields the set of controllable states,
starting from which, the safety property can be guaranteed by an
appropriate controller feedback function. Since, a straightforward
disjunctive domain is computationally inefficient, we present an
abstract domain based on a state partitioning scheme that allows us
to efficiently control the complexity of the intermediate represen-
tations. Next, we focus on the automatic generation of controller
implementation from the abstract interpretation results. We show
that a balanced tree approach can yield efficient controller code with
guarantees on the worst-case execution time. Finally, we evaluate
our approach on a suite of benchmarks, comparing different instan-
tiations with related synthesis tools. The evaluation shows that our
approach can successfully synthesize controller implementations for
small to medium sized benchmarks.

Categories and Subject Descriptors
D.2.4 [Software Program Verification]: [Formal Methods]; I.2.2
[Automatic Programming]: [Program Synthesis]; I.2.8 [Problem
Solving, Control Methods and Search]: [Control Theory]; J.7
[Computers in Other Systems]: [Command and Control, Process
Control, Real Time]

Keywords
Switched Systems, Hybrid Systems, Controller Synthesis, Safety,
Abstract Interpretation.

1. INTRODUCTION
This paper focuses on the correct-by-construction synthesis of

controllers for safety properties of switched affine systems. Our
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approach assumes a discrete-time, state feedback controller for a
discretized model of a hybrid plant. The controller is allowed to
switch between the discrete modes of the plant as dictated by the
transition relation of the plant. Additionally, our approach includes
a disturbance input that models the uncertainty in sensing the state
of the plant. Our approach synthesizes a controller in terms of a
control invariant set (viability kernel) and a switching function that
guarantees that once the system is inside the control invariant, it
remains so, no matter what inputs are provided by the disturbance.

The key contribution of our approach is an abstract interpretation
based framework for computing the disturbance invariant set that
characterizes all those states from which the disturbance can force
the plant to potentially violate the safety property, regardless of
what control inputs are provided. Complementing this set, yields
the required control invariant. Computing disturbance invariants
allows us to use existing numerical abstract domains that are based
on over-approximating least fixed points [7, 9, 17, 25, 31].We show
that a simple polyhedral domain often fails to compute useful distur-
bance invariants, whereas a fully disjunctive domain is prohibitively
expensive for all but the smallest systems. Therefore, we present a
disjunctive domain structured by a partitioning of the state-space
into finitely many polyhedra. Our disjunctive domain then maintains
a single disjunct in each partition. We employ the standard abstract
interpretation framework using widening to enforce termination to
a post-fixed point. The resulting disturbance invariant is used to
compute a controller implementation using a balanced decision dia-
gram synthesis algorithm that uses the properties of the partitioning
scheme to compute a decision tree of small depth. This tree encodes
the real-time decisions made by the controller to choose a control
action. Finally, our approach is implemented inside a prototype
tool that reads in the description of a switched affine system and a
safety specification, to output a controller implementation in a target
environment.

Our approach is evaluated on a series of benchmarks taken from
the related work with upto 6 state variables, and tens of discrete
modes. We note that our approach using precondition-guided parti-
tioning outperforms a fixed point computation using the standard
disjunctive polyhedral domain [4] implemented in Parma Polyhe-
dral Library [5], and a simpler grid-based partitioning approach.
Our approach compares favorably to the related PESSOA tool for
synthesizing hybrid controllers [24].

Organization The rest of the paper is organized as follows. Sec-
tion 2 presents the plant model, and preliminary notions. Subse-
quently, section 3 presents the disjunctive polyhedral domain for
computing disturbance invariants. Next, we present the partitioned
disjunctive domain and the precondition-guided partitioning scheme
in Section 4. Section 5 presents the derivation of the controller im-
plementation from the abstract interpretation results. The prototype



implementation of our ideas and its evaluation over benchmarks are
presented in Section 6.

Related Work The problem of synthesizing a disturbance invariant
reduces to finding a winning set for a disturbance player who seeks
to ensure that the system reaches an unsafe set in finitely many steps,
as opposed to a control player who tries to ensure that the system
remains within the safe set. This problem has been well studied for
finite state systems using ideas from logic and automata theory [15].
For continuous systems, game-based formulations using differential
games and Hamilton-Jacobi PDEs have been studied for controller
synthesis [21]. These PDEs can be solved numerically for small but
complex systems using level set methods [26].

The fixed point computation for control invariants (viability ker-
nels) has been studied by many authors. Asarin et al. used a control
precondition iteration to compute control invariants for timed au-
tomata [2]. Subsequently, they present extensions to affine hybrid
systems using flowpipe computations [1]. Approximation in the
latter work is addressed by using a domain of “griddy” polyhedra
which are disjoint union of finitely many boxes. In contrast to griddy
polyhedra, our domain allows proper polyhedral subsets of a grid
cells rather than including/excluding entire cells. Wong-Toi uses
the idea of over-approximating disturbance invariants rather than
under-approximating control invariants. This is carried out for linear
hybrid automata models with piecewise constant dynamics [37].
Vidal et al. use quantifier elimination over reals to compute con-
trol preconditions. They show termination if the system is linear
in controllable canonical form [36]. A general drawback of the
iterative approaches discussed thus far is that the complexity of the
representation can be quite high, and termination of the iteration is
not guaranteed in the general case.

Our approach is very closely related to the earlier work of LeGall
et al. using abstract interpretation with widening in the supervisory
control framework [20]. Their plant model is infinite state, con-
sisting of controllable and uncontrollable events. Their approach
seeks to build a supervisor that enables the controllable events to
ensure that a safety property defined on the language of events is
maintained. Notable differences exist in the problem domains: con-
tinuous disturbances in our approach versus uncontrolled events
in theirs, a time triggered controller in our setup versus an event
triggered approach. Beyond these, our work focuses building a
disjunctive polyhedral domain suitable for computing disturbance
invariants by trading off the complexity of the representation with
computational complexity. Finally, we present a detailed evaluation
of our approach on a suite of small and medium sized examples.

Many methods have used disjunctions of convex polyhedra for
finite horizon control. The explicit MPC approach pioneered by
Morari et al. is available as part of the popular Multi-Parametric
Toolbox [18]. Maidens et al. use flowpipe construction to over
approximate the (finite time) uncontrollable sets, and thus under
approximate the finite time control invariant [22]. In comparison,
our approach obtains infinite horizon controllers.

As mentioned earlier, the Pessoa approach by Tabuada et al. uses
finite state abstractions that are approximately bisimilar to the orig-
inal system [24]. On one hand, Pessoa handles a larger class of
properties and systems, but without disturbance inputs. The grid-
ding of the state-space produces large finite state systems over which
winning positions for various players are computed. Sets of states
are represented using binary decision diagrams. The advantage of
using an abstract interpretation setup, as in this paper, is to separate
the process of fixed point computation from the representations used
for sets of states. Furthermore, widening/narrowing operators are
useful for enforcing the termination of the fixed point.

A constraint-based approach to correct-by-construction synthesis
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Figure 1: The closed loop model of the plant and the controller.

of controllers for hybrid systems was provided by Taly et al. [34].
Their approach assumes a closed loop model with parameters rep-
resenting various gains and switching surfaces of the controller,
and reduces the problem to that of solving a system of non-linear
constraints. As such, their approach is event triggered, whereas
ours is time triggered. Furthermore, their approach is limited by
the ability to solve non-linear constraints, while ours is restricted to
linear systems and uses a state-space partition. More generally, the
constraint-based approach for infinite state games has been explored
in the context of program synthesis by Beyene et al. [6].

Disjunctive domains have been well studied in static analysis for
verifying properties of numerical programs Broadly, the dynamic
partitioning work by Bertrand Jeannet defines a disjunctive domain
that identifies useful predicates and defines disjuncts based on these
predicates [19]. As such their approach applies to control loops
written in synchronous languages, wherein the central purpose of
the disjunctive analysis is to recover partial control flow information
that is encoded in the program’s state variables. This is not the
case in our work, wherein disjunctions arise from differences in
the control strategies used by the disturbance player at different
places. Nevertheless, our approach can be thought of as a “static”
partitioning scheme. A few disjunctive domains used in program
analysis include trace partitioning schemes that annotate polyhedra
with fragments of the path taken through the control-flow graph
[23], disjunctive polyhedral domain [4], disjunctive domains on so-
called “elaborations” of the program’s control flow [30] and using
affinity metrics to determine if two polyhedra can be joined using a
convex-hull or maintained as separate disjuncts [28].

2. PRELIMINARIES
In this section, we define the plant and controller models, recall

the standard notions of control and disturbance invariants, express-
ing them as fixed points that can be approximated using abstract
interpretation theory [8, 27].

2.1 System Model
We consider a closed-loop system with two parts, namely a plant

and a controller. The plant and the controller form a feedback
system as shown in Figure 1. The plant is hybrid with a continuous
state x ∈ Rn, and a discrete mode q ∈ Q. Let x denote the
state variables as a n × 1 column vector, and xi represent the ith

component of x. The plant admits a drift input d ∈ D and a control
input from the controller. The controller is assumed to be a discrete
system that provides a new discrete input to the plant every ∆ time
units (see Figure 1). The plant responds to the control input by
switching to the mode commanded by the controller. Formally, we
model the plant as a switched affine (discrete-time) system:

DEFINITION 1. A discrete-time switched affine system is a tuple
Ψ : (Q,X,D,E,A,B) described by: (a) continuous states X ⊆
Rn, where n is the number of continuous state variables; (b) a finite
set of discrete modes Q; (c) disturbance inputs D ⊆ Rn, where D
is a convex polyhedron in Rn; (d) set of edges E ⊆ Q × Q; and
(e) continuous transition matrices Aq ∈ Rn×n and Bq ∈ Rn×1 for
each q ∈ Q.
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Figure 2: Circuit of a DC-DC converter
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Figure 3: Illustration of the closed loop semantics.
plant. Note that the controller is assumed to respect the edge rela-
tion E, which poses restrictions on what possible next modes can
be commanded by the controller, given the current discrete mode q.

