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Quantitative Analysis of Programs with
Probabilities and Concentration of Measure

Inequalities
Sriram Sankaranarayanan

University of Colorado, Boulder, USA

Abstract: The quantitative analysis of probabilistic programs answers queries

involving the expected values of program variables and expressions involving

them, as well as bounds on the probabilities of assertions. In this chapter, we

will present the use of concentration of measure inequalities to reason about

such bounds. First, we will briefly present and motivate standard concen-

tration of measure inequalities. Next, we survey approaches to reason about

quantitative properties using concentration of measure inequalities, illustrat-

ing these on numerous motivating examples. Finally, we discuss currently

open challenges in this area for future work.

Keywords: Concentration of Measure, Uncertainty Propagation, Proba-

bilistic Programming.

1 Introduction

In this chapter, we present the use of concentration of measure inequali-

ties for the quantitative analysis of probabilistic programs. A variety of ap-

proaches have focused on qualitative properties that involve the almost-sure

satisfaction of temporal formulas involving the behaviors of programs with

special attention towards the analysis of almost sure termination, recurrence

and persistence (McIver and Morgan (2004); Esparza et al. (2012); Bournez

and Garnier (2005); Chakarov and Sankaranarayanan (2013); Fioriti and

Hermanns (2015); Kaminski et al. (2016); Chakarov et al. (2016); Dimitrova

et al. (2016); Chatterjee et al. (2017, 2018); McIver et al. (2018)). On the

other hand, quantitative properties include reasoning about probabilities

of assertions involving conditions over the program state, expectations in-
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2 Sankaranarayanan

volving the program variables, and expected time to program termination

(Kaminski et al. (2016); Chatterjee et al. (2018)).

An important difficulty of quantitative analysis is the need to integrate

over a potentially large number of random variables generated in a typical

run of a probabilistic program in order to calculate the quantity of interest.

Often, these variables are manipulated using nonlinear functions over the

course of long running loops that calculate the result of the program. Thus,

the result is quite often a nonlinear function involving a large number of

random variables. To make matters worse, the function is represented only

indirectly as the computer program itself. Reasoning about such functions

can be quite challenging and is normally performed in a case-by-case fashion,

one program at a time, to ease the understanding of the behavior. Mech-

anizing this process to yield a more automated analysis approach can be

quite challenging.

There are many approaches to tackle the challenge of quantitative reason-

ing over programs with probabilistic statements. One approach pioneered by

McIver and Morgan annotates the program with assertions and expectations

that serve the same role as loop invariants (Cf. McIver and Morgan (2004)).

This approach effectively represents the distributions over the intermediate

states encountered during the execution at a sufficient level of abstraction to

establish the property of interest for the program as a whole. The approach

has also been mechanized using ideas from loop invariant synthesis (Cf.

Katoen et al. (2010)), and extended to programs with distributions over

continuous state variables (Cf. Chakarov and Sankaranarayanan (2013);

Fioriti and Hermanns (2015); Chatterjee et al. (2018)).

In this chapter, we survey a related approach that uses concentration of

measure inequalities — a set of elegant mathematical ideas that characterize

how functions of random variables deviate from their expected value. More

importantly, these inequalities place upper bounds on the probabilities of

deviations of a particular magnitude. Paradoxically, they avoid the need for

expensive integration and thus, become quite effective when deviations over

a large number of random variables are considered. Most well known in-

equalities such as the Chernoff-Hoeffding bounds, however, suffer a number

of limitations that prevent them from being directly applicable to the anal-

ysis of probabilistic programs. They require independence of the random

variables involved, work only for random variables over bounded sets of sup-

port, and finally, prove concentrations over sums rather than more general

functions of random variables. We show in this chapter how these limitations

can be partly overcome through a series of increasingly more sophisticated

inequalities and the tricks involved in applying them to specific situations.
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1 angles = [10, 60, 110, 160, 140, ...
2 100, 60, 20, 10, 0]
3 x := TruncGaussian(0,0.05,-0.5,0.5)
4 y := TruncGaussian(0, 0.1,-0.5,0.5)
5 # run for 100 repetitions
6 for reps in range(0,100):
7 #iterate through angles
8 for theta in angles:
9 # Distance travelled variation

10 d = Uniform(0.98,1.02)
11 # Steering angle variation
12 t = deg2rad(theta) * (1 + ...
13 TruncGaussian(0,0.01,-0.05,0.05))
14 # Move distance d with angle t
15 x = x + d * cos(t)
16 y = y + d * sin(t)
17 #Probability that we went too far?
18 assert(x >= 277)

Figure 1 Left: A probabilistic program capturing the final position of 2D robotic end

effector. Right: Scatter plot showing the final (x, y) values. Note that TruncGaussian(m,

s, l, u) generates a truncated Gaussian random variable with mean m, standard de-

viation s, lower bound l and upper bound u.

The survey is based on previously published papers involving the author

(see Chakarov and Sankaranarayanan (2013) and Bouissou et al. (2016)). We

present concentration of measure inequalities motivated by a set of interest-

ing numerical examples. We show applications to probabilistic programs

starting with control deterministic computations that are handled through

approximations known as probabilistic affine forms, whereas, more general

loops are handled through the use of super martingale approaches. Our pre-

sentation is inspired by the excellent monograph on this topic by Dubhashi

and Panconesi (2009). We recommend this book as a starting point towards

more mathematically detailed presentations that include Williams (1991)

and Boucheron et al. (2016).

1.1 Motivating Examples

In this section, we present motivating examples involving a robotic end ef-

fector, an anesthesia infusion process and a linear aircraft model under wind

disturbances.

Example 1.1 (2D robotic end effector) Consider the repetitive motion of

a 2D end effector used for tasks such as soldering printed circuit boards for

manufacturing applications. The end effector makes a series of cyclic repet-

itive movements for each widget, ending each cycle at the starting position

for soldering the subsequent widget. At each step, small calibration errors
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can be introduced in its movement and these errors accumulate throughout

the operation of the unit.

