
Event Correlation: Language and Semantics

César Sánchez, Sriram Sankaranarayanan, Henny Sipma,
Ting Zhang, David Dill, and Zohar Manna

Computer Science Department
Stanford University

{cesar,srirams,sipma,tingz,dill,zm}@CS.Stanford.EDU

Abstract. Event correlation is a service provided by middleware plat-
forms that allows components in a publish/subscribe architecture to sub-
scribe to patterns of events rather than individual events. Event corre-
lation improves the scalability and performance of distributed systems,
increases their analyzability, while reducing their complexity by moving
functionality to the middleware. To ensure that event correlation is pro-
vided as a standard, reliable service, it must come with a well-defined,
unambiguous semantics.
In this paper we present a language and formal model for event correla-
tion with an operational semantics defined in terms of transducers. The
language has been motivated by an avionics application and includes
constructs for modes in addition to the more common constructs such
as selection, accumulation and sequential composition. We show how the
transducers can be constructed in a compositional way from event corre-
lation expressions. Prototype event processing engines for this language
have been implemented in both C++ and Java and are being integrated
with third-party event channels.

1 Introduction

Publish-subscribe is an event-based model of distributed systems that decouples
event publishers from event consumers. Event consumers register their interests
with the middleware by means of a subscription policy. Events published to the
middleware are delivered only to those consumers that expressed an interest.
The publish-subscribe paradigm is useful in practice for building large systems
in which not all components are known at design time, or components may be
dynamically added at runtime such as in mobile systems. These systems may
even extend world wide. In [5] a world is predicted in which pervasive computing
devices generate 10,000,000,000 events per second, with billions of subscribers
from all over the planet. Clearly, extensive filtering and correlation are required
at multiple levels and locations to manage these volumes.

Several middleware platforms exist that provide event notification services.
Examples include Gryphon [1], Ace-Tao [20], Siena [3], Elvin [2]. An overview
and comparison of such systems is given in [16]. In some middleware platforms,
such as the real-time event channel (RTEC) of ACE-TAO [20], consumers sub-
scribe with the middleware with a list of event types or sources they wish to

receive. Suppliers publish their events to the RTEC, which then distributes them
to the consumers that signed up for them. This service, also called event filter-
ing, reduces unnecessary component activation and simplifies construction and
configuration of complex systems.

Event correlation extends event filtering offering consumers the capability to
register with the RTEC with more complex subscriptions, including combina-
tions of events and temporal patterns. Providing event correlation as a standard
middleware service further enhances the performance of embedded applications.
However, more importantly, it enables the transfer of functionality from appli-
cation components to the middleware, which

– reduces software development and maintenance cost by decreasing the num-
ber of special-purpose components to be developed, as complexity is factored
out of the component into the middleware;

– increases reliability, as this service can be verified and tested once as part of
the platform and reused many times;

– increases the analyzability of the system: where event dependencies were
before largely hidden inside application components, with event correlation
provided, these dependencies are available explicitly to analysis tools in the
form of event correlation expressions with well-defined semantics;

– increases the accuracy of schedulability analysis by taking into account de-
pendencies between component invocations, enabling more efficient utiliza-
tion of computing and network resources;

– increases flexibility in configuration: event correlation expressions can be
changed more easily at runtime or on short notice than components can be
replaced.

To enable event correlation to be provided as a standard, reliable middleware
service, it must come with a well-defined, unambiguous semantics. In addition,
it would be desirable if event-processing code could be generated automatically
from the (declarative) event correlation expressions, thus ensuring adherence to
the semantics by construction.

In this paper we present a language and a computational model for event
correlation that provides an unambiguous semantics for event correlation ex-
pressions. The model is based on automata/transducers, a well-studied domain
with a large body of analysis methods and tools. Another attractive property of
transducers is that it is an operational model: they can be used directly in the
RTEC to process events interpretatively, or used to automatically generate the
code to process the events.

The development of this language was initiated to enable the use of event
correlation in the Boeing Open Experimental Platform, a component of Boe-
ing’s Bold Stroke avionics middleware architecture [21]. Some of the constructs
included in the language were directly motivated by the Boeing product scenar-
ios.