EXAMPLE 1 (DC-DC CONVERTER). Figure 2.1 shows the cir-
cuit diagram for an ideal DC-DC converter adapted from Senesky
et al. [32]. There are two control switches sw1, sw2. The con-
troller switches them periodically to ensure that the state variables
iL and vo, modeling the inductor current and output voltages are
within some permissible values. The plant model has two discrete
modes Q = {q1, q2}, wherein q1 = [sw1is on, sw2is off] and
q2 = [sw1is off, sw2is on]. The edge set E : Q ⇥ Q denotes that
the controller can switch between these two states with no restric-
tions by sensing the values of (iL, v0) periodically.

We assume a disturbance D : [�0.01, 0.01] ⇥ [�0.01, 0.01]
that models the sensor errors when reading (iL, v0). Assuming a
controller that switches at a 50KHz frequency we discretize the
dynamics for the modes q1, q2 with a time step � = 0.02ms. Us-
ing vin = 1.5V , R = 6⌦, L = 150µH and C = 110µF , the
transitions matrices are


1 0
0 0.22

�

| {z }
Aq1


10
0

�

| {z }
Bq1


0.095 �0.4
0.55 0.004

�

| {z }
Aq2


0.83
1.36

�

| {z }
Bq2

(1)

We will briefly describe the semantics of the closed loop ob-
tained by composing the plant with a feedback controller switch.
We will provide a discrete time semantics for the overall closed
loop. In practice, this corresponds to fixing a time step � and run-
ning the control function switch every� time units.

Given a mode q, state x and disturbance input d, we denote the
continuous state update in a step by next(q,x,d) : Aqx+Bq +d.
We can generalize our disturbance model and consider different
values for D in different modes, however, for convenience we do
not. A state of the plant is a tuple (q,x) wherein q 2 Q and x 2 X .
An execution of the closed loop is an infinite sequence of plant

states (q0,x0)
d1��! (q1,x1)

d2��! (q2,x2) · · · , such that (A) For
each i 2 N, qi 2 Q and xi 2 X; (B) Forall i 2 N, there is a drift
input di+1 2 D, such that xi+1 = next(qi,xi,di+1); and (C) For
each i 2 N, qi+1 = switch(qi,xi).

Figure 3 illustrates our closed loop semantics. The controller
executes every � time units, and each discrete step of the plant
also corresponds to � units. For simplicity, the time required for
computing the switching functions is assumed to be negligible. We
now consider the controller synthesis problem.

DEFINITION 3 (CONTROLLER SYNTHESIS PROBLEM). An in-
stance of the controller synthesis problem consists of  , a plant
model and a safe set S ✓ Q ⇥ X . The overall goal is to syn-
thesize a subset P ✓ S, called the control invariant, and a corre-
sponding function switch : Q ⇥ X ! Q such that for each run

(q0,x0)
d1��! (q1,x1)

d2��! · · · dj�! (qj ,xj) · · · , if (q0,x0) 2 P
then (qi,xi) 2 P for all i 2 N and for all d1,d2, · · · 2 D.

EXAMPLE 2 (SAFETY SPECIFICATION). Consider again the
plant model of the DC-DC controller from Example 1. The con-
troller tries to maintain iL 2 [0, 2.5]mA and vo 2 [2.97, 3.63]V
(around 3.3V with 10% error), independent of the control mode.
The set S is therefore, Q ⇥ ([0, 2.5] ⇥ [2.97, 3.63]).

This problem is solved by constructing a control invariant set,
w.r.t to a plant  and a safety specification S.

DEFINITION 4 (CONTROL INVARIANT SET). A set C ✓ Q⇥
X is a control invariant set for h , Si iff (a) C ✓ S, and (b) start-
ing from every state (q,x) 2 C, there is a possible next mode q0,
such that the next state produced by the joint action of the plant and
the mode switch belongs to C:

(8(q,x)2C)(9q02Q)(8d2D)

✓
(q, q0) 2 E ^

(q0, next(q,x,d)) 2 C

◆
. (2)

Skolemizing Eq. (2), we immediately conclude that there ex-
ists a controller switching function switch such that for all initial
states (q0,x0) 2 C and for all runs of the closed loop system:

(q0,x0)
d1��! · · · dn��! (qn,xn), the state (qn,xn) 2 C, 8n 2 N.

Rather than computing a control invariant, our approach here
will focus on the complement of control invariants, which consist
of sets from which no control strategy can prevent the disturbance
from ensuring that an unsafe state is reached. We will compute such
“disturbance invariant sets” in our work. The advantage of distur-
bance invariants is that it allows us to perform over-approximations,
and reuse a large body of work on numerical domains for abstract
interpretations.

Let  be a system with a desired safe set S. Let U = X \ S
represent the state space complement of S. Since S refers to the
safe set, the set U is referred to as the unsafe set.

DEFINITION 5 (DISTURBANCE PRECONDITION). The distur-
bance pre-condition of a set P denoted by dpre(P ) is defined as:
⇢

(q,x) 2 Q ⇥ X | (8q02Q) (9d2D)

✓
(q, q0) 2 E )

(q0, next(q,x,d)) 2 P

◆�
.

The disturbance precondition of dpre(P ) represents those states
(q,x) from which the disturbance has a strategy to ensure that the
plant remains in the set P for the next step, no matter which action
is taken by the controller.

DEFINITION 6 (DISTURBANCE INVARIANT). A set W ✓ Q⇥
X is a disturbance invariant iff the following hold: (1) U ✓ W ;
and (2) dpre(W ) ✓ W .

THEOREM 1. W is a disturbance invariant of a system  iff
X \ W is a control invariant. There exists a disturbance invariant
set W ⇤ such that for every disturbance invariant W , W ⇤ ✓ W .

Proof is provided in Appendix A.

2.2 Disturbance Invariants as Fixed Points
We now present a fixed point characterization of disturbance in-

variants. Consider the complete lattice of sets of states P ✓ X
ordered by set inclusion ✓. First, we define an operator whose
fixed points correspond to disturbance invariants: G(P ) : U [
(dpre(P )) . G is an operator defined on the lattice of sets of states.
It takes as input, a set of states and outputs another set of states. A
set W is a post-fixed point of G iff G(W ) ✓ W

Figure 2: Circuit of a DC-DC converter

We now specify the controller as a memoryless state-feedback law
modeled by a controller switching function:

DEFINITION 2 (CONTROLLER SWITCHING FUNCTION).
Given a plant model Ψ, a switching function switch : Q×X → Q
satisfies the constraint (∀q ∈ Q)(∀x ∈ X) (q, switch(q,x)) ∈ E.

The controller switching function defines a state-feedback law
that uses the current state (q,x) of the plant to command the next
mode switch(q,x) of the plant, respecting the edge relation E.

EXAMPLE 1 (DC-DC CONVERTER).
Figure 2 shows the circuit diagram for an ideal DC-DC converter
adapted from Senesky et al. [32]. There are two control switches
sw1, sw2. The controller switches them periodically to ensure
that the state variables iL and vo, modeling the inductor cur-
rent and output voltages are within some permissible values. The
plant model has two discrete modes Q = {q1, q2}, wherein q1 =
[sw1is on, sw2is off] and q2 = [sw1is off, sw2is on]. The edge set
E : Q × Q denotes that the controller can switch between these
two states with no restrictions by sensing the values of (iL, v0)
periodically.

The disturbance D : [−0.01, 0.01] × [−0.01, 0.01] models the
sensor errors for (iL, v0). Assuming a 50KHz controller, we dis-
cretize the dynamics for the modes q1, q2 with a time step ∆ =
0.02ms. Using vin = 1.5V , R = 6Ω, L = 150µH and C =
110µF , the transitions matrices are

[
1 0
0 0.22

]

︸ ︷︷ ︸
Aq1

[
10
0

]

︸ ︷︷ ︸
Bq1

[
0.095 −0.4
0.55 0.004

]

︸ ︷︷ ︸
Aq2

[
0.83
1.36

]

︸ ︷︷ ︸
Bq2

(1)

Closed-Loop Semantics: Given a mode q, state x and distur-
bance input d, we denote the continuous state update in a step
by next(q,x,d) : Aqx + Bq + d. A state of the plant is a
tuple (q,x) wherein q ∈ Q and x ∈ X . An execution of the

closed loop is an infinite sequence of plant states (q0,x0)
d1−−→

(q1,x1)
d2−−→ (q2,x2) · · · , such that (A) For each i ∈ N, qi ∈ Q

and xi ∈ X; (B) Forall i ∈ N, there is a drift input di+1 ∈ D,
such that xi+1 = next(qi,xi,di+1); and (C) For each i ∈ N,
qi+1 = switch(qi,xi).

Figure 3 illustrates our closed loop semantics. The controller
executes every ∆ time units, which is also the discretization time
step for the plant model. For simplicity, the time to compute the
switching function is assumed negligible. We now consider the
controller synthesis problem.

DEFINITION 3 (CONTROLLER SYNTHESIS PROBLEM).
Given Ψ, a plant model and a safe set S ⊆ Q×X , the controller
synthesis problem computes a subset P ⊆ S, called the control
invariant, and a switching function switch : Q × X → Q, such

0∆ 1∆ 2∆ 3∆ 4∆
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Figure 3: Illustration of the closed loop semantics.

that, for each run (q0,x0)
d1−−→ (q1,x1)

d2−−→ · · · dj−→ (qj ,xj) · · · ,
if (q0,x0) ∈ P then (qi,xi) ∈ P for all i ∈ N and for all
d1,d2, · · · ∈ D.

EXAMPLE 2 (SAFETY SPECIFICATION). Consider again the
plant model of the DC-DC controller from Example 1. The controller
tries to maintain iL ∈ [0, 2.5]mA and vo ∈ [2.97, 3.63]V (around
3.3V with 10% error), independent of the control mode. The set S
is therefore, Q× ([0, 2.5]× [2.97, 3.63]).

This problem is solved by constructing a control invariant set,
w.r.t to a plant Ψ and a safety specification S.