Figure 1 (left) shows the program that models the position of the end

effector. Let (x, y) denote the position of the end effector. The initial position

is defined by random variables (x0, y0) which are distributed as zero mean

truncated Gaussian random variables over the set of support [−0.5, 0.5] (see

Fig. 1, lines 3, 4). The program itself runs a for loop in line 6 for N =

100 iterations that represent 100 different repetitions of the same sequence

of actions by the robot. Each iteration j consists of a k = 10 different

geometric transformations of the robot’s position that result in a sequence

of coordinates (x0,j , y0,j) . . . , (xk+1,j , yk+1,j)), wherein,

(xi+1,j , yi+1,j) = (xi,j + di,j cos(θi,j), yi,j + di,j sin(θi,j)) ,

for i = 1, . . . , k. Here di,j is defined as a uniform random variable over

[0.98, 1.02]. The mean values of θi,j are defined in degrees using the array

angles in Fig. 1 (line 2), with the uncertainties modeled in line 13. The

starting position for iteration j + 1 is the end position at iteration j.

(x0,j+1, y0,j+1) = (xk+1,j , yk+1,j) .

We are interested in the probability that the value of xN,k+1 ≥ 277

(line 18), for N = 100 and k = 10. The value of xN,k+1 is shown for 105

different runs of the program in the scatter plot in Figure 1(right) and none

of these simulations violate the assertion of interest. Thus, we seek an upper

bound on the probability of violating this assertion of the form:

P(x ≥ 277) ≤? .

The challenge lies in obtaining nontrivial bounds for this program given that

(a) it involves nonlinear transformations of random variables and (b) roughly

2000 independent random variables are involved in N = 100 iterations.

Example 1.2 (Anesthesia Infusion Model) The anesthesia model consists

of a four-chamber pharmacokinetic model of the anesthetic Fentanyl that

is administered to a surgical patient using an infusion pump (see McClain

and Hug (1980)). This model has been used as part of automated anesthesia

delivery systems (see Shafer et al. (1988); Yousefi et al. (2017)). We model

an erroneous infusion that results in varying amounts of anesthesia infused

over time as a truncated Gaussian random noise. The state of the model at

time t is a vector of concentrations of anesthesia in various “chambers” of

the body:

x(t) : (x1(t), x2(t), x3(t), x4(t))
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The target state variable x4(t) measures the concentration of anesthesia in

the blood plasma. Variable u(t) denotes the rate of anesthesia infusion at

time t, and is an input to the model.

At each step, the model evolves as

x(t+ 1) = Ax(t) +Bu(t)(1 + w(t))

The matrices A,B are specified as follows:

A :


0.9012 0.0304 0.0031 0

0.0139 0.9857 0 0

0.0015 0 0.9985 0

0.0838 0.0014 0.0001 0.9117

 B :


0.2676

0.002

0.0002

0.0012


The disturbance w(t) is a truncated Gaussian variable over the range [−0.4, 0.4]

with mean 0 and standard deviation σ = 0.08. These model the error in the

infused anesthesia rate as a percentage of the commanded rate u(t). This

rate u(t) is specified as the following fixed set of infusion rates and times:

t(100 seconds) [0, 8] [8, 14] [14, 20] [20, 26] [26, 32] [32, 38] [38, 56]

u(t)(µmol/s) 60 64 66 68 64 62 60

The control inputs in this example are chosen for illustrative purposes,

and do not carry medical significance. The goal is to check the probabil-

ity that the infusion errors result either in too much anesthesia x4(5600) ≥
300ng/mL potentially causing loss of breathing or too little anesthesia x4(5600) ≤
150ng/mL causing consciousness during surgery.

Example 1.3 (Fixed-Wing UAV Collision) Fixed wing small UAVs are

quite prone to wind disturbances. Thus, it is important to predict if a col-

lision is imminent using short term forecast models based on a series of

positions and velocities of the system.

Auto-regressive moving average state-space (ARMAX) models are an im-

portant class of data-driven time series models that enable such forecasts to

be obtained over short time periods (Brockwell and Davis (2009)). Figure 2

shows such a forecast model for a small fixed wing UAV inferred using ridge

regression from data collected during test flights. The data reports GPS

positions (x, y, z) and velocities (vn, ve, vd), respectively, in the north, east

and downward directions every h = 0.18 seconds for a period of 3 hours.

Once the model is inferred, the residual errors between the model prediction

and actual results are histogrammed. Often these residuals are modeled us-

ing Gaussian distributions with some statistical analysis. Here, we simply

model them as unknown distributions whose means and standard deviations

are given.
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x(t+ h) = x(t) + hve(t) + ex(t+ h)
y(t+ h) = y(t) + hvn(t) + ey(t+ h)
z(t+ h) = z(t) + hvd(t) + ez(t+ h)
vn(t+ h) = 2.035vn(t)− 1.11vn(t− h) + 0.075vn(t− 2h) + w1 ← σ1 : 0.055
ve(t+ h) = 1.923ve(t)− 0.923ve(t− h) + w2 ← σ2 : 0.057
vd(t+ h) = 1.626vd(t)− 0.778vd(t− h) + 0.109vd(t− 2h) + w3 ← σ3 : 0.16
ex(t+ h) = 0.567ex(t) + 0.388ex(t− h) + w4 ← σ4 : 0.13
ey(t+ h) = 0.491ey(t) + 0.27ey(t− h) + 0.201ey(t− 2h) + w5 ← σ5 : 0.14
ez(t+ h) = 1.35ez(t)− 0.39ez(t− h) + w6 ← σ6 : 0.053

Figure 2 Data-driven ARMAX model for predicting the future position of a UAV from

its past positions and velocities. The time step h is 0.18 seconds in our model, x, y, z

represent the position of the UAV, vn, ve, vd represent the velocities in the north, east and

downward directions, respectively, ex(t) : x(t)−x(t−h)−hve(t−h) is the deviation along

the x direction, and similarly ey , ez denote deviations from y, z directions. w1, . . . , w6 are

residual errors that have been modeled using distributions with 0 mean and empirically

estimated standard deviations σi shown alongside.

Using the model in Figure 2, we seek to build a predictive monitor that

given the current history of positions, velocities and deviations

(x(t), x(t− h), y(t), y(t− h), · · · , ez(t), ez(t− h)) ,

estimates a bound on the probability:

P((x(t+Nh), y(t+Nh), z(t+Nh)) ∈ U) ≤ ?

where U represents unsafe regions in the airspace denoted by proximity to

buildings, grounds and designated no fly zones.