The paper is organized as follows. In section 2 we give an intuitive overview
of the features of a simple version of our event correlation expression language.
In section 3 we present the new model of correlation machines and its extension

correlation modules that are used to define the operational semantics of the
constructs in the correlation language. This translation is described in section 4.
In section 5 we briefly present some related work. Finally, section 6 contains the
conclusions and outlines some directions for future research.

2 Event Correlation Language

Syntax An ECL expression is constructed out of predicate formulas, to which
we apply the combination operators shown below.

A predicate formula is itself a correlation expression. If φ, φ1 . . . φn are cor-
relation expressions then so are

accumulate{φ1, . . . , φn} fail{φ}
select{φ1, . . . , φn} push(x){φ}
sequential{φ1, . . . , φn} persist{φ}
do{φ1}unless{φ2} repeat{φ}
parallel{φ1, . . . , φn} loop{φ}

An informal description of each of the constructs follows.

In general, an expression is evaluated over an input stream of events. On any
event the evaluation may complete successfully, it may complete in failure, or
may not complete.

Basic Constructs : The lowest-level construct is a simple event predicate on a
single event. This event predicate may range from being an enumeration on a
finite alphabet to first-order predicates on the source, timestamp, type, and data
content of the event. In the context of the language described here we are only
concerned with whether or not an event satisfies the predicate. In general we
assume we have an effective way of deciding this. To simplify the presentation
in this paper we here assume a finite alphabet of input events.

The evaluation of a predicate expression completes successfully when the
event received satisfies the predicate. It does not complete on any other event.
In particular, the expression never fails: events that do not satisfy the predicate
are simply ignored.

Simple predicate expressions may be combined using the standard boolean
operators with the usual semantics. Thus these compound predicate expressions
are also evaluated over a single event. An example of a compound predicate
expression is 〈source = GPS〉 ∧ 〈type = DATA〉 which is satisfied by any event
that meets both conditions.

The boolean constants true and false are available as trivial predicate ex-
pressions. The predicate true completes successfully upon the reception of any
event; false is never satisfied, and hence never completes. Note that false does
not complete in failure either (it simply blocks waiting for an event satisfying
“false”).

Simple correlator expressions : Predicate expressions can be combined into cor-
relator expressions that may need to consume multiple events before they com-
plete.

The most commonly seen event correlation constructs are the accumulation
and selection operators, with various semantics. In our semantics the evaluation
of an accumulation expression evaluates all subexpressions in parallel. It com-
pletes successfully when all subexpressions have completed successfully, and it
completes with failure when one of the subexpressions results in failure. The
selection operator is the dual of the accumulation operator. Here the subexpres-
sions are also evaluated in parallel, but the evaluation completes if one of the
subexpressions completes successfully and fails if all subexpressions complete in
failure. An alternative semantics of selection, denoted by select* is sometimes
useful, in which the evaluation completes in failure when one of the subexpres-
sions ends in failure.

A sequential operator is less commonly seen in the popular middle-ware plat-
forms. However it is useful in forming more complex patterns. The evaluation
of a sequential expression proceeds sequentially, where the evaluation of φi+1 is
started after successful completion of φi. The expression completes successfully
upon successful completion of φn. It ends in failure when any of the subexpres-
sions ends in failure.

None of the constructs presented so far can lead to completion in failure.
(Note that the accumulation and selection operator can propagate failure, but
not cause it.) The do-unless operator is the first operator that can cause an
expression to end in failure. It was inspired by the, less general, sequential un-
less operator in GEM [15]. The evaluation of the do-unless expression evaluates
the two subexpressions in parallel. It completes successfully when φ1 completes
successfully, it completes with failure when either φ1 completes in failure or φ2

completes successfully. Note that completion of φ2 in failure does not affect the
evaluation of φ1. The do-unless expression is useful to preempt other expres-
sions, especially those that do not complete by themselves, some of which are
described below.

The fail operator has been included in the language to allow the invertion of
its argument. That is, a fail expression completes successfully when φ completes
in failure and vice versa.

Repetition : The language provides several constructs for repetition, which may
be parameterized by the maximum of number of repetitions. The constructs
differ in their handling of failure of the subexpressions. The evaluation of a
repeat expression repeats φ, irrespective of its failure or success. With a persist
expression, φ is repeated until success, while a loop expression repeats φ until
failure.