DEFINITION 4 (CONTROL INVARIANT SET). A setC ⊆ Q×
X is a control invariant set for 〈Ψ, S〉 iff (a) C ⊆ S, and (b) start-
ing from every state (q,x) ∈ C, there is a possible next mode q′,
such that the next state produced by the joint action of the plant and
the mode switch belongs to C:

(∀(q,x)∈C)(∃q′∈Q)(∀d∈D)

(
(q, q′) ∈ E ∧

(q′, next(q,x,d)) ∈ C

)
. (2)

Skolemizing Eq. (2), we immediately conclude that there ex-
ists a controller switching function switch such that for all initial
states (q0,x0) ∈ C and for all runs of the closed loop system:

(q0,x0)
d1−−→ · · · dn−−→ (qn,xn), the state (qn,xn) ∈ C, ∀n ∈ N.

Rather than control invariant, our approach here will focus, in-
stead, on computing disturbance invariants, which are sets of states
from which no control strategy can prevent the disturbance from
ensuring that an unsafe state is reached. The advantage of distur-
bance invariant computation is that it allows us to perform over-
approximations, and thus, reuse a large body of work on numerical
domains for abstract interpretations.

Let Ψ be a system with a desired safe set S. Let U = X \ S
represent the state space complement of S. Since S refers to the
safe set, the set U is referred to as the unsafe set.

DEFINITION 5 (DISTURBANCE PRECONDITION). The distur-
bance pre-condition of a set P denoted by dpre(P ) is defined as:
{

(q,x)| (∀q′∈Q) (∃d∈D)

(
(q, q′) ∈ E ⇒

(q′, next(q,x,d)) ∈ P

)}
.

The disturbance precondition of dpre(P ) represents those states
(q,x) from which the disturbance has a strategy to ensure that the
plant remains in the set P for the next step, no matter which action
is taken by the controller.

DEFINITION 6. A set W ⊆ Q ×X is a disturbance invariant
iff (1) U ⊆W ; and (2) dpre(W ) ⊆ W .

THEOREM 1. W is a disturbance invariant of a system Ψ iff
X \W is a control invariant. There exists a disturbance invariant
set W ∗ such that for every disturbance invariant W , W ∗ ⊆W .

All proofs are provided in an extended version available upon re-
quest. As a direct result, we can compute a disturbance invariant W ,
and complement it to obtain a control invariant.



Concrete Abstract Soundness requirement
W1 ⊆W2 a1 v a2 (a1 v a2) ⇒ γ(a1) ⊆ γ(a2)

W1 ∪W2 a1 t a2 (γ(a1) ∪ γ(a2)) ⊆ γ(a1 t a2)

W1 ∩W2 a1 u a2 (γ(a1) ∩ γ(a2)) ⊆ γ(a1 u a2)

dpre(W1) d̃pre(a1) dpre(γ(a1)) ⊆ γ(d̃pre(a1))

Table 1: Basic Abstract Domain Operations corresponding concrete
operations over sets.

2.2 Disturbance Invariants as Fixed Points
We now present a fixed point characterization of disturbance

invariants. Consider the complete lattice of sets of states P ⊆ X
ordered by set inclusion ⊆. First, we define an operator G : 2X →
2X , on the lattice, whose fixed points correspond to disturbance
invariants: G(P ) : U ∪ (dpre(P )) . A set W is a post-fixed point
of G iff G(W ) ⊆W

LEMMA 2.1. The operator G is a monotone operator on the
lattice of sets: C1 ⊆ C2 ⇒ G(C1) ⊆ G(C2).

A set W is a disturbance invariant iff it is a post-fixed point of
G: G(W ) ⊆ W . Finally, the minimal disturbance invariant W ∗

exists, and is the least fixed point of the monotone operator G.

Therefore, we may use Kleene iteration to attempt to compute
the least fixed point W ∗ over sets of states, starting from the empty
set W0 : ∅. W0 : ∅, W1 : G(W0), W2 : G(W1), · · · ,Wn =
G(Wn−1). The process terminates ifWn ⊆Wn−1 for some n ≥ 1,
and upon termination, we obtain Wn = W ∗, the least fixed point of
the operator G, and by Lemma 2.1, the minimal disturbance invariant.
The set C∗ = X \W ∗ yields the required control invariant region
from which a controller can be obtained by keep the system in the
safe region regardless of the actions of the disturbance.

Direct Kleene iteration is not possible for all but the simplest of
systems: (a) We require a representation for arbitrary sets of states
Wi, and the ability to compute the operator G on this representa-
tion. Representing these sets in the computer can be prohibitively
expensive or outright impossible. (b) The Kleene iteration often
does not converge to a result in finitely many steps. This means that
the iteration can go on forever.

We resort to abstract interpretation to solve both these problems
and enable us to compute a disturbance invariant set W that is an
over-approximation of the smallest set W ∗. The set W : X \W is
the required control invariant.

2.3 Abstract Interpretation
The framework of abstract interpretation was proposed by Cousot

and Cousot [8,27]. It is especially effective in providing conservative
approximations of fixed points defined over sets of states. Common
numerical abstract domains include intervals [7], octagons [25] ,
convex polyhedra [9, 17], template polyhedra [31] and ellipsoids
[29]. We provide a brief introduction, glossing over many details
discussed elsewhere [8, 27].
Abstract Domains: Rather than allowing arbitrary sets W ⊆
Q × X , we will restrict ourselves to a smaller class of sets that
can be represented and manipulated computationally. Examples of
possible representations for subsets of Rn include convex polyhedra,
ellipsoids, intervals, octagons and template polyhedra. Formally, we
fix an abstract latticeA ordered by inclusionv. This lattice is linked
to the concrete lattice

〈
2Q×X ,⊆

〉
by means of (a) Abstraction

function α : 2Q×X → A maps every subset W ⊆ Q × X to its
representative element in A, and (b) Concretization function γ :
A→ 2Q×X maps every element a ∈ A back to its concretization.

The pair 〈α, γ〉 satisfies the Galois connection property: (∀ S ∈
2Q×X) (∀ a ∈ A) (α(S) v a) iff S ⊆ γ(a).

Corresponding to the set operations of S1 ∪ S2 (union), S1 ∩ S2

(intersection), dpre(S1) (disturbance precondition), and S1 ⊆ S2

(inclusion checking) that are required to compute the monotone
operator G over the concrete lattice

〈
2Q×X ,⊆

〉
, we define the

abstract versions, as depicted in Table 1.
Thus, the concrete operator G(W ) : U ∪ (dpre(W )), can be

replaced by an abstract operator: Ĝ(a) : α(U) t
[
d̃pre(a)

]
.

LEMMA 2.2. For all a ∈ A, G(γ(a)) ⊆ γ(Ĝ(a)).

THEOREM 2. Let a ∈ A be a post-fixed point of the Ĝ operator:
Ĝ(a) v a. It follows that γ(a) is a disturbance invariant satisfying
G(γ(a)) ⊆ γ(a).

Abstract Kleene Iteration: The concrete Kleene iteration se-
quence is replaced by an abstract Kleene iteration sequence using
the Ĝ operator on A: (an+1 = Ĝ(an) starting from a0 : α(∅)),
until we reach an abstract post fixed point an+1 v an. Following
theorem 2, we conclude that γ(an+1) is a disturbance invariant.

Termination: In general, unless the lattice A is finite or has
the ascending chain condition, the abstract Kleene iteration is not
guaranteed to terminate. Therefore, abstract interpretation uses a
widening operator ∇ over A to force termination in finitely many
steps. The widening operator a1∇a2 for a1, a2 ∈ A satisfies the
following properties: (1) a1 v a1∇a2 and a2 v a1∇a2. (2)
For any finite ascending sequence a0 v a1 v a2 v · · · , the
widened sequence bn : bn−1 ∇ an with b0 : a0, terminates to
yield bn+1 v bn. To enforce termination, the Kleene iteration is
combined with widening: an+1 = an ∇ Ĝ(an) with a0 : α(∅).
Often, a delayed widening strategy is applied after finite number
of steps of Kleene iteration is carried out without widening. Other
strategies for the optimal application of widening, especially over
convex polyhedra are discussed by Bagnara et al. [3].

3. POLYHEDRAL AND DISJUNCTIVE
POLYHEDRAL DOMAINS

In this section, we discuss convex polyhedra as an abstract domain
for computing disturbance invariants using abstract interpretation.
We first consider the single polyhedron per discrete mode, and
discuss the computation of domain operators, especially the distur-
bance precondition d̃pre. However, a single convex polyhedron is
insufficient to represent disturbance invariants. Therefore, we make
the case for a disjunctive domain that uses unions of finitely many
convex polyhedra. However, the standard disjunctive domain is
too expensive. This motivates us to consider specialized types of
disjunctive domains.

Convex Polyhedra: The convex polyhedral domain was originally
investigated by Cousot & Halbwachs and later by Halbwachs et
al. [9, 17]. Mathematically, a convex polyhedron is given as a
conjunction of linear inequalities. Let x : (x1, . . . , xn) represent a
set of variables. A linear inequality over variables x is an inequality
of the form atx ≤ b for a ∈ Rn, b ∈ R. A linear assertion ψ is a

conjunction of finitely many linear inequalities: ψ :
m∧
j=1

atjx ≤ bj .
A linear assertion is succinctly written in the matrix form asAx ≤ b.
Given linear assertion ψ, a convex polyhedron is a set of points that
satisfy it: JψK : {x ∈ Rn | x |= ψ}. Let POLY(X) represent all
convex polyhedra P ⊆ X .



DEFINITION 7 (CONVEX POLYHEDRA DOMAIN). The convex
polyhedral domain consists of all maps η : Q → POLY(X) map-
ping each mode q to a convex polyhedron η(q) ∈ POLY(X). We
denote η1 v η2 iff (∀q ∈ Q) η1(q) ⊆ η2(q).