2 Quantitative Analysis: Problem and Approaches

In this section, we formally define the overall problem of quantitative anal-

ysis of probabilistic programs, focusing on (a) the type of systems that can

be addressed, (b) the type of properties, and (c) sets of approaches that

have been developed to reason about quantitative properties of probabilistic

programs.

2.1 Programs and Properties

Given a “purely” probabilistic program P that computes a function y :=

FP (X) over some random variables X, quantitative questions can be of

two types: (a) bounds on the probability of an assertion ϕ involving y:
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P(ϕ(y)) ./ c? and (b) bounds on the expectation of some function g(y):

E(g(y)) ./ c? wherein ./∈ {≥,≤,=} and c is a constant? Some of these

questions are illustrated by our motivating examples from Section 1.1. As

mentioned earlier, quantitative reasoning about the running time of pro-

grams is addressed elsewhere in this volume, although the approaches men-

tioned in this chapter remain generally applicable.

Beyond purely probabilistic programs, we may consider programs P that

involve a combination of random variables X, demonic variables w con-

trolled by the adversary, and angelic variables u controlled by a cooperative

player. In such a situation, the program itself can be viewed as computing

a joint function y := FP (X,w,u), wherein y denotes the outputs of the

program. Interpreting ϕ(y) as a failure condition, we wish to know if

(∃ u) (∀ w) PX(ϕ(y)) ≤ c ,

wherein c denotes a constant that is a desired failure threshold. We will

focus our initial discussions on the case of purely probabilistic programs.

Furthermore, the probabilistic program will be assumed to be free of con-

ditioning operation through observe or assume statements. Conditioning

remains an open challenge for quantitative analysis and somewhat orthog-

onal to the purposes of quantitative reasoning considered in this chapter.

Conditioning can simply be eliminated in restricted cases by computing the

posterior distributions explicitly in the case of conjugate prior/posterior, or

wherever symbolic integration approaches can tell us about the form of the

posterior distribution (Narayanan et al. (2016); McElreath (2015)). Another

approach involves the use of variational inference that can substitute prior

probabilities by approximate posteriors from a predefined family of posterior

distributions (Wingate and Weber (2013)).

Approaches to quantitative reasoning in probabilistic programs can be

broadly classified into two: (a) simulation-based approaches and (b) symbolic

approaches.

2.2 Simulation-Based Quantitative Reasoning

Simulation-based approaches execute the given program by sampling from

the probability distributions generated in order to evaluate the property at

hand. These approaches have been tied to statistical reasoning through hy-

pothesis testing, starting with the work of Younes and Simmons (2006), lead-

ing to so-called statistical model checking approaches (Clarke et al. (2009);

Agha and Palmskog (2018); Jha et al. (2009)).

Consider a probabilistic program P whose output variables are denoted
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as y and a quantitative property P(ϕ(y)) ≤ c. A simulation based approach

consists of two components: (a) generate samples y1, . . . ,yN and (b) perform

a statistical hypothesis test between two competing hypotheses:

H0 := P(ϕ(y) ≤ c) versus H1 := P(ϕ(y) > c) .

In particular, the hypothesis test works in a sequential fashion by examin-

ing how each added sample contributes towards the goal of accepting one

hypothesis and rejecting another, with a new batch of samples generated

on-demand.

To this end, the two most frequently used hypothesis tests include the

sequential probability ratio test (SPRT) first proposed by Wald (1945) and

the Bayes factor test proposed by Jeffries (Kass and Raftery (1995)). Details

of these statistical tests are available from standard references, including the

recent survey by Agha and Palmskog (2018). For instance, the Bayes factor

test computes the so-called Bayes factor which is given by

BayesFactor :=
P(Observations y1, . . . ,yN | H1)P(H1)

P(Observations y1, . . . ,yN | H0)P(H0)

as a measure of the evidence in favor of hypothesis H1 against that in favor

of H0. Here, P(Hj) refers to the prior probability of the hypothesis Hj for

j = 0, 1. If the resulting BayesFactor exceeds a given upper bound threshold

(see Kass and Raftery (1995) for an interpretation of the Bayes factor),

the hypothesis H1 is accepted. On the other hand, if the BayesFactor falls

below a lower bound, H0 is accepted in favor of H1. If the BayesFactor

remains between these two bounds more evidence is sought since the data

has insufficient evidence.

Besides the use of statistical tests, the generation of samples is another key

problem. Often, in verification problems, the event of interest is a “rare” fail-

ure whose probability needs to be bounded by a small number c ∼ 10−6. To

this end, the number of simulations needed can be prohibitively expensive,

in practice. Thus, approaches such as importance sampling are used to ar-

tificially inflate the probability of obtaining a failure (see Srinivasan (2002);

Bucklew (2004); Rubinstein and Kroese (2008)). Importance sampling ap-

proach first modifies the probabilistic program by replacing the distribution

of random variables using sampling distributions designed to increase the

probability and hence the number of samples that satisfy the assertion ϕ(y)

(assuming that ϕ is a rare event). The new samples are weighted by the ratio

of the likelihood score under the original distribution and the new sampling

distribution. A key challenge lies in designing a sampling distribution that

can increase the number of rare event observations. This requires a lot of
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insight on the part of the analyzer. Approaches such as the cross-entropy

method can be employed to systematically optimize the parameters of a

family of sampling distributions to make failures more likely (Jégourel et al.

(2012); Sankaranarayanan and Fainekos (2012)).

2.3 Symbolic Approaches

In contrast to simulation-based approaches, symbolic techniques focus on

reasoning about probabilities of assertions and expectations through a pro-

cess of abstraction. Often this abstraction takes one of two forms (see Cousot

and Monerau (2012) for a more refined classification): (a) abstractions of in-

termediate probability distributions over program states or (b) abstractions of

intermediate states as functions over the random variables generated by the

program. Both approaches rely on symbolic integration to compute bounds

on the probabilities and expectations.