Generating output : The expressions presented so far do not generate any output.
The purpose of the language is to provide a means to notify the consumer that
certain patterns of events have occurred, and therefore specific operators are
introduced to generate output. The simplified version of the language presented

in this paper does not support the forwarding of events. The only output that
can be generated are tokens from an alphabet of constants. The push expression
push(x){φ} outputs character x upon the successful completion of φ, after which
it completes successfully. If φ completes with failure no output is generated and
the push expression itself completes with failure.

Parallel Expressions : Correlator expressions may be combined into parallel
expressions. In the previous subsection, several subexpressions were said to be
evaluated in parallel. However, their evaluations were linked in the sense that
completion of one of them affected the completion or termination of the others.

On the other hand, in a parallel expression, the subexpressions are evaluated
in parallel and independent of each other. Thus, the completion of any subexpres-
sion does not affect the evaluation of other subexpressions. A parallel expression
never completes, but it can be preempted by, for example, an unless expression.
Typically, a parallel expression would contain multiple repeat subexpressions.

Mode Expressions : Mode expressions were directly motivated by the avionics
applications that initiated this work. Mode expressions provide a convenient
way to support different modes of operation. They allow simultaneous mode
switching of multiple components in a system without any direct coordination
between these components.

A mode expression has multiple modes, each consisting of a predicate ex-
pression called the mode guard, and a correlator expression. The mode guards
are expected to be mutually exclusive, such that at any time exactly one mode
is active.

in (p1) do {φ1}
in (p2) do {φ2}
. . .

in (pn) do {φn}

A mode i is activated when its mode-guard pi completes successfully. Upon
activation of a new mode, evaluation of the expression in the current mode is
terminated, and the evaluation of the expression associated with the new mode
is started. Like the parallel expression, the mode expression does not complete
by itself, but it can be preempted by other expressions.

3 Correlation Machines

ECL expressions can be viewed as temporal filters: for a given input sequence of
events they specify what must be transmitted to the consumer, and when.

Definition 1 (Input-Output pair). Let Σin be a finite alphabet of input
events and Σout be a finite alphabet of output constants. Let σ : e1, e2, . . . be a
sequence of events with ei ∈ Σin, and κ : o1, o2, . . . be a sequence of output con-
stants with oi ∈ Σin. An input-output pair is a pair (σ, 〈κ, f〉) with f : N+ 7→ N

a weakly increasing function that specifies the position of the outputs relative to

the input sequence. That is, for each i > 0, oi is produced while or after the event
ef(i) is consumed, and strictly before ef(i)+1 (if present) is consumed.

Example 1. The input-output pair (σ, 〈κ, f〉) with

σ : e1, e2, e3, e4, e5

κ : o1, o2
f(1) = 2, f(2) = 4

specifies that output o1 should be produced between the consumption of events
e2 and e3, and output o2 should be produced after consumption of event e4.

Although it may be interesting to define the semantics of ECL expressions
directly in terms of input-output pairs, we have found it more practical to define
the semantics operationally in terms of transducers. The main advantage of this
approach is that it immediately provides a standard implementation for each
correlator expression.

To facilitate a compositional definition of the semantics of ECL expressions
we introduce the correlation machine, a finite-state transducer extended with
facilities for concurrency and reset in a way similar to Petri Nets [19], that
support a concise representation of simultaneous evaluation and preemption.
Concurrency is provided by having transitions that map sets of sets of states into
sets of states, such that multiple states may have to be active for the transition to
be enabled. Reset is provided by explicitly including a clear set in the transition,
which may be a superset of the enabling condition. A similar way of reset was
also proposed in [22].

The addition of concurrency makes the transducer potentially nondetermin-
istic, which is undesirable for an operational model. In the compositional con-
struction of the correlators we have found it convenient to eliminate this nonde-
terminism by means of a partial order on transitions that specifies which of the
enabled transitions have priority.

Correlation machines may have internal transitions, that is, transitions that
do not consume any input events. To enable uniform treatment of all transitions
we define expanded input and output sequences that are padded with empty
input events and empty output constants in such a way that the constraints on
the relative positions of input and output are preserved.