Assume a function ConvexPolyhedralHull(P ) that takes a set
P ⊆ X , and returns a convex polyhedron over-approximation.
Numerous strategies exist for such approximations, including ap-
proaches based on templates [25] and support functions [16]. Given
any subsetW ⊆ Q×X , its abstraction αmapsW to a ηW wherein

α(W ) : λq. ConvexPolyhedralHull ({x ∈ X | (q,x) ∈W}) .
The concretization of a map η is given by γ(η) : {(q,x) | q ∈
Q, and x ∈ η(q)}. Join (t), meet(u) and widening(∇) operators
on maps extends mode-wise. More precisely, for each operator⊕we
define: (η1⊕ η2) : λq. (η1(q)⊕ η2(q)). The problem of represent-
ing, computing intersections, convex hull, widenings and projection
is well understood in the context of abstract interpretation [3, 17].
Efficient sub-polyhedral domains have been investigated including
two variables per inequalities [33] and template polyhedra [31] to
mention a few. We now derive the abstract d̃pre(η) operator over
the convex polyhedral domain.

Disturbance Precondition Operator: We are given a map η
representing a subset of Q × X and wish to compute d̃pre(η) so
that for all η, dpre(γ(η)) ⊆ γ(d̃pre(η)). Recall the definition of
the disturbance precondition of a set P (Def. 5), dpre(P ):
{

(q,x) | (∀q′∈Q) (∃d∈D)

(
(q, q′) ∈ E ⇒

(q′, next(q,x,d)) ∈ P

)}
.

Let η : Q 7→ POLY(X) be a map. Our goal is to compute a map
η̂ : Q 7→ POLY(X) that represents d̃pre(η).

Let ψ : Px ≤ r be a linear assertion and x′ := Aqx+Bq+d be
the linear transformation associated with mode q with disturbance
d ∈ D. We define the pre-image of ψ w.r.t q as the linear assertion:

pre(q, ψ,d) : P (Aqx+Bq+d) ≤ r ≡ PAqx ≤ r−PBq−Pd .

Let us consider the convex polyhedron η̂(q) for a fixed q ∈ Q.
Let {(q, q1), . . . , (q, qk)} ⊆ E be the set of outgoing edges of q.

η̂(q) :
⋂

(q,qj)∈E
(∃ d ∈ D) pre(q, η(qj),d) . (3)

LEMMA 3.1. The disturbance precondition d̃pre(η) for η : Q
→ POLY(X) is a map η̂ : Q → POLY(X) according to (3). Fur-
thermore, d̃pre satisfies the soundness condition:

(∀η : Q→ POLY(X)) dpre(γ(η)) ⊆ γ(d̃pre(η))

Whereas convex polyhedra are a natural abstract domain for sub-
sets of Rn, the convexity poses challenges for computing distur-
bance invariants. Therefore, we resort to disjunctive polyhedra that
use a disjunction of multiple polyhedra for each discrete mode.

3.1 Disjunctive Polyhedral Domains
To circumvent the limitations imposed by a convex set represen-

tation for possibly non-convex set, we allow our approach to use
a finite union of polyhedra as abstractions of sets. In theory, the
disjunctive polyhedral domain works by simply replacing a single
polyhedron per discrete mode to a finite disjunction of polyhedra
per discrete mode. Let fin(P ) represent all finite subsets of a set P .DEFINITION 8 (CONVEX POLYHEDRA DOMAIN).
The disjunctive polyhedral domain consists of all maps π : Q →

(a) W17 (b) Scaled W17

Figure 4: Disjunctive polyhedron obtained during the computation
of the disturbance invariant set.

fin(POLY(X)) mapping each mode q ∈ Q to a finite set of linear
assertions π(q) : {P1, . . . , Pk}, where P1, . . . , Pk ∈ POLY(X).

Let π1 � π2 iff (∀q ∈ Q)
⋃

Pi∈π1(q)

Pi ⊆
⋃

Rj∈π2(q)

Rj . (4)

Once again, it is possible to define abstract domain operators.
In particular, the join operation can avoid computing convex hulls
in favor of simple set theoretic union of the individual polyhedra.
Further details on the construction of disjunctive polyhedral domains
are provided elsewhere [3].

While disjunctive polyhedra are good representations for non-
convex sets, their complexity remains a key drawback. For instance,
deciding the inclusion in (4) is known to be co-NP hard. Fur-
thermore, as the iteration progresses, the number of disjuncts can
increase rapidly, making the computation impractical.

EXAMPLE 3. Figure 4 shows the disjunctive polyhedra for an
intermediate step in the fixed point computation. The computation
took many hours, without yielding a fixed point. Even if a fixed point
were obtained, the resulting controller can be prohibitively complex,
defeating our goal of a real time implementation.

Techniques for managing the size and the complexity of the poly-
hedra have been discussed by Bagnara et al. [3] and implemented in
the Parma Polyhedra Library. However, our preliminary experiments
conclude that a direct application of the disjunctive completion is
unsuitable for computing disturbance invariant sets.

We now present a disjunctive domain based on a state space parti-
tioning. The state space partitioning naturally controls the complex-
ity of the domain operations, and allows us to synthesize controller
implementations with bounded worst-case execution times.

4. PARTITIONED DISJUNCTIVE
DOMAINS

In this section, we construct a disjunctive numerical domain using
two basic steps: (a) partition the safe set S into finitely many subsets,
and (b) use the partitions to define a disjunctive abstract domain.
In theory, our domain works with any partition. We will define a
partitioning scheme based on repeated precondition computations
on the inequalities defining the unsafe set.

Let S ⊆ X be the safety specification andU : X\S. Our domain
captures sets of the form W : U ] (P1 ∪ P2 ∪ · · ·Pk) wherein U ,
the unsafe set is implicitly assumed to be part of every disturbance
invariant, and the sets P1, . . . , Pk ∈ POLY(S).

Next, the disjuncts P1, . . . , Pk are considered in a restricted form.
We consider partitions of S into subsets {C1, . . . , CN} such that
(a) each Ci is a polyhedron represented by the linear assertion ψi,

(b)
N⋃
i=1

Ci ≡ S, (c) For all pairs i, j, Ci ∩ Cj is empty.

EXAMPLE 4 (RECTANGULAR PARTITIONING). Suppose S
is an hyper-rectangle [`1, u1] × · · · × [`n, un] as in the DC-DC
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Figure 5: Partitioning the safe set into cells, depicted by the grid,
and a partitioned disjunctive polyhedron with three disjuncts shown
in blue.

converter example, then a simple partitioning scheme is based on
subdividing each interval [`i, ui] into p equally spaced sub-intervals
[`i, yi,1], [yi,1, yi,2], . . . , [yi,p−1, ui]. As a result, the safe set S is
partitioned into hyper-rectangular cells.

DEFINITION 9 (PARTITIONED DISJUNCTIVE DOMAIN). Let
S be partitioned into cells C : {C1, . . . , CN}. A C disjunctive
polyhedron is a tuple 〈P1, . . . , PN 〉, such that each Pi is a convex
polyhedron and Pi ⊆ Ci.

Finally, given a tiling C, we consider the abstract domain of
maps η from discrete modes q ∈ Q to a C-disjunctive polyhedron
η(q) : 〈P1, . . . , PN 〉.

Figure 5 illustrates the idea behind a partitioned domain schemat-
ically. Let P : 〈P1, . . . , PN 〉 and R : 〈R1, . . . , RN 〉 be two
C-disjunctive polyhedra. We say that P � R iff Pj ⊆ Rj for each
j ∈ [1, N ]. The ordering of maps η, π from modes to C disjunctive
polyhedron is defined as

η � π iff η(q) � π(q),∀q ∈ Q
Partitioning places an upper bound on the size of the representa-

tion while allowing us to directly use the operations form the basic
non-disjunctive polyhedral domain.

Given two C-disjunctive polyhedra P andR, we define P ⊕R :
〈P1 ⊕R1, . . . , PN ⊕RN 〉 where ⊕ ∈ {u,t,∇}.
Disturbance Precondition: Let π be a map that associates each
mode q to a C-disjunctive polyhedron. The disturbance pre condition
over π, d̃pre(π) is computed as a new map π̂, following Eq. (3)

π̂(q) :
l

(q,qj)∈E
Projd∈D (pre(q, π(qj),d)) (5)

Here, the pre operator is applied to each disjunct of π(qj). The
result is temporarily a disjunctive polyhedron involving x,d. The
projection operator existentially projects d from each disjunct and
yields a C-disjunctive polyhedron over x.

Thus far, we have presented the basic ideas behind a partitioned
disjunctive domain. However, the question of which partition to
use remains to be resolved. We will now discuss a precondition-
guided partitioning scheme that is inspired, in part, by the need to
repeatedly compute the disturbance precondition computation.

Precondition-Guided Partitioning: Precondition-Guided Parti-
tioning is a partitioning scheme based on repeatedly computing the
disturbance precondition of unsafe region U w.r.t each control mode
q ∈ Q. The main idea is to characterize sets that will reach the
unsafe region U in finitely many steps under the repeated action of
each control input q ∈ Q.

For each control mode q ∈ Q, we will partition S into a set
of polyhedra Pq,1, . . . , Pq,N for some fixed N > 0. The overall
partition has cells Cj , given by all nonempty intersections of the
form Cj : Pq1,j1 ∩ Pq2,j2 ∩ · · ·PqM ,jM (M = |Q|).

For the sake of simplicity, let us assume that the unsafe region
U is a single linear inequality. For each control mode q ∈ Q, we
initialize the region Rq,0 : S. We iteratively divide Rq,i into Pq,i+1
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Figure 6: (left) final partition of the safe region for DC-DC converter
and (right) disturbance invariant computed, shown by the shaded
region. Black circles are states of the plant during a simulation

and Rq,i+1:

Pq,i+1 := Rq,i ∩ dpre(i)(U, q), Rq,i+1 := Rq,i ∩ dpre(i)(U, q))

where dpre(i)(U, q) is the ith precondition of U which is also a
linear inequality. We repeat this for N − 1 steps to yield the regions,
Pq,1, . . . , Pq,N−1. We terminate by setting Pq,N := Rq,N−1 to
yield a partition of S through the regions Pq,1, . . . , Pq,N . However,
U can be expressed as a union of k linear inequalities U : U1 ∪
· · ·∪Uk, repeating the process outlined above for each mode qj and
for each linear inequality Ui yields the desired partition. Figure 6
shows the partition for the DCDC converter example (left), and the
post-fixed point computed by the abstract interpretation (right). The
unshaded region is the control invariant.