Abstractions of Probability Distributions: The probability distribu-

tions over program variables can be precisely represented for finite state

programs. This is the basis for the tool PRISM, that handles probabilistic

programs over finite state variables by compiling them into Markov chains or

Markov decision processes, depending on whether demonic/angelic nonde-

terminism is present (Kwiatkowska et al. (2011)). These approaches can be

extended to infinite state systems using the idea of a game-based abstraction

that allows us to treat some of the probabilistic choices as non-deterministic

but controlled by a different player (Cf. Parker et al. (2006)).

Abstractions for infinite state probabilistic systems are more complicated

since the intermediate joint probability distributions between the program

variables can be arbitrarily complicated (Kozen (1981)). A variety of ap-

proaches have been employed to abstract the intermediate distributions

through probabilistic abstract domains that associate upper/lower bounds

on measures associated with sets of states (Monniaux (2000, 2005); Cousot

and Monerau (2012)). Whereas initial approaches focused on intervals and

polyhedral sets annotated with bounds, it became clear that the probability

bounds can often become too large to be useful or alternatively, the number

of subdivisions of the state-space needed becomes too high to maintain a

desired level of precision. An alternative approach by Bouissou et al. (2012)

uses ideas from imprecise probabilities such as Dempster-Shafer structures

( Dempster (1967); Shafer (1976)) and P-boxes( Ferson et al. (2003)) to rep-

resent probabilities more precisely. This approach has the added advantage

of representing correlations between program variables in a more precise

manner. However, the process of computing probabilities or expectations
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involves integration, and therefore a summation over a large number of cells

that tile the region of interest.

Probabilistic Symbolic Execution: A related and complementary ap-

proach uses symbolic execution to represent program states as functions

over the input variables that involve random variables generated by the pro-

gram (Geldenhuys et al. (2012); Mardziel et al. (2011); Sankaranarayanan

et al. (2013)) followed by the use of symbolic integration to calculate the

probability of an assertion exactly or approximately as needed. Algorithms

for computing volume of polyhedra (De Loera et al. (2011)) or interval-based

branch-and-bound schemes for approximating these volumes (Sankaranarayanan

et al. (2013)) can be employed to perform quantitative analysis. A key draw-

back remains the high complexity of volume computation in terms of the

number of dimensions of the region. Here, the dimensionality equals the

number of random variables involved in the computation, which can be pro-

hibitively large, as seen in our motivating examples. Thus, the applications

are limited to programs that use fewer random variables and carry out com-

plex computations over these. Furthermore, the exact volume computation

is often not needed since for many applications of interest an upper bound

over the probabilities of failure suffices.

3 Concentration of Measure Inequalities: A Primer

In this section, we present basic facts about concentration of measure in-

equalities. An accessible and complete exposition of concentration of mea-

sure inequalities and their application to randomized algorithms is available

from Dubhashi and Panconesi (2009).

Concentration of measure inequalities allow us to reason about the be-

havior of certain functions of independent random variables. The most ba-

sic inequality remains the widely applied Chernoff-Hoeffding inequality. Let

X1, . . . , Xn be independent random variables taking on values in the set

{0, 1}. Consider the sum Sn = X1 + · · ·+Xn. Clearly, E(Sn) =
∑n

j=1 E(Xj).

The key question is how likely is it for the sum to satisfy Sn ≥ E(Sn) + t for

some positive deviation t ≥ 0?

There are many ways of answering such a question. For the special case

of {0, 1}-valued random variables that are identically distributed so that

E(Xi) = p for all i ∈ {1, . . . , n}, the answer can be obtained from an appli-
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cation of combinatorics, as shown below:

P (Sn ≥ E(Sn) + t) =
n∑

j=dnp+te

(
n

j

)
pj(1− p)n−j .

The RHS expression provides an exact answer but is often cumbersome to

compute. The expression can be approximated in many ways. For instance,

the Poisson approximation is possible when n is large and p is small so

that np is “small enough”. However, such attempts produce a numerical

approximation which cannot be used to establish guaranteed bounds, in

general. Furthermore, we cannot deal with other common situations that

involve: (a) the sum of random variables that are not necessarily identically

distributed; (b) the sum of random variables whose distributions can be

continuous; and finally (c) the sum of random variables that are not all

independent.

Concentration of measure inequalities attempt to answer these questions

by providing upper bounds on deviations of certain functions of random

variables from their expected values. Let f(X1, . . . , Xn) be a function of

random variables having some fixed arity n (the arity of f does not need to

be fixed, however). As an example: f(X1, . . . , Xn) = X1 + · · ·+Xn. Let E(f)

denote the expectation E(f(X1, . . . , Xn)) computed over random choices of

X1, . . . , Xn. A concentration of measure inequality typically has the form:

P (f(X1, . . . , Xn) ≥ E(f) + t) ≤ g(n, t) ,

wherein t ≥ 0, and g is a function that decreases sharply as t increases.

Inequalities are often “symmetric” providing similar bounds for lower tails

as well:

P(f(X1, . . . , Xn) ≤ E(f)− t) ≤ g(n, t) ,

The inequality is sub-gaussian if the bound g(n, t) is of the form g(n, t) :=

C exp
(
−ct2
n

)
for known constants C, c that depend on the moments and set

of support of the random variables X1, . . . , Xn. Most of the bounds we will

explore will be sub-Gaussian in nature. The simplest and most fundamental

of these bounds is the well-known Chernoff-Hoeffding inequality.

Theorem 1.4 (Chernoff-Hoeffding) Let Xi be independent random vari-

ables that lies in the range [ai, bi] almost surely, for i = 1, . . . , n, and let

Sn =
∑n

j=1Xj. For all t ≥ 0,

P(Sn ≥ E(Sn) + t) ≤ exp

(
− 2t2∑n

j=1(bj − aj)2

)
.
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Using Chernoff-Hoeffding inequality, we may bound the upper tail of the

sum of Bernoulli random variables as:

P(Sn ≥ E(Sn) + t) ≤ exp

(
−2t2

n

)
.

However, there are two important limitations of Chernoff-Hoeffding inequal-

ity: (a) the random variables X1, . . . , Xn must be independent and (b) Xi

must lie within a bounded range [ai, bi], almost surely.