We will use Σin as a short for Σin ∪{ε}, and Σout as a short for Σout∪{ε}.

Definition 2 (Expanded input-output pair). The pair (σ′, κ′) is an expan-
sion of (σ, 〈κ, f〉) if σ′ is equal to σ interleaved with finite sequences of the empty
input event ε, and κ′ is equal to κ interleaved with finite sequences of the empty
output event ε. Let g, h be the (weakly increasing) functions that map the indices
of the elements in σ, κ into the indices of the corresponding elements in σ′, κ′.
We say that the expansion respects f if the outputs in the expansion are produced
“at the right time”, that is, if for all i > 0

g(f(i)) ≤ h(i) < g(f(i) + 1)

Example 2. For the sequences σ, κ in example 1 the expansion

σ′ : e1 ε ε e2 ε ε e3 e4 e5 ε ε

κ′ : ε ε ε ε o1 ε ε o2 ε ε ε

respects f , as g(f(1)) = g(2) = 4, g(f(1) + 1) = g(3) = 7, and h(1) = 5 for the
first output, and g(f(2)) = g(4) = 8, g(f(2) + 1) = g(5) = 9, and h(2) = 8 for
the second output.

Definition 3 (Correlation Machine). A correlation machine Ψ : 〈Q, I, T ,≺〉
has the following components

– Q: a finite set of states
– I ⊆ Q: the set of initial states,
– T : a finite set of transitions τ = (En, a,Clr,Tgt, o) ∈ T , with En ⊆ 2Q, the

enabling states, Clr ⊆ Q, the clear states, Tgt ⊆ Q, the target states, and
a ∈ Σin, the input event, and o ∈ Σout, the output character, and

– ≺⊆ T × T : a partial order on transitions.

Definition 4 (Behavior). An input-output pair (σ, 〈κ, f〉) is a behavior of a
correlation machine Ψ : 〈Q, I, T ,≺〉 if there exists an expansion (σ′, κ′),

σ′ : y0 y1 y2 y3 . . .

κ′ : w0 w1 w2 w3 . . .

that respects f , and if there exists a sequence of sets of states and sets of tran-
sitions

S0, T0, S1, T1, . . .

such that

Initiation (I): S0 = I

Consecution : for each j ≥ 0
(C0) all transitions in Tj are enabled, that is, for all τ = (Enτ , . . .) ∈ Tj, for

all sets s ∈ Enτ at least one state q is in the current set of states:

∀s ∈ Enτ ∃q ∈ s . q ∈ Sj

(C1) all transitions τ ∈ Tj are taken:

Sj+1 = (Sj −
⋃

τ∈Tj

Clrτ) ∪
⋃

τ∈Tj

Tgtτ

(C2) all transitions τ ∈ Tj are minimal in the partial order with respect to all
transitions that are enabled on Sj, that is, for all τ ′ ∈ T , τ ′ ≺ τ

∃s ∈ Enτ ′ ∀q ∈ s . q 6∈ Sj

and Tj is maximal, that is, it contains all transitions that are enabled
and minimal with respect to the partial order.

q2 q3 q6

a

q4

b

q5

c

q1

 x

Fig. 1. Correlation automaton

(C3) for all transitions τ = (. . . , a, . . . , o) ∈ Tj, the input event a agrees with
the input event in the input sequence in σ′, and the output o agrees with
the output constant in κ′, that is, a = yj and o = wj.

Several transitions can be run in parallel. Condition C0 says that all of them have
to be enabled, while condition C3 establishes that they have to be consistent
with the input and output. Conditions C1 and C2 establish that the set of
fired transitions is the greatest set of enabled transitions that are minimal with
respect the partial order.

Note, in particular, that if in state Sj no transition is enabled, or no enabling
transition is interested in input event yj then Tj = ∅ and Sj+1 = Sj .

Example 3. Consider the correlation machine A = 〈Q, I, T ,≺〉 with components

– Q = {q1, q2, q3, q4, q5, q6}, with I = {q1},
– T = {τ1, τ2, τ3, τ4, τ5} with

τ1 = ({q1}, ε, {q1}, {q2, q3, q6}, ε)
τ2 = ({q2}, a, {q2}, {q4}, ε)
τ3 = ({q3}, b, {q3}, {q5}, ε)
τ4 = ({{q4}, {q5}}, ε, Q, {q1}, x)
τ5 = ({q6}, c, Q, {q1}, ε)

– ≺= ∅.