Normally, this process can potentially produce a large number of
cells in our partition. However, we find that (a) most of these cells
are empty, in practice, and (b) we can choose a subset Q̂ ⊆ Q of
modes, a subset of half-space Uj and control the limit N to also
control our partition.

5. CONTROLLER SYNTHESIS
Thus far, we have provided abstract interpretation scheme to

compute a disturbance invariant W . Now, we wish to compute
a controller that implements a switching function to maintain the
control invariant C : X \W .

Recall the closed loop model from Figure 1. We note that at each
time step, the control function inputs the current plant state (q,x)
and decides on a next step control input q′. Our goal is to ensure
that q′ is chosen so that (q′, next(q,x,d)) ∈ C. Therefore, the
controller code is a loop:

find q′ s.t (q, q′) ∈ E and ∀ d ∈ D, (q′, next(q,x,d)) ∈ C
For any (q,x) ∈ C, a control invariant, such a q′ is guaranteed to
exist. Here, we seek this q′ as a function of (q,x). First, we extend
the final disturbance invariant W obtained to the set

Ŵ :
{

(q,x, q′)
∣∣(∃d ∈ D) (q′,x) ∈ pre(q,W,d)

}
.

Therefore, q′ cannot be chosen as the control input for (q,x) iff
(q,x, q′) ∈ Ŵ . In other words, checking that forall d ∈ D,
(q′, next(q,x,d)) ∈ C is equivalent to checking if (q,x, q′) 6∈ Ŵ .

Now, it remains to efficiently implement a data-structure that,
given (q,x) finds a q′ ∈ Q such that (q,x, q′) 6∈ Ŵ .

Data Structure for Ŵ We assume that Ŵ is stored as a disjunction
Ŵq1 , . . . , ŴqM , wherein for q ∈ Q,

Ŵq :
{

(q′,x) | (q,x, q′) ∈ Ŵ
}

In turn, each Ŵq is stored as a map from each mode q′ ∈ Q to a
partitioned disjunctive polyhedron that represents the possible values
for x. In other words, Ŵq(q

′) :
{
x | (q,x, q′) ∈ Ŵ

}
. Given a

current state (q,x), we find q′ as follows:
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Figure 6: (a-c) Partitions for the DC-DC controller with (d) disturbance invariant shown by the shaded region. black circles are
states of the plant during a simulation
thousands in our benchmark) and also eliminating 8d quantifier
is time consuming. To solve the later problem, we compute set
Ŵ : {(q0,x, q)|(9d 2 D) (q0,x) 2 pre(q, W,d)} and checking
(q0, next(q,x,d)) 2 C is equivalent to checking if (q0,x, q) 2
Ĉ(Ĉ = X \ Ŵ ). To overcome the first problem, we present an
efficient scheme by computing a Binary Decision Diagram (BDD)
that guides us in this decision.

BDD-based Approach Once again, we use the partitioning to help
us decide rapidly whether (q0,x, q) 2 Ĉ for a given choice of mode
q0. First for each q we compute set Ŵq : {(q0,x)|(q0,x, q) 2 Ŵ}
as disjunction of polyhedra in our partitioned domain. Then the
process is decomposed into two steps:

(a) Find a cell Cj in the partition such that x 2 Cj .
(b) For each q0, determine if (q0,x) 62 Ŵq \ Cj .
Since Ŵq is stored as a single convex polyhedron per discrete

mode and cell, the process of searching for the cell Cj containing
x is critical.

Our approach to find the cell is to represent the partition suc-
cinctly as a binary decision diagram (BDD) so that the cell Cj that
x belongs to in the partition can be identified by checking querying
the inclusion of x in a small number of polyhedra. We wish to find
BDDs with bounds on their depth to enable optimal search for the
cell in the partition.

Note that each cell in the precondition-guided partition is con-
structed as an intersection of polyhedra

T
P j,i

q . Therefore, as a
primitive, given any subset Cd : {Ci1, . . . , Cil} of cells in the par-
tition and l > 1, we seek a discriminating polyhedron P̂ such that
some number j 2 [ l

3
, 2l

3
] of the cells are contained in P̂ and the

remaining have empty intersection with P̂ . Such a discriminating
polyhedron allows us to distinguish whether the given continuous
state x is in any of the cells in Cd. This process is carried out re-
cursively until a small number of cells remain in each branch. The
detailed BDD construction is shown in the rest of this section.

The primitive operation of computing a discriminating polyhe-
dron yields us a technique to find a BDD whose depth is guaranteed
to be O(log N) where N is the number of cells in the partition.

5.1 BDD Construction
BDDs stand for Binary Decision Diagrams. Here we are given

a state (q,x) and asked to find a cell Cj that it belongs to. We
assume that each mode q has its own set of partitions. Therefore,
we wish to find a cell C

(q)
j that x belongs to.

BDD Structure The BDD we seek has the structure depicted in
Figure 7. It is a rooted binary tree with terminal nodes (or leaves)
and internal nodes. Each internal node n has three associated prop-
erties: (a) polyhedron 'n, (b) left node left(n), and (c) right(n),
the right node.

Having a point x, we want to find the ID of the cell Cj that
contains this point. We can use a BDD for our decision by the
fallowing method: Starting from root, at each step, we consider an
internal node V and if x 2 V.polyhedron we go to node V.left
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Figure 7: A BDD for deciding the cell ID of a node in the par-
tition. P1 is the convex polyhedron formed by {C1, C2, C3},
P2 is the convex polyhedron formed by the union of the cells
{C2, C3}.
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Figure 7: A BDD for deciding the cell ID of a node in the parti-
tion. P1 is the convex polyhedron formed by {C1, C2, C3}, P2

is the convex polyhedron formed by {C2, C3}.

and otherwise we go to node V.right. By doing this procedure
iteratively, we finally reach a terminal node and we can decide. An
illustrative example of a BDD for a partition is shown in Figure 7.

Constructing BDD Having a disturbance invariant ⇡, in order
to check whether (q,x) 2 ⇡, It is sufficient to check whether
x 2 ⇡(q). In order to build the BDD for solving this problem, we
consider only non-empty cells of the ⇡(q), namely Ci (i 2 [1, N ]),
containing Pi’s as uncontrollable region. The BDD will be build in
a recursive manner (Algorithm 2).

Data: P = A subset of Pi’s
Result: A BDD for deciding whether x 2 P

1 if |P | = 1 then
2 root.poly = Pj ; // P = {Pj}
3 root.left = YES;
4 root.right = NO;
5 else
6 C = Set of Ci’s containing the elements of P ;
7 P̂ = findADiscriminatingPolyhedron(C);
8 root.poly = P̂ ;
9 root.left = buildBDD(set of Pi’s that are inside P̂ );

10 root.poly = buildBDD(set of Pi’s that are outside P̂ );
11 return root;

Algorithm 2: buildBDD

At each stage, the algorithm finds a discriminating polyhedra P̂
and divide the Pi’s into two sets. The first set contains Pi’s that
are completely inside P̂ and the second set contains other Pi’s that
are completely outside P̂ . Then it builds a BDD for the first set
and second set recursively. The base case happens when only one
polyhedron is remained (Line 2). In this case, the membership al-
gorithm should check whether a state x is in Pj or not.

Finding a discriminating polyhedra Given an arbitrary l > 1
of cells (obtained by partitioning), the following algorithm finds a
discriminating polyhedron P̂ s.t. l

3
 |P̂ |  2l

3
, where |P | denotes

the number of cells completely inside polyhedron P .

In this algorithm, the q0, j0 and i0 are values for q, j and i in the
next iteration respectively.

THEOREM 3. Algorithm 3 always return a discriminating poly-
hedron and never reaches Line 13.

Proof is provided in Appendix A

Figure 7: A BDD for deciding the cell ID of a node in the partition.
P1 is the convex polyhedron formed by {C1, C2, C3}, P2 is the
convex polyhedron formed by {C2, C3}.

1. Select the cell Cj in the partition that contains x.

2. Iterate through each mode q′ ∈ Q, such that (q, q′) ∈ E, we
check if x ∈ Ŵq(q

′).

(a) Since Ŵq(q
′) is a partitioned polyhedron, there is pre-

cisely one polyhedron Pj included in Cj .
(b) Check if x ∈ Pj .

Therefore, given a partitioning C : C1, . . . , CN , and a point x, a
core primitive is to find a cell Cj ∈ C, that contains x. One solution
is to run through the cells in order and test for inclusion. However,
this is quite expensive given that N can often be a large number.

Our approach to find the cell is to represent the partition succinctly
as a binary decision diagram (BDD) so that the cell Cj that x
belongs to in the partition can be identified by checking querying
the inclusion of x in a O(logN) polyhedra as opposed to O(N)
queries. We wish to find BDDs with bounds on their depth to enable
optimal search for the cell in the partition.

Note that each cell in the precondition-guided partition is con-
structed as an intersection of polyhedra

⋂
Pqi,j . In fact, the process

of constructing a precondition-guided partition also yields polyhedra
Rqi,j that “separates” the polyhedra Pqi,1, . . . , Pqi,j from the rest
Pqi,j+1, . . . , Pqi,m. These properties are exploited to construct a
series of balanced decision trees that given x finds the polyhedra
Pqi,j whose intersections form the cell Cj that contains x.