Example 1.5 We will now illustrate the direct use of Chernoff-Hoeffding

bounds to prove upper bounds on the probability of failure for the model

described in Example 1.2. Note that our main object of concern in this

example is the value of the state variable x4 at time t = 5600s. Since at each

step, the new state x(t+1) is related to the previous state: x(t+1) = Ax(t)+

Bu(t)(1 +w(t)), the value of x4(5600) is, in fact, written as a summation of

the following form:

x4(5600) = a0 +
4∑
i=1

aixi(0) +
5600∑
j=1

bjw(j) , (1)

wherein the coefficients ai, bj are obtained by computing the matrices for

AiB for i = 0, . . . , 5600 and An for n = 5600. Furthermore, w(j) for j =

1, . . . , 5600, represent mutually independent random variables over the range

[−0.4, 0.4] with mean 0 and standard deviation σ = 0.08.

We may, therefore, apply Chernoff-Hoeffding bounds to compute bounds

of the form:

P(x4(5600) ≥ E(x4(5600)) + t) ≤ exp

(
−2t2∑5600

i=1 bi(0.8)2

)
,

and likewise,

P(x4(5600) ≤ E(x4(5600))− t) ≤ exp

(
−2t2∑5600

i=1 bi(0.8)2

)
.

Note that in applying these bounds, we consider the summation of ran-

dom variables that include a0, aixi(0) and w(j) from Eq. (1). The value

of E(x4(5600)) is calculated using linearity of expectation to be 246.7985

up to 4 significant digits. The denominator of the exponent term for the

Chernoff-Hoeffding is calculated as follows:

5600∑
i=1

bi(0.8)2 = 234.3159 .
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Thus, we may bound the probability of the Fentanyl concentration in the

effect chamber exceeding 300ng/ml as follows:

P(x4(5600) ≥ 300) ≤ 3.05× 10−5 .

Likewise, we may bound the probability of Fentanyl concentration falling

below 150ng/ml as follows:

P(x4(5600) ≤ 150) ≤ 2.4× 10−15 .

Chernoff-Hoeffding inequalities are widely used in numerous applications

to the analysis of randomized algorithms for bounding away the probability

of an undesirable behavior of the algorithm at hand. However, their use is

constrained by many important factors:

(i) The inequality applies to random variables Xi whose set of support is

bounded by a finite interval. Random variables with an unbounded set of

support such as Gaussian random variables are not handled.

(ii) The inequality uses only the range and first moment of each Xi. Further

information such as the second or higher moments E(X2
i ) could be more

useful in obtaining sharper bounds.

(iii) The inequality applies to sums of random variables. Programs often

compute more complex functions of random variables than just sums.

(iv) The inequality applies to mutually independent random variables. Even

if the random variables sampled by a program are mutually independent,

the state variables become correlated as they depend on the same set of

independent random variables.

We will now discuss how each of the limitations may be handled using

other, more sophisticated concentration of measure inequalities and/or sim-

ply by adapting how the inequality is applied in the first place.

3.1 Inequalities Using Higher Moments

Numerous inequalities for the concentration of the sum
∑n

i=1Xi of indepen-

dent random variables have been proposed that use higher moments such as

the second moment E(X2
i ) of each random variable Xi in addition to E(Xi).

Bernstein (1924) proposed a series of such inequalities.

Theorem 1.6 (Bernstein Inequality) Let X1, . . . , Xn be independent ran-

dom variables such that (a) there exists a constant M > 0 such that |Xi −
E(Xi)| ≤ M for each i ∈ [1, n], and (b) the variance of each Xi is σ2

i . For
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any t ≥ 0:

P(X − E(X) ≥ t) ≤ exp

(
−t2

2
3Mt+ 2

∑n
i=1 σ

2
i

)
(2)

For the left tail probability, we may derive an identical bound.

Note that if each random variable Xi ranges over a bounded interval, then

condition (a) for Bernstein inequality is easily satisfied. Furthermore, if we

let µi denote E(Xi), it is easy to show that if the interval [µi − σi, µi + σi]

for each random variable is small in comparison to the set of support [ai, bi],

this inequality will provide much tighter bounds when compared to Chernoff-

Hoeffding bounds.

Example 1.7 Returning back to the analysis of the anesthesia model from

Example 1.5, we will now apply Bernstein inequality to bound the proba-

bility that x4(5600) ≥ 300ng/ml. We can compute the sum of the variances∑5600
i=1 σ2

i as 4.687. Similarly the value of M for Bernstein’s inequality in

(2) is calculated to be 2.362. These calculations are mechanized using the

approach described in Section 4. Applying the inequality yields the bound:

P(x4(5600) ≥ 300) ≤ 7.1× 10−13 .

This is much more useful than the bound of 3.05 × 10−5 obtained using

Chernoff-Hoeffding bounds. Similarly, the probability that the anesthesia

level falls below the lower limit of 150ng/ml using Bernstein’s inequality is

obtained as 2.1× 10−26, once again a drastic improvement when compared

to Chernoff-Hoeffding bounds.

Inequalities that use information from higher order moments beyond just

the mean and the variance are also possible. In fact, these inequalities may

be derived by using an expansion of the moment generating function E(etX)

for a random variable X whose set of support is bounded by [a, b]. The

key lies in discovering useful bounds that can utilize as much information

available about the random variables Xi as possible, while remaining com-

putationally tractable. We see the use of such designer inequalities derived

using computer algebra manipulations rather than using hand calculations

as an important future step in mechanizing the application of concentration

of measure inequalities.

3.2 Random Variables with Unbounded Support

All concentration of measure inequalities studied thus far, such as Chernoff-

Hoeffding or Bernstein inequalities, rely on the random variables Xi having
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bounded set of support. However, this need not be the case for many com-

monly encountered distributions such as Gaussian or exponential random

variables.

Let X1, . . . , Xn be independent random variables whose support is un-

bounded (either [−∞,∞], [a,∞) or (−∞, a], for some constant a). We say

that a family of distributions is Lévy stable iff the linear combination of

finitely many random variables belonging to the family, is also a random

variable that belongs to the family. For instance, commonly occurring dis-

tributions such as Gaussian, exponential, gamma, and Poisson are Lévy

stable. If the variables Xi are identically distributed and their distributions

are Lévy stable, then it is possible to calculate the parameters for the dis-

tribution of the sum from the parameters of the original random variables.