Remark: When the enabling condition of a transition consists of a single set we
write just the set rather than the set of that set, to avoid clutter in notation.

A graphical representation of the machine is shown in figure 1. In the figure
transitions are shown by rectangles. The automaton produces an output x after
every a and b in any order, without an intervening c. For example, the event
sequence aabbcbac produces the run and output sequence shown in figure 2.
Notice the reset effect of transitions τ4 and τ5. Both clear all currently active
states and start afresh.

σ : a a b b c b a c

π : q1 τ1

q2

q3

q6

τ2

q4

q3

q6

∅
q4

q3

q6

τ3

q4

q5

q6

τ4 q1 τ1

q2

q3

q6

τ3

q2

q5

q6

τ5 q1 τ1

q2

q3

q6

τ3

q2

q5

q6

τ2

q4

q5

q6

τ4 q1 τ1

q2

q3

q6

τ5 q1 τ1

q2

q3

q6

O : x x

Fig. 2. Run of A on event sequence aabbcbac

e

q2q1

Fig. 3. Correlation module for a single event e

Correlation Module Correlation machines for correlation expressions are con-
structed in a bottom-up fashion from the subexpressions. The building block,
called a correlation module is a correlation machine extended with two final
states: s to indicate successful completion and f to indicate failure of a subex-
pression. Final states only have significance in the modular construction; they
become regular states in the final machine.

4 Translation

In this section we introduce the correlation module for some of the constructs
defined in section 2.

Single input event : The correlation module for a single input event e ∈ Σin is
shown in figure 3. It has three states, {q1, q2, q3}, of which q1 is initial, and one
transition,

〈{q1}, e, {q1}, {q2}, ε)〉

that takes the given event as input and moves to the success state without pro-
ducing any output. The success state is q2 and the failure state is q3. Notice that
the failure state is not reachable, reflecting the fact that a predicate expression
cannot complete in failure.

Compound Expressions : The description of the construction of correlation mod-
ules for compound expressions assumes the correlation modules M1, . . .Mn for
the subexpressions have already been constructed. We describe the construc-
tion for the accumulation expression in some detail to illustrate the construction
method and mostly rely on the figures for the other constructs.

The correlation module M = 〈Q, I, T ,≺, s, f〉 for an accumulation expres-
sion accumulate{φ1, φ2} with correlation modules M1 and M2 for φ1 and φ2

respectively consists of the following components:

– The set of states is the union of the set of states for the subexpressions
extended with two new states (not appearing in Q1 or Q2) to be the new
success and failure states. The set of initial states is set to reflect that both
subexpressions should be evaluated in parallel:

Q = Q1 ∪ Q2 ∪ {q1, q2} with I = I1 ∪ I2

– The set of transitions is the union of the sets of transitions of the subexpres-
sions, extended with two new internal transitions that complete the evalua-
tion of the accumulation expression:

T = T1 ∪ T2 ∪ {τ1, τ2}

with
τ1 = ({{s1}, {s2}}, ε, Q1 ∪ Q2, {q1}, ε)
τ2 = ({f1, f2}, ε, Q1 ∪ Q2, {q2}, ε)

Notice that the enabling condition of τ1 is conjunctive: both states must be
present, while the enabling condition of τ2 is disjunctive: the transition is
enabled if one of the states is present. Both transitions terminate evaluation
of the entire expression by clearing all states in both submodules.

– The partial orders of the two subexpressions are combined and the new
transitions are given lower priority

≺ = ≺1 ∪ ≺2 ∪ (T1 ∪ T2, {τ1, τ2, τ3}) ∪ {(τ1, τ2)}

to reflect that internal transitions of the subexpressions must always be
taken before the internal transitions of this module, to make sure the subex-
pressions have finished their “cleaning up”. The pair (τ1, τ2) is added to
eliminate the potential nondeterminism if these transitions become enabled
simultaneously: it gives priority to success.

– The final states are the two newly added states s = q1 and f = q2.

The resulting correlation module is illustrated in figure 4(a).