5.1 BDD Construction
Here we are given a state x ∈ S and asked to find a cell Cj that it

belongs to. The BDD we seek has the structure depicted in Figure 7.
It is a rooted binary tree with terminal nodes (or leaves) and internal
nodes. Each internal node n has three associated properties: (a)
polyhedron ϕn, (b) left node left(n), and (c) right(n), the right
node. Given a state x, the ID of the cell Cj that contains x is given
by a simple procedure that walks the BDD: Starting from root, at
each step, we consider an internal node V and if x ∈ V.polyhedron
we go to node V.left and otherwise we go to node V.right. By
carrying this procedure iteratively, we finally reach a terminal node
that yields the requested cell. An illustrative example of a BDD for
a partition is shown in Figure 7.
BDD construction In general, our partitioning scheme computes
sets of polyhedra: Pi : {Pi1, . . . , PiN}, for i ∈ [1,M ]. Specifi-
cally, Pi represents subdivision for a mode qi ∈ Q for the precon-
dition guided scheme. The fallowing properties easily obtainable
from definitions of Cj , Ri,j and Pi,j :

(A) Each cell is a nonempty intersection Cj :
⋂

Pi,ji
∈Pi

Pi,ji of

elements from the sets Pi, i ∈ [1,M ].
(B) For each j ∈ [1, N ] the polyhedra Pi1, . . . , Pij ∈ Pi are

separated from Pi,j+1, . . . , PiN ∈ Pi through a polyhedron Ri,j .
I.e, Pi,k ∩Ri,j = ∅ for k ≤ j, while Pi,k ⊆ Ri,j for k > j.

Therefore, given a state x, the corresponding cell Ck is identified
by identifying a single polyhedron Pi(x) ∈ Pi for each i, so that

Ck :
M⋂
i=1

Pi(x).

For each Pi, the single polyhedron containing x is identified
in log(|Pi|) = log(N) steps by a binary search process that is
encoded in a BDD. At the root, first we find a j s.t. Ri,j contains
half of Pi,ks. Then we check if x ∈ Ri,j : if yes, we know that
x ∈ Pi,k where k > j. Otherwise, we know that x ∈ Pi,k where
k ≤ j. In each case, we narrow down the number of possibilities by
half. The full search tree can be succinctly represented by a BDD
with N nodes and of depth at most log2(N).

Overall, we construct M BDDs, one for each of the sets in
P1, . . . , PM with each BDD providing an element of Pi(x) ∈ Pi
that contains the given point x. Finally, a hash table can be used to
lookup the cell ID, given the indices i(x) of the polyhedra in each
Pi, that intersect to form the cell.

Using these ideas, the cell ID for the precondition guided par-
titioning scheme can be discovered using at most

∑M
i=1 log(|Pi|)

polyhedral membership tests, or |Q| log(N) where N is an upper
bound on |Pi|. Note that the number of cells is O(|Q|N ) in the
worst case.

6. EVALUATION
Implementation Figure 8 presents a block diagram description
of our implementation of the ideas presented thus far. The input
is a simple text-based description of the plant Ψ and the safe set
S. Our implementation currently takes the edge set E = Q × Q,
assuming effectively that the controller can switch between any
pair of modes. The fixed-point computation for the disturbance
invariant first partitions the safe set S and builds the abstract domain.
Currently, we support two kinds of partitioning, namely, grid-based
and precondition-guided partitioning, as described in Section 4.

After partitioning, fixed point engine implements the partitioned
disjunctive abstract domain from section 4. Our implementation
uses the exact polyhedral manipulation primitives implemented in
the Parma Polyhedra Library [5]. To control the complexity of our
implementation, we use octagons instead of polyhedra for each of
the cells in the partition for systems with 3 or fewer dimensions [25],
and boxes inside each cell for higher dimensions. The application
of the widening is delayed for 20 iterations to enhance precision.
The simplified structure of the plant model allows us to carry out
the projection of d ∈ D efficiently by assuming that the set D is
convex and bounded. After finding a disturbance invariant, the BDD
generator constructs a BDD for finding a partition containing a given
state using a modification of the algorithm discussed in section 5.
The modification ensures the construction of a single BDD for the
entire partition rather than a family of BDDs. It will be presented in
our extended version.

The output of the BDD generator is fed to the code generator,
which generates the code for the controller in the destination plat-
form. Currently, our implementation generates MATLABTMcode
that executes inside a simulator environment also implemented in
MATLABTM.

6.1 Results
First, we briefly explain a set of benchmarks over which the

evaluation has been carried out. Each benchmark yields multiple
controller synthesis instances for different variations on the plant
model, disturbance set sizes and number of control inputs to be used
by our controller. Further details about the benchmarks and experi-
mental results over variations of these benchmarks are available in



Table 2: Summary of results of running our implementation on the benchmark suite. Legend: n: # state variables, |Q|: # modes, ∆:
discretization time. All timings are in seconds. All the experiments were carried out on a Macbook pro laptop with 2.9 GHz Intel Core i7
processor, 8GB of RAM, running MACOSX 10.9.

Problem Precondition-guided Partitioning Grid-based Partitioning
Benchmark n |Q| ∆ # Cells Time BDD Depth # Cells Time

DCDC (Single Output) 2 2 2× 10−5 98 10.9 9 96 6.7
2 2 2× 10−5 95 11.0 9 96 5.7

DC Motor 2 3 10−4 138 1.3 6 275 1.5
2 3 10−4 791 14.1 9 275 4.0

Inverted Pendulum 2 3 0.05 44 0.9 6 131 1.9
2 3 0.05 137 0.8 3 617 2.6

DCDC (Double Output) 3 3 10−5 974 402.3 13 10659 5368.6*
3 3 5× 10−5 4950 3022.7 15 10659 6526.4*

Helicopter 2 3 0.1 186 1.2 4 243 1.4
4 9 0.1 636 136.2 10 1776 261.2

Propofol Delivery 4 2 60 10423 347.0 12 10659 13494.0
6 2 120 10680 2585.6 12 - -**

Multi-level Converter 3 6 0.002 545 8.3 3 734 5.4
4 5 0.002 555 40.7 9 1740 115.8

Room Heating 4 5 300 85 57.3 8 1955 63.7
5 16 480 808 509.8 11 1294 219.3

(*) The gridding method could not find a disturbance invariant (**) The procedure timed-out (> 10hrs)

Input
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Generator

Code

Fixed-point Engine

D
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MATLAB 
Code 
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MATLAB 
SimulatorSimulation BDD

Figure 8: Block diagram of the synthesizing procedure

the extended version.

6.1.1 Benchmarks
We briefly present the benchmarks used in our evaluation.

DCDC Boost Converter We consider two sets of DC-DC boost
converter examples, based on Example 1, taken from Senesky et
al. [32]. As explained earlier, the control objective is to maintain
the current and voltage(s) of a circuit in a proper range by toggling
the switches in a circuit. The first benchmark set has a single
output voltage, whereas the second set has two output voltages.
In single-output DCDC converter example, we consider different
instances with varying disturbance ranges D, and for the second
set we consider different instances with varying discretization time
steps.
DC Motor In this example (taken from the PESSOA tool bench-
marks), we want to maintain the velocity of a DC Motor by changing
the source voltage [24]. We discretize the continuous input volt-
age into finitely many discrete voltages. Different instances are
generated by varying the range of the control input voltages.
Inverted Pendulum This benchmark is a linearized model of
an inverted pendulum, once again taken from the PESSOA-tool
benchmark suite [35]. The goal is to keep an inverted pendulum
upright by providing forces in appropriate directions at appropriate
times. Different instances of this benchmark consider different

values for the safe set S.
Propofol Delivery This benchmark was proposed recently by
Maidens et al. [22], and detailed by Gan et al. [14] the patient is
modeled as a 4 variables linear delay differential equation that is
approximated using a standard Padé approximation. The input is
the infusion rate of the Propofol and the goal is concentration of
the Propofol in the effect chamber of the pharmacokinetic model.
Different instances for this benchmark were derived by changing
the order of the Padé approximation.
Helicopter The helicopter example (taken from [10]), is a linear
model of a helicopter, with the control objective placing bounds on
the helicopter’s x, y position and velocities. The control inputs are
the roll and the pitch. Our benchmark uses two instances that vary
in the number of dimensions of the problem.
Multi-level Converter This example is also a model of an electri-
cal circuit, wherein we want to regulate voltages in the circuit under
varying loads [12, 13]. We consider different instances based on
varying number of discrete modes.
Room Heating In this example, inspired by [11], we consider the
problem of maintaining temperature inside a building with many
rooms within a given range. The temperature of each room changes
according to Newton’s cooling law. We have limited number of
portable heaters and we want to keep temperature of each room in
an acceptable bound by moving the heaters and turning them on
and off. We consider different instances that vary in the number of
heaters (control modes) and the number of rooms (state variables).

6.1.2 Evaluation
Table 2 summarizes the results of our implementation running on

the benchmark suite, comparing the two approaches for the parti-
tioning: precondition-guided partitions against grid-based partitions.
The performance on all instances of all benchmarks is presented in
our extended version. Here, we present two representative instances
for each benchmark to provide a succinct summary.

The results clearly demonstrate the ability of our method to suc-
cessfully compute disturbance invariants using the disjunctive do-
main and extract controller code from these. As expected, the perfor-
mance varies depending on the number of state variables, modes and
control inputs. Overall, however, our implementation can handle all
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Figure 10: Simulation traces (Top) the double output DC-DC con-
verter benchmark (Bottom) for the Helicopter benchmark.

benchmark instances in under an hour. The grid-based partitioning
scheme is seen to perform well for smaller systems but degrades
fast. Whereas the precondition-based scheme works well on almost
all the benchmarks, even though the number of grid cells remains
comparable for both approaches. This demonstrates the usefulness
of precondition-guided partitioning as a more natural partitioning of
the state-space for our computations.

Also as demonstrated in Figure 9, the precondition-guided parti-
tioning method gives a bigger control invariant (and more similar
to the maximum control invariant) which is another witness to the
preciseness of this method compared to grid-based method.

The synthesis of the controller itself is a tiny fraction of the
overall computation time, which is dominated by the fixed-point
computation. In most cases, control synthesis took less than 1% of
the overall computation time.