Likewise, questions such as P(X ≥ E(X) + t) can be handled by knowing

the cumulative density functions of these variables.

However, appealing to stability property of the random variables will fail if

the distributions are not stable or, more commonly, the variables X1, . . . , Xn

are not identically distributed. In this situation, a simple trick can enable

us to successfully apply concentration of measure inequality as follows:

(i) For each Xi choose an interval Ji := [ai, bi] and compute the probability

pi that P(Xi 6∈ Ji) (or compute an interval bounding pi). Also define a

random variable Yi obtained by restricting the variable Xi to the interval

Ji. Let E(Yi) be its expectation.

(ii) To bound the probability that P(
∑
Xi ≥ t), we can consider two mu-

tually exclusive events. A :=
∧
Xi ∈ Ji and B :=

∨
Xi 6∈ Ji. We have

that

P(
∑
Xi ≥ t) = P(A)P(

∑
Xi ≥ t |A) + P(B)P(

∑
Xi ≥ t |B)

= P(A)P(
∑
Yi ≥ t) + P(B)P(

∑
Xi ≥ t |B)

≤ P(A)P(
∑
Yi ≥ t) + P(B)

≤ (
∏n
i=1(1− pi))P(

∑
Yi ≥ t) + (1−

∏n
i=1(1− pi))

Note that we obtain P(A) =
∏n
i=1(1−pi) through the independence of the

random variables X1, . . . , Xn, and P(B) = 1 − P(A). If independence of

X1, . . . , Xn is dropped (as we will see subsequently), we may instead use

Fréchet bounds to conclude that P(A) ≤ min(1−p1, . . . , 1−pn). Likewise,

we may use a weaker bound P(B) ≤ p1+· · ·+pn through Boole’s inequality

(union bound) if the independence assumption is dropped. We may now

estimate the probability P(
∑
Yi ≥ t) using the Chernoff-Hoeffding bounds

or Bernstein inequality (if the variance of Yi is known).

The approach also presents an interesting trade-off between the size of
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the interval Ji chosen for each random variable. A larger interval makes the

probability P(B) vanishingly small. However, at the same time, the quality

of the bounds depend on the width of the intervals Ji. For instance, the

problem can be setup as an optimization to find the best bound that can be

obtained by varying the width of Ji against the probability of event B.

Example 1.8 Returning to the anesthesia example (Ex. 1.2), we will con-

sider the distribution of the noise to be a Gaussian random variable with

mean 0 and variance 0.08. As a result, the concentration of measure in-

equalities are no longer applicable. However, if we consider Ji := [−0.4, 0.4],

we can estimate the probability P(wi 6∈ Ji) ≤ 5.73 × 10−7. The latter is

obtained knowing the probability that the value of a normally distributed

random variables lies ±5σ away from the mean. As a result, the result from

the Chernoff-Bounds in Example 1.5 can be reused here to assert that

P(x4(5600) ≥ 300) ≤ (1− 5.73× 10−7)3.05× 10−5 + 5600× 5.73× 10−7︸ ︷︷ ︸
=3.293×10−3

On the other hand, We could use a larger interval Ji := [−0.593, 0.593] that

yields the probability P(wi 6∈ Ji) ≤ 10−13. However, using this interval to

truncate the random variable yields poorer results overall.

P(x4(5600) ≥ 300) ≤ 0.0012 + 5600× 10−13 ≤ 0.0013 .

The approach can also be used alongside Bernstein bounds provided the

variance can be estimated for the truncated distribution. Here, we may use

a formula for the variance of a truncated Gaussian distribution. In doing so

with the larger interval Ji := [−0.593, 0.593] we obtain a tighter bound:

P(x4(5600) ≥ 300) ≤ 3.241× 10−8 + 5600× 10−13 ≤ 3.25× 10−8 .

3.3 Inequalities for Nonlinear Functions

Thus far, we have applied Chernoff-Hoeffding and Bernstein bounds for sums

of independent random variables. However, more often, probabilistic pro-

grams yield nonlinear functions of random variables f(X1, . . . , Xn). We are

interested in tail bounds of the form

P(f − E(f) ≥ t) ≤ exp(−ct2) .

First, it is clear that not all functions will yield such a bound. It is important

to understand properties of functions that are amenable to such a bound and

check if the function computed by the program falls within such a class.
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Example 1.9 Revisiting the 2D robotic end effector from Example 1.1,

we note that the value of x at the end of the program in line 18 of Figure 1,

is obtained as

x := x0 +
99∑
i=0

9∑
j=0

di,j cos(θi,j) . (3)

wherein x0 is a truncated Gaussian random variable with mean 0 and stan-

dard deviation 0.05 over the range [−0.5, 0.5] (see line 3), di,j is a uniform

random variable over the range [0.98, 1.02] and θi,j is given by

θi,j = αj(1 + wi,j)

wherein αj is specified in the array angles in line 2 of the program shown

in Figure 1 and wi,j is distributed as a truncated Gaussian random variable

with mean 0, standard deviation σ = 0.01 and over the range [−0.05, 0.05]

(see line 13).

Definition 1.10 (Difference Bounded Functions) Let f(x1, . . . , xn) be a

function from S1× · · ·×Sn → R for sets Si ⊆ R. We say that f is difference

bounded iff there exists constants c1, . . . , cn such that

(∀i ∈ {1, 2, · · · , n})
(∀ x1 ∈ S1, . . . , xi−1 ∈ Si−1, xi+1 ∈ Si+1, . . . , xn ∈ Sn)

(∀xi ∈ Si, x′i ∈ Si)
|f(x1, . . . ,xi, . . . , xn)− f(x1, . . . ,x

′
i, . . . , xn)| ≤ ci.

In other words, varying just the ith argument while keeping the other

arguments the same yields a bounded change in the value of the function.

Dubhashi and Panconesi (2009) and many other authors sometimes use the

terminology Lipschitz functions to refer to difference bounded functions,

above. Note that the notion of difference bounded is not the same as the stan-

dard notion of Lipschitz continuity that one encounters in calculus, wherein

the right hand side of the inequality is L|xi − x′i| rather than a fixed con-

stant ci. It is easy to see that a Lipschitz continuous function is difference

bounded provided the sets S1, . . . , Sn are compact. On the other hand, the

step function (a discontinuous function) is difference bounded over [−1, 1]

but not Lipschitz continuous.