The correlation module for the selection expression select{φ1, φ2} is very
similar to that of the accumulation expression. As mentioned before, the selection
expression is the dual of the accumulation expression, which is reflected in the
dualization of the transitions τ1 and τ2:

τ1 = ({s1, s2}, ε, Q1 ∪ Q2, {q1}, ε)
τ2 = ({{f1}, {f2}}, ε, Q1 ∪ Q2, {q2}, ε).

The resulting correlation module is illustrated in figure 4(b).

The correlation module for sequential composition sequential{φ1, φ2} is
shown in figure 5. It adds two new states, the success state q1 and the failure
state q2, and four internal transitions

τ1 = ({s1}, ε, Q1, I2, ε)
τ2 = ({f1}, ε, Q1, {q2}, ε)
τ3 = ({s2}, ε, Q2, {q1}, ε)
τ4 = ({f2}, ε, Q2, {q2}, ε)

f1

s1

s2

f2

q2

q1

(a) accumulation

f1

s1

s2

f2

q2

q1

(b) selection

Fig. 4. Correlation modules for accumulation and selection. The shaded circles denote
the success and failure nodes of the modules M{1,2}, and the unshaded circles denote
the success and failure nodes of the resulting module. Transitions with conjunctive
enabling condition are shown shaded and disjunctive transitions are unshaded.

where τ1 links the success state of the first module to the initial states of the
second module.

in

s1

f1

in

s2

f2

q1

q2

Fig. 5. Correlation module for sequential composition

The correlation module for an unless expression, do{φ1} unless{φ2} is shown
in figure 6(a). The two new transitions have transition relation

τ1 = ({s1}, ε, Q1 ∪ Q2, {q1}, ε)
τ2 = ({f1, s2}, ε, Q1 ∪ Q2, {q2}, ε)

where transition τ1 is the success transition, while τ2 leads to failure. As men-
tioned in section 2, the unless expression can cause an expression to fail, as
witnessed by τ2, which leads from s2, a success state, to q2, a failure state.

f1

s1

s2

f2 q2

q1

(a) unless

s1 c

f1

q1

q2

(b) push

Fig. 6. Correlation modules for unless and push.

Output Expressions : The correlation module for the push expression push (x) {φ},
shown in figure 6(b), adds two transitions

τ1 = ({s1}, ε, Q1, {q1}, x)
τ2 = ({f1}, ε, Q1, {q2}, ε)

the first of which outputs constant x upon successful completion of the module
for φ, while τ2 simply propagates the failure.

Mode Expressions : The correlation module M = 〈Q, I, T ,≺, s, f〉 for a mode ex-
pression with correlation modules Mi = 〈Qi, Ii, Ti,≺i, si, fi〉 for φi, i = 1, . . . n,
and Mgi = 〈Qgi, Igi, Tgi,≺gi, sgi, fgi〉 for pi, i = 1 . . . n consists of the following
components:

– The set of states is the union of the states of the guards and the expressions
and two additional states for the new success and failure state. The initial
states are those of the first expression, φ1, combined with the initial states
of the guards of the other expressions

Q =

n⋃

i=1

Qi ∪
n⋃

i=1

Qgi ∪ {q1, q2} with I = I1 ∪
n⋃

i=2

Igi,

– The set of transitions includes the transitions of the expressions and the
guards, and is extended with one mode entry transition τi for each mode φi,
i = 1 . . . n with transition relation

τi = ({sgi}, ε, Q, Ii ∪ Gi, ε) with Gi =
⋃

1≤j≤n,j 6=i

Igj

where Gi is the union of the set of initial states of the guards other than
pi. Similar to the module for the parallel expression, both the success and
failure state of this module are unreachable.

p1

p2

in s

f

in

s

f

Fig. 7. Correlation module for mode expression

– The partial orders of all modules are combined, and the transitions belonging
to the guard expressions are given higher priority than those belonging to
the expressions, to reflect that the preemption of a mode by another mode
has higher priority than the consumption of the same event within a mode.

– The final states are s = q1 and f = q2.

5 Related Work

Several proposals for specification languages for event correlation appear in the
literature. In [4], a language based on typed λ-calculus is used. Therein, com-
posite events are represented by curried functional expressions. Event arrivals
correspond to expression evaluation, while completed normal-form expressions
are delivered to consumers. A formal semantics is given in terms of reduction
rules.