In most cases, the depth of the BDDs are small as demonstrated
in Table 2. The depth of the BDD dictates the number of nested
conditional statements in the control code. Therefore, the resulting
controller implementation is more amenable to a real-time control.
Example simulation traces for the double output DC-DC converter
and the helicopter example are shown in Figure 10 .
Comparison with PESSOA A direct comparison of our method
to the PESSOA toolbox [24] is not possible, since PESSOA has
different semantics and supports a richer specification language. On
the other hand, disturbances are not supported by PESSOA. Never-
theless, some of the benchmarks can be solved by both approaches
for similar (but not identical) control specifications.

For the DC-Motor, the inverted pendulum and the Propofol deliv-
ery benchmarks, our approach and PESSOA produce results with
comparable timings. Note that we set disturbance inputs to 0 to
enable this comparison. For the helicopter benchmark, PESSOA
failed to find a controller when the space quantization step was 0.04.
Reducing this to 0.03, however, cause a out-of-memory error.

Our future work will consider a tighter integration using a tool
such as PESSOA to handle liveness properties while computing a
maximally permissive safety controller using fixed point techniques
over polyhedra, as presented here.

7. CONCLUSION
To conclude, we present a disjunctive polyhedral abstract inter-

pretation for computing disturbance invariant sets for discrete time
controllers. Our future work will extend these ideas beyond safety
to consider liveness properties that are also important in controller
synthesis. There are many ways to improve the proposed abstract
domain. We are investigating dynamic state-partitioning approaches
during the course of fixed point computation. Consideration of per-
formance metrics and synthesizing controllers to minimize costs is
another fruitful line of future work in this area.
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APPENDIX
A. BENCHMARKS AND RESULTS (DETAILS)

In this section, we describe each benchmark and in details and
compare the results obtained from two different partitioning method.
For the precondition-guided partitioning scheme, we indicate which
modes where chosen for partitioning operation and for the grid-
based scheme we indicate the gridding step size σ for each example.

A.1 Single output DCDC boost converter
The single output DCDC boost converter has two continuous vari-

ables (iL and vo) and has two modes (q1 and q2). The differential
equations correspond to these modes are

[
˙iL
v̇o

]
=

[
0 0
0 − 1

RC

] [
iL
vo

]
+

[
vin
L
0

]

,
[

˙iL
v̇o

]
=

[
0 − 1

L
1
C
− 1
RC

] [
iL
vo

]
+

[
vin
L
0

]

respectively. The constant values and other parameters are

vin 1.5
L 150× 10−6

C 110× 10−6

R 6
S Q× [0, 2.5]× [2.97, 3.63]
∆ 20× 10−6

We run the experiment with different values for size of set D.
The disturbance is small because the error in electrical circuits are
small as well as the time step.

Using precondition-guided partitioning scheme, we were able to
solve first four problems, but failed for the fifth. Then we decreased
the ∆ to 10 × 10−6 and a disturbance invariant was found. The
results can be found in Table 3.

On the other hand, using grid-based scheme we solved the first
four problems by σ = 0.2×0.1. However for the fifth problem, this
method also failed. Then by increasing the number of segments (
σ = 0.1×0.05) even with ∆ = 20×10−6 a non-empty disturbance
invariant was found.

The failure in the last case by precondition-guided scheme sug-
gests that we can be more precise by decreasing the time-steps only
for partitioning purpose and we can use the original time-step for
fixed-point computations and this fact should be considered for
future works.

A.2 DC Motor
The DC Motor example has two continuous variables (ω and i)

and the differential equations for the system are

[
ω̇
i̇

]
=

[
−B
J

k
J

− k
L
−R
L

] [
ω
i

]
+

[
0
1
L

]
u

The input u can be−umax, 0 and umax. The constants and other
parameters are

J 250× 10−6

B 100× 10−6

k 0.05
L 1500× 10−6

R 0.5
S Q× [−19.5, 20.5]× [−0.7, 0.7]
∆ 100× 10−6

D [−0.003, 0.003]2

In each case of the benchmark we change the value of umax and
the smaller the umax is the less controllable will be the environment.
The results are shown in Table 4. Both methods failed for umax = 1.
Since the grid-based partitioning method failed even with 21880
cells, it is probably the case that the safety property can not satisfied.

A.3 Inverted Pendulum
This example is the linearized version of the inverted pendulum

example [35]. The continuous variables are θ and ω. We assume the
value of θ is small and sin(θ) = θ and cos(θ) = 1. The result is
the following differential equations.

[
θ̇
ω̇

]
=

[
0 1
g
l
− h
ml2

] [
θ
ω

]
+

[
0
1
ml

]
u

The input u can have values −umax, 0 and umax. The constants
and other parameters are

g 9.8
l 0.5
m 0.5
h 2
umax 6
∆ 0.05
D [−0.02, 0.02]2

The safe region is Q × [−r, r] × [−1, 1]. In each case of the
benchmark, we change the safe region and make the r bigger in
each case.

For grid-based scheme we set the σ to 0.01×0.1 and as the results
shown in Table 5, both methods work well in this benchmark.

A.4 Double output DCDC boost converter
In this example, there are three continuous variables (iL, vA and

vB) and three modes q1, q2 and q3 and the differential equations
for these modes are




˙iL
˙vA
˙vB


 =




0 0 0
0 − 1

RACA
0

0 0 − 1
RBCB





iL
vA
vB


+




vin
L
0
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,



˙iL
˙vA
˙vB
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0 − 1
L

0
1
CA

− 1
RACA

0

0 0 − 1
RBCB





iL
vA
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+




vin
L
0
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˙iL
˙vA
˙vB


 =




0 0 − 1
L

0 − 1
RACA

0
1
CB

0 − 1
RBCB





iL
vA
vB


+




vin
L
0
0




respectively. The constants and other parameters are

L 75× 10−6

vin 1.5
RA 6.25
RB 34.1
CA 800× 10−6

CB 146.6× 10−6

S Q× [0, 1]× [1.7, 2]× [3.3, 4]
D [−0.0005, 0.0005]3

In this benchmark, each case has a different value for ∆. The
grid-base scheme failed with σ = 0.03× 0.02× 0.04. The results
(Table 6) suggest that the precondition-guided partitioning scheme
is much more accurate for these problems.



A.5 Helicopter
The simplified helicopter example is the problem of keeping the

helicopter near the origin. We consider two cases for this benchmark.
The first one is in 1 dimension space. Continuous variables are x
and vx. The modes can change according to roll command. The
differential equations are

[
ẋ
v̇x

]
=

[
0 1
0 0

] [
x
vx

]
+

[
0

gsin(φ)

]

Input φ can have 3 different values (−10, 0 and 10 degree). The
constant and other parameters are

g 9.8
S Q× [−1, 1]2

∆ 0.2
D [−0.03, 0.03]× [−0.04, 0.04]

We also try the same problem for 2 dimensions space. More
precisely, the variables are x, vx, y and vy and differential equations
are




ẋ
v̇x
ẏ
v̇y


 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







x
vx
y
vy


+




0
gsin(φ)

0
gsin(ψ)




Inputs are (φ, ψ) ∈ {−10, 0, 10}2. The constants and other
parameters are

g 9.8
S Q× [−1, 1]4

∆ 0.2
D ([−0.03, 0.03]× [−0.04, 0.04])2

As results demonstrate in Table 7, for the second problem grid-
based scheme with σ = 0.44 was not precise enough for finding a
disturbance invariant.

Also , since the number of modes are more than necessary for the
second example, we chose only 4 of these modes for partitioning.
These for modes are

(φ, ψ) ∈ {(−10, 0), (10, 0), (0,−10), (0, 10)}

A.6 Propofol Delivery
In this benchmark, our patient is modeled by four continuous

variables (cp, c1, c2 and ce). The differential equations are




ċp
ċ1
ċ2
ċe


 =




−(k10 + k12 + k13) k12 k13 0
k21 −k21 0 0
k31 0 −k31 0
kd 0 0 −kd







cp
c1
c2
ce




+




1
V1

0
0
0


u(t− Td)

The input u here can have two values 0, and 6000. Td is the time
delay. The constants and other parameters are

weight 35
k10 0.1527× weight−0.3

k12 0.114
k13 0.0419
k21 0.055
k31 0.0033
kd 40
V1 458× weight
S S4 = Q× [1, 6]× [0, 10]× [0, 10]× [1, 8]
∆ 120
D [0.02]4

In the first case, we consider Td to be zero. Then we add extra
continuous variables to model a memory for estimating the delay for
Td = 30. More precisely in the second example we add 1 variable
for modeling the memory using Pade-approximation. The set D
also becomes [0.02]5 and the safe region becomes S4 × [0, 1].

Similarly in the third example we add 2 variables ( D = [0.02]6,
S = S4 × [−1, 1]× [−1, 2]).

Notice that the for the safe region there is no restriction on the
new added variables, however, to make the safe region bounded, we
add these restrictions.

Comparing to two scheme for partitioning (Table 8), the grid-
based scheme takes much more time and for higher dimensions the
procedure does not terminate in 10 hours.

A.7 Level converter
In this benchmark, we consider two different example of multi-

level converters (4-level and 5-level converters). In these examples,
there are some voltage variables (v1...vn−1) and one current variable
i. Also there are n switches. We refer to one switches state by vector
Sw = (s1, s2, ..., sn)T , and each si can be 0 (off) or 1 (on).

In the first example, the differential equations are



v̇1
v̇2
i̇


 =




0 0 (s1−s2)
C

0 0 (s2−s3)
C

(s2−s1)
L

(s3−s2)
L

−RLoad
L





v1
v2
i


+




0
0

s1
vin
L




The constants and other parameters are

vin 200
RLoad 5
C 0.1
L 0.0137
S Q× [130, 135]× [65, 70]× [0, 40]
∆ 0.002
D [−0.001, 0.001]3

There are 8 different modes, however, we ignore two of these
modes (Sw = (1, 0, 1), Sw = (1, 1, 0)) and we try to synthesize
the controller without them.