A well known result called McDiarmid’s inequality (McDiarmid (1989))

shows that a difference bounded function of independent random variables

concentrates around its mean.

Theorem 1.11 (McDiarmid’s Inequality) Let X1, . . . , Xn be independent



18 Sankaranarayanan

random variables and f be a difference bounded function over the Cartesian

product of the set of support of the random variables. We conclude that

P(f(X1, . . . , Xn) ≤ E(f) + t) ≤ exp

(
−2t2∑n
j=1 c

2
j

)
.

A similar inequality holds for the lower tail, as well.

Example 1.12 Continuing with the calculation for Example 1.9, we will

first show that the function in Equation (3) is difference bounded and derive

the corresponding constants bounding the differences by hand:

Random Variable Difference Bound Constant

x0 1

di,j 0.04uj
wi,j 1.02(uj − lj)

Here

uj := max(| cos(0.95αj)|, | cos(1.05αj)|)

and

lj := min(| cos(0.95αj)|, | cos(1.05αj)|) .

Carrying out this calculation, the sum of the square of the difference bound

constants is obtained as 13.68. Next we need to estimate E(f), which is chal-

lenging as it involves integrating a multivariate nonlinear function over the

random variables. A systematic approach to doing so using a combination

of affine forms, interval arithmetic and Taylor series expansions is described

in our previous work (Bouissou et al. (2016)). Using an implementation of

our approach, we estimate an interval that bounds the value of E(x) as

E(x) ∈ [268.6170484, 270.6914916] .

Such a range is nevertheless useful in estimating tail probabilities. For in-

stance, to bound upper tail probabilities P(f − E(f) ≥ t), we use the upper

limit of the given range for E(f). Likewise, we use the the lower limit for the

lower tail probabilities in order to obtain conservative bounds. Therefore,

we conclude that

P(x ≥ 277) = P(x− 270.69 ≥ 6.31) ≤ exp

(
−2 ∗ 6.312

13.68

)
= 2.96× 10−3 .

This bound is much improved using the systematic approach that incorpo-

rates variance information originally described in Bouissou et al. (2016), as

will be discussed in the subsequent section.
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3.4 Inequalities for Correlated Random Variables

We will now examine how concentration inequalities can be derived for de-

pendent random variables X1, . . . , Xn. If the variables are correlated in some

manner, it is hard to provide useful concentration bounds for the general

case. However, in some cases, the “structure” of the correlation can be ex-

ploited to directly derive inequalities by adapting existing approaches such

as Chernoff-Hoeffding or Bernstein inequalities.

Numerous cases have been studied such as negatively dependent random

variables (Dubhashi and Panconesi (2009); Dubhashi and Ranjan (1998)).

We will focus our approach on sums of random variables with a given corre-

lation graph. Let X1, . . . , Xn be a set of random variables with an undirected

graph G := ({X1, . . . , Xn}, E) whose vertices correspond to the random vari-

ables X1, . . . , Xn. An edge between two random variables (Xi, Xj) signifies

a dependency between the variables.

Example 1.13 Let X1, X2 and X3 be three independent random variables

and X4 denote a function f(X1, X2, X3). The dependency graph has edges

connecting X4 with X1, X2 and X3.

Naturally, existing approaches discussed thus far require the random vari-

ables to be independent. As a result, it is not possible to apply them in

this context. We will describe an elegant “trick” due to Janson (2004), and

in turn following ideas from Hoeffding’s seminal paper (Hoeffding (1963))

introducing the Chernoff-Hoeffding inequality.

First, we will introduce the notion of a weighted independent-set cover.

Let A be the set of random variables {X1, . . . , Xn}. A subset Aj ⊆ A is an

independent set if any two variables in Aj are mutually independent, i.e,

there are no edges between them in the graph G.

An independent set cover is a family of independent sets A1, . . . , Ak such

that A1 ∪ · · · ∪ Ak = A. A weighted cover is a family of independent sets

with positive real-valued weights

(A1, w1), . . . , (Ak, wk) ,

such that (a) A1, . . . , Ak form an independent set cover and (b) for each Xi,∑
Aj | Xi∈Aj

wj ≥ 1. In other words, for each element Xi, the sum of weights

for all independent sets that contain Xi is greater than or equal to 1. Note

that every independent set cover that partitions the set A is also a weighted

cover by assigning the weights 1 to each set. The total weight of a cover is

given by w1 + · · · + wk. Given a graph G its chromatic number ξ(G) = k,

for some k ∈ N, is the smallest number of sets that form an independent set
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cover of A. Likewise, its fractional chromatic number ξ∗(G) is the minimum

weight
∑k

j=1wj of some A1, . . . , Ak such that (A1, w1), . . . , (Ak, wk) forms

a weighed cover.

Let (A1, w1), . . . , (Ak, wk) be a weighted cover of the set of random vari-

ables A. Let [ai, bi] represent the set of support for random variable Xi. Let

cj :=
∑

Xi∈Aj
(bi − ai)2.

Theorem 1.14 (Janson (2004)) Given a set of random variables A :=

{X1, . . . , Xn} with correlations specified by graph G. Let (A1, w1), . . . , (Aj , wj)

be a weighted independent set cover of G. The following bound holds:

P(
∑

Xj − E(
∑

Xj) ≥ t) ≤ exp

(
−2t2

T 2

)
, (4)

wherein T 2 =
(∑k

j=1wj
√
cj

)2
and cj =

∑
Xi∈Aj

(bi − ai)2.

With ξ∗(G) as the fractional chromatic number of G, we obtain the bound

P(
∑

Xj − E(
∑

Xj) ≥ t) ≤ exp

(
−2t2

ξ∗(G)
∑n

j=1(bj − aj)2

)
. (5)

First we note that if all the variables are mutually independent, then the

optimal weighted cover is simply (A, 1) yielding ξ∗(G) = 1. Both Equa-

tions (4) and (5) yield the same answer as Chernoff-Hoeffding bounds. Ap-

plying the bound in (4) requires us to compute a weighted independent set

cover of the graph G. A simple approach lies in using a greedy algorithm to

partition the set A into subsets of independent sets, and using weights 1 to

convert the cover into a weighted cover.