Zhu and Sethi [24] propose an event correlation language that includes a
negation operator. Expressions are evaluated relative to some fixed or sliding
time window; the negation operator precludes the occurrence of its argument
during the time window. Hinze and Voisard [11] use a parameterized event algebra
to describe the semantics of composite events. Negation is interpreted as in [24].
Parameters are used to specify the handling of multiple instances of events that
belong to the same class, with the options to choose all the events, the first event,
or the last event, in the collection. Parameters also specify whether events may
be used multiple times, or consumed on matching.

Zhang and Unger [23] present a composite event specification language with
operators for disjunction, conjunction, sequence and counter-based events within
a moving window. The semantics is given declaratively, but the result of an ex-
pression is not guaranteed to be unique. Hence, decorators are added to choose
from the subsets of events that satisfy an expression. COBEA [14] is an event-
based architecture that includes an evaluation engine for composite events spec-

ified in the Cambridge Composite Event Language [9, 10]. The semantics is de-
fined in terms push-down machines.

The use of composite temporal events has received much attention in the
active database community. Gehani et al. [7] propose a language for specify-
ing composite events with semantics in terms of event history maps. This lan-
guage is expressively equivalent to regular expressions, that can be translated
into NFA for event notification. Coordination of subexpressions is done through
correlation variables to allow parameterization. The method is implemented in
COMPOSE [6]. In [17, 18] Motakis and Zaniolo propose a specification language
based on Datalog. Their pattern language allows parameterization, with param-
eter instantiations propagated through the expression.

6 Conclusion and future directions for research

We have presented a declarative language to express event correlation expressions
for publish-subscribe systems. The semantics of this language was defined in
terms of correlation machines, an operational model that can be directly used
as an event processing engine in an event channel.

Applications and Implementation : The event correlation language presented
here has been applied in Boeing’s Open Experimental Platform (OEP). It was
found that the use of event correlation expressions reduced the need for special-
purpose components by moving functionality to the event channel. A prototype
event processor based on correlation machines has been implemented in C++
and is currently being integrated in the OEP. A separate event processor has
been implemented in Java and has been integrated with FACET [13], a real-time
event channel being developed at Washington University at St Louis.

Analysis : Publish-subscribe systems are used in mission-critical avionic appli-
cations [20] and may potentially be used in many other safety-critical systems.
The availability of analysis tools for event correlation expressions will greatly
contribute to the acceptance of this technology as a reliable addition to simple
event filtering. Some of the questions that may be asked about the behavior of
these expressions include:

– checking expressions for triviality, (i.e. whether the expression filters in ev-
erything), or vacuity (where the expression rejects everything),

– checking liveness, that is, checking that at any point in the evaluation of an
expression, it should be possible for some event-sequence to lead the machine
to acceptance,

– checking containment among correlators or systems of correlating expres-
sions,

– checking correlation expressions against event-loops for equivalence,
– checking event dependencies.

Since these machines are essentially finite state, we believe that many of these
problems are tractable.

Optimization : The correlation machines that are generated by the construction
method described in Section 4 are obviously rather inefficient; they contain un-
reachable states and redundant internal transitions that can be eliminated. Other
transformations may be envisaged for time/space trade-offs. Our current model
favors a concise representation of the correlation machine. However this comes
at the price of increased event processing time. In time-critical applications one
may want to eliminate the concurrency and fully determinize the transducer,
thus reducing event-processing time, but increasing the space required to store
the machine. Several intermediate solutions may exist.

Evaluation Strategies : A large publish subscribe system may have many com-
ponents with numerous subscriptions. Hence, the middleware is faced with the
task of evaluating each of these expressions for each of the events. This can cause
severe overhead on the middleware, degrading its performance. There are two
complementary approaches to alleviate this:

The first tactic is that of that of composing correlation machines. If a number
of consumers subscribe with different correlation policies, a naive implementation
would run all the correlators in parallel. A more efficient version should try to
reuse the work of the evaluation of different machines. In [1] a first approach to
this problem has been considered. This problem resembles that of performing
multiple searches in parallel in a string [8].