The second example have a little bit different parameters. The
differential equations are




v̇1
v̇2
v̇3
i̇


 =




− 1
RC

0 0 (s1−s2)
C

0 − 1
RC

0 (s2−s3)
C

0 0 − 1
RC

(s3−s4)
C

(s2−s1)
L

(s3−s2)
L

(s4−s3)
L

−RLoad
L







v1
v2
v3
i




+




0
0
0

s1
vin
L




For this example the constants and parameters are



vin 200
RLoad 50
R 20000
C 0.0012
L 0.2
S Q× [145, 150]× [95, 100]× [45, 50]× [−3, 4]
∆ 0.002
D [−0.001, 0.001]4

There are 16 different modes, however here we only consider 5
of them for synthesizing the controller. These modes are
Sw = (0, 0, 0, 0)T , Sw = (0, 0, 0, 1)T , Sw = (0, 0, 1, 1)T ,
Sw = (0, 1, 1, 1)T , Sw = (1, 1, 1, 1)T

The precondition-guided partitioning scheme uses 2 of 6 modes
(Sw = (0, 0, 1)T and Sw = (0, 1, 1)T ) for partitioning and in the
last case, it uses 3 of 5 modes for partitioning (Sw = (0, 0, 0, 1)T ,
Sw = (0, 0, 1, 1)T and Sw = (0, 1, 1, 1)T ).

Both approach work almost good (Table 9) on this benchmark,
however, with the same number of cells, the precondition-guided
partitioning method works more precise.

A.8 Room Heating
This benchmark contains higher dimensions examples. In these

set of examples, there are some rooms in a building and we want
to keep their temperature with in some acceptable bounds. Each
wall of a room is surrounded with either by another room or the
outside environment. Walls are usually insulated, however, they are
not perfect. The temperature of each rooms changes by Newton’s
cooling law. More precisely, having two areas with temperature x1
and x2 a mutually surface, then ẋ1 = k(x2 − x1), where k is the
cooling constant for that surface. The cooling constant for walls
is kw and for floors is kf . We assume that outside temperature
(ta) remains constant (As well as earth temperature (te) which is
adjacent to the basement room). The problem in room heating is
as follows. We have some limited number of heaters and we want
to keep the rooms warm, by these portable heaters. Each heater
provides h Fahrenheit per hour rise in the temperature of the room.
The controller can move the heaters between the rooms and turn
them on or off. We want to keep the temperature of basement room
between 60 and 75. The temperature of attic between 55 and 65 and
the other rooms between 60 and 70.

In the first example, there are 4 rooms and 1 heaters. The differ-
ential equations are




ṫ1
ṫ2
ṫ3
ṫ4


 =




−kw − kf kf 0 0
kf −kw − 2kf kf 0
0 kf −kw − 2kf kf
0 0 kf −kw − kf







kwte
kwta
kwta
kwta


+




s1
s2
s3
s4


h

si indicates if there is one heater in room i (1) or not (0). Because
we have one heater, then

∑4
i=1 si ∈ {0, 1}. Therefore, there are

5 different modes. A vector H = (s1, s2, s3, s4)T defines a mode.
The constants and parameters are

ta 48
te 40
kw 0.5
kf 0.7
h 60
∆ 300
D [−0.1, 0.1]4

For the second example, there are 5 rooms and 2 heaters. The
differential equation is similarly




ṫ1
ṫ2
ṫ3
ṫ4
ṫ5




=




−kw − kf kf 0 0 0
kf −kw − 2kf kf 0 0
0 kf −kw − 2kf kf 0
0 0 kf −kw − 2kf kf
0 0 0 kf −kw − kf







kwte
kwta
kwta
kwta
kwta


+




s1
s2
s3
s4
s5


h

Since we have two heaters, then
∑5
i=1 si ∈ {0, 1, 2}. Therefore,

there are 22 different modes. However, we choose only 10 of them
for synthesizing the controller. These modes are
H = (0, 0, 0, 0, 0), H = (1, 0, 1, 0, 0), H = (1, 0, 0, 1, 0),

H = (0, 1, 0, 0, 1), H = (0, 0, 1, 0, 1), H = (1, 0, 0, 0, 0), H =
(0, 1, 0, 0, 0),H = (0, 0, 1, 0, 0),H = (0, 0, 0, 1, 0),H = (0, 0, 0, 0, 1)

All the constants and parameters are the same except for ∆ = 480
and D = [−0.1, 0.1]5.

For the first problem, the precondition guided partitioning scheme
uses two of the modes (H = (1, 0, 0, 0) and H = (0, 0, 0, 1))
for partitioning and uses three modes (H = (1, 0, 0, 0), H =
(0, 0, 0, 1) and H = (1, 0, 0, 0)) for partitioning in the second prob-
lem. The results can be found in Table 10.



Table 3: Results for single output DCDC converter benchmark. Legend: D: disturbance set, #C : # cells, #NEC : # non-empty cells, #It : #
iterations in fixed-point computation, Tfp : fixed-point computation time, Depth: depth of the BDD, #Ineq: number of inequalities need to be
calculated for reaching a leaf of BDD (Worst-case), TBDD: BDD construction time, Stat: status of the result, σ: the step size for gridding, NF:
disturbance invariant not found

Precondition-guided Partitioning Grid-based Partitioning
D ∆ #C #NEC #It Tfp Depth #Ineq TBDD Stat σ #C Tfp Stat
0.001([−1, 1]2) 20 98 72 137 10.9 9 42 ε OK 0.2×0.1 96 6.8 OK
0.002([−1, 1]2) 20 99 74 197 11.7 9 43 ε OK 0.2×0.1 96 6.1 OK
0.003([−1, 1]2) 20 97 73 112 9.6 9 43 ε OK 0.2×0.1 96 7.3 OK
0.004([−1, 1]2) 20 95 74 121 11.1 9 43 ε OK 0.2×0.1 96 5.7 OK

0.005([−1, 1]2) 20 94 94 63 8.8 10 48 ε NF 0.2×0.1 96 9.4 NF
0.1×0.05 294 20.2 OK

10 275 215 111 37.7 11 56 0.29 OK 0.1×0.05 294 31.3 OK

Table 4: Results for DC Motor benchmark, Legend: See legend of Table 3

Precondition-guided Partitioning Gridding
umax #C #NPC #It Tfp Depth #Ineq TBDD Stat σ #C Tfp Stat

10 138 17 7 1.3 6 42 ε OK 0.05×0.1 271 48.1 NF
0.05×0.05 518 1.6 OK

5 253 18 4 2.1 6 38 ε OK 0.05×0.05 518 1.9 OK
2 791 106 14 14.1 9 61 ε OK 0.05×0.05 518 4.0 OK
1 6624 6624 174 1375.4 19 125 68.5 NF 0.005×0.005 21880 2299.7 NF

Table 5: Results for inverted pendulum benchmark, Legend: r : range of θ ∈ [−r, r] in safe set S, also see legend of Table 3

Precondition-guided Partitioning Gridding
r #C #NPC #It Tfp Depth #Ineq TBDD Stat #C Tfp Stat
0.1 44 23 10 0.9 6 35 ε OK 131 1.9 OK
0.2 71 12 3 0.5 5 21 ε OK 257 1.9 OK
0.3 94 23 22 1.3 6 33 ε OK 365 10.7 OK
0.4 121 8 3 0.9 3 14 ε OK 491 2.2 OK
0.5 137 8 3 0.9 3 14 ε OK 617 2.6 OK

Table 6: Results for double output DCDC converter benchmark, Legend: See legend of Table 3

Precondition-guided Partitioning Gridding
∆ #C #NPC #It Tfp Depth #Ineq TBDD Stat #C Tfp Stat
5 4950 1436 124 3022.7 15 114 9.8 OK 10659 6526.4 NF
10 974 312 83 402.3 13 89 0.7 OK 10659 5368.6 NF
15 454 454 50 260.6 14 107 1.4 NF 10659 3192.5 NF

Table 7: Results for Helicopter benchmark, Legend: n: # state variables, |Q|: # modes, #MP: # modes for partitioning, also see legend of
Table 3

Precondition-guided Partitioning Gridding
n |Q| #MP #C #NEC #It Tfp Depth #Ineq TBDD Stat σ #C Tfp Stat
2 3 3 197 11 3 0.9 4 19 ε OK 0.52 31 0.5 OK

4 9 5 636 137 4 136.2 10 107 0.3 OK 0.44 1308 797.0 NF
0.354 1776 361.2 OK



Table 8: Results for Propofol delivery benchmark, Legend: TO: Timed out, see also legend of Table 3

Precondition-guided Partitioning Gridding
n #C #NEC #It Tfp Depth #Ineq TBDD Stat σ #C Tfp Stat

4 10423 285 31 347.0 12 185 1.6 OK 14 5819 9560.3 NF
0.884 10659 13494 OK

5 10429 311 32 864.6 12 214 3.8 OK 0.884 × 3 10659 > 10 hours TO
6 10680 365 33 2585.6 12 265 14.0 OK 0.884 × 32 10659 > 10 hours TO

Table 9: Results for Multi-level converter benchmark, Legend: See legend of Table 7

Precondition-guided Partitioning Gridding
n |Q| #MP #C #NEC #It Tfp Depth #Ineq TBDD Stat σ #C Tfp Stat
3 8 2 545 10 3 8.3 3 18 ε OK 0.5×0.5×8 734 5.4 OK

4 5 3 555 97 9 40.7 9 100 0.2 OK 1.34 886 163.2 NF
1.24 1523 90.9 OK

Table 10: Results for room heating benchmark, Legend: See legend of Table 7

Precondition-guided Partitioning Gridding
n |Q| ∆ #MP #C #NEC #It Tfp Depth #Ineq TBDD Stat σ #C Tfp Stat

4 4 300 2 85 65 31 57.3 8 84 0.2 OK 34 761 182.1 NF
24 1955 63.7 OK

5 10 480 5 808 214 4 509.8 11 126 1.4 OK 45 1294 219.2 OK