The second tactic is to decompose a machine into many machines and dis-
tribute these along the network. Thus, if at some point in the routing of an
event, a determination can be made that the event is not of interest for a set of
consumers, then the routing of the event can be restricted. This can save net-
work bandwidth and yield more processing time. This problem has been called
the quenching problem in the related literature [12].

References

1. M. Aguilera, R. Storm, D. Sturman, M. Astley, and T. Chandra. Matching events
in a content based subscription system. In PODC, 1999.

2. B.Segall and S. Arnold. Elvin has left the building: A publish/subscribe notifica-
tion service with quenching. In Queensland AUUG Summer Technical Conference,
Brisbane, Australia, 1997.

3. A. Carzaniga, D. S. Rosenblum, and A. L Wolf. Design and evaluation of a
wide-area event notification service. ACM Transactions on Computer Systems,
19(3):332–383, August 2001.

4. S. Courtenage. Specifying and detecting composite events in content-based pub-
lish/subscribe systems. In Proc. DEBS’02, 2002.

5. J. Crowcroft, J. Bacon, P. Pietzuch, G. Coulouris, and H. Naguib. Channel islands
in a reflective ocean: Large-scale event distribution in heterogeneous networks.
IEEE Communications Magazine, (9):112–115, September 2002.

6. N.H. Gehani, H.V. Jagadish, and Oded Shmueli. COMPOSE. a system for compos-
ite event specification and detection. Technical report, AT&T Bell Laboratories,
1992.

7. N.H. Gehani, H.V. Jagadish, and Oded Shmueli. Composite event specification
in active databases: Model and implementation. In Proceeding VLDB’92, pages
327–338, 1992.

8. D. Gusfield. Algorithms on strings, trees and sequences. Cambridge Univ. Press,
1997.

9. R. Hayton, J. Bacon, J. Bates, and K. Moody. Using events to build large scale
distributed applications. In Proc. ACM SIGOPS European Workshop, pages 9–16.
ACM, September 1996.

10. Richard Hayton. OASIS. An Open Architecture for Secure Internetworking Ser-
vices. PhD thesis, Fitzwilliam College, University of Cambridge, 1996.

11. A. Hinze and A. Voisard. A flexible parameter-dependent algebra for event notifi-
cation services. Technical Report TR-B-02-10, Freie Universität Berlin, 2002.

12. Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile environment. In
Proc. MobiDE, 2001.

13. Frank Hunleth, Ron Cytron, and Christopher Gill. Building customizable middle-
ware using aspect oriented programming. In Workshop on Advanced Separation of
Concerns (OOPSLA’01), 2001.

14. Chaoying Ma and Jean Bacon. COBEA: A CORBA-based event architecture. In
Proc. USENIX COOTS’98, pages 117–131, April 1998.

15. M. Mansouri-Samani and M. Sloman. GEM, a generalised event monitoring lan-
guage for distributed systems. In Proceedings of ICODP/ICDP’97, 1995.

16. R. Meier. State of the art review of distributed event models. Technical report,
University of Dublin, Trinity College, 2000.

17. I. Motakis and C. Zaniolo. Composite temporal events in active database rules: A
logic-oriented approach. In Proceedings of DOOD’95, volume 1013 of LNCS, pages
19–37. Springer-Verlag, 1995.

18. I. Motakis and C. Zaniolo. Formal semantics for composite temporal events in
active database rules. Journal of Systems Integration, 7(3–4):291–325, 1997.

19. W. Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs on The-
oretical Computer Science. Springer-Verlag, Berlin, 1985.

20. D. Schmidt, D. Levine, and T. Harrison. The design and performance of a real-time
CORBA object event service. In Proceedings of OOPSLA ’97, 1997.

21. David Sharp. Reducing avionics software cost through component based product
line development. In Proceedings of the Software Technology Conference, 1998.

22. T. Vesper and M. Weber. Structuring with distributed algorithms. In Proceeding
of CS&P98, September 1998.

23. R. J. Zhang and E. Unger. Event specification and detection. Technical Report
TR CS-96-8, Kansas State University, June 1996.

24. D. Zhu and A. S. Sethi. SEL, a new event pattern specification language for event
correlation. In Proc. ICCCN-2001,, pages 586–589, October 2001.