Example 1.15 Continuing with Example 1.13, an independent set cover is

given by {X1, X2, X3} and {X4} which yields a weighted cover by assigning

a weight 1 to each independent set.

Therefore, let S := X1 + X2 + X3 + X4 and [ai, bi] denote the range of

each random variable Xi. Applying Janson’s inequality for any t ≥ 0, we

get:

P(S ≥ E(S)+t) ≤ exp

 −2t2(√
(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2 + (b4 − a4)

)2

 .

Beyond Chernoff-Hoeffding bounds, Janson presents extensions of other

inequalities such as Bernstein’s inequality to the case of correlated random

variables with known correlation structure.
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Thus far, we have studied various concentration of measure inequalities

and how they can be applied to reason about the probability of assertions

for some specific programs. The bigger question, however, is to what extent

can the process of choosing and applying the right inequality be mechanized

for a given probabilistic program. To answer it, we examine the case of

control deterministic programs and use the idea of affine forms to symboli-

cally reason about the distribution of program variables during and after the

program execution. This provides us a means to apply the inequalities we

have discussed thus far in this section without requiring extensive manual

calculations.

4 Control Deterministic Computations

In this section, we briefly touch upon how the concentration of measure

inequalities presented in the previous sections can be systematically applied

to reasoning about programs. We begin our discussion with a simple class

of control deterministic computations. The material in this section is based

upon joint work with Olivier Bouissou, Eric Goubault and Sylvie Putot (Cf.

Bouissou et al. (2016)). Control determinism is an important property that is

satisfied by many probabilistic programs that occur naturally in application

domains such as cyber-physical systems (CPS), control theory, and motion

planning, to name a few. In this section, we briefly summarize the notion of

control determinism and examine how probability distributions of variables

can be abstracted in a symbolic fashion, to enable reasoning using various

concentration of measure inequalities.

4.1 Control Deterministic Programs

Put simply, a program is control deterministic if and only if the control flow

of the program is unaffected by the stochastic or nondeterministic choices

made during the program execution. In effect, the program does not have

any if-then-else branches, and all loops in the program terminate after a pre-

determined number of iterations. Furthermore, the “primitive” assignment

statements of the program involve a continuous function as their RHS.

Formally, a control deterministic program over real-valued program vari-
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Physical Process
x′ = F (x,u,w)

Control
u = G(x)

Disturbance w

x ∼ X0

n← 0
repeat < T >

u← G(x)
w ∼ D
x← F (x,u,w)

P(x |= ϕ) ≤ ?

Figure 3 Discrete-time control of a physical process under uncertainties caused by ex-

ternal disturbances and a control deterministic probabilistic program that simulates it.

ables x is constructed using the grammar shown below:

program → statement∗

statement → assignment

| repeat < n > (statement∗)

assignment → xi ← f(xi1 , . . . , xik)

| xj ∼ D
x1, . . . , xn ∈ Identifiers

n ∈ N
f ∈ Continuous

D ∈ Distributions

The program consists of a set Identifiers of real-valued state variables

x1, . . . , xn that are manipulated using a sequence of assignment statements

and deterministic loops that repeat a set of statements a fixed number n of

times. Further, each assignment involves a continuous function f applied to

a subset of variables. The statement x ∼ D denotes drawing a sample from a

distribution D and assigning the value to variable x. The semantics of such

a program can be defined in the usual manner (see Kozen (1981)), and are

omitted for this discussion.

Despite the limitations on expressivity due to the absence of control

branches, control deterministic computations form an important class of

probabilistic programs. They arise naturally in the domain of cyber-physical

systems, wherein it is important to reason about uncertainty in the phys-

ical state of the system due to external disturbances. For instance, all the

motivating examples from Section 1.1 are all control deterministic.

Figure 3 shows a schematic diagram of a physical process whose internal

state x is updated at each time step using the law x′ = F (x,u,w) wherein

u is the control applied externally by a controller and w ∼ D is a stochas-

tic disturbance. We assume that F is a continuous, but possibly nonlinear
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function. Similarly, the feedback law G is a continuous and possibly nonlin-

ear function u = G(x). Given the uncertainty in the initial state x ∼ X0,

our goal is to evaluate bounds on the probability that x(T ) |= ϕ for some

assertion ϕ specifying the unsafe set of states.

4.2 Symbolic Execution Using Affine Forms

In this section, we briefly describe an approach that symbolically executes

a control deterministic program based on affine forms defined in previous

work by Bouissou et al. (2012) and subsequently by Bouissou et al. (2016).

Affine forms abstract how the variables in a computation depend as an affine

function of the distributions that affect the program execution. However,

many programs of interest are not affine. To handle these, affine forms are

abstracted in two ways: (a) affine forms involve abstract noise symbols that

represent a set of possible distributions; (b) the symbols in the affine form

can be correlated.

Let us define a set of noise symbols Y = {y1, y2, . . .}, wherein each symbol

yi has an associated set of support in the form of an interval [`i, ui], intervals

for expectation E(yi) ∈ [ai, bi], and possibly, a list of intervals for its higher

moments E(y2
i ),E(y3

i ), · · · ,E(yki ).

Definition 1.16 (Environment) An environment E := 〈Y, support,E(·), G〉
is given by a finite set of noise symbols Y = {y1, . . . , yn}, a map support

from each symbol yj to an interval Ij indicating its set of support, a map

that associates some select monomial terms m := yk11 · · · yknn to intervals

that bound their expectations E(m), and finally, a directed graph G whose

vertices are the symbols in Y and edges (yi, yj) denote that the variable yj
is derived as a function of yi (and possibly other variables in Y ).

An environment E represents a set of distributions D over the noise sym-

bols in Y such that the sets of support and expectations all lie in the intervals

defined by the environment. The graph G defines the functional dependence

or independence within pairs of random variables using the following defi-

nition.

Definition 1.17 (Probabilistic Dependence) Noise symbols yi and yj are

probabilistically dependent random variables if there exists yk such that there

are paths from yk to yi and yj to yk in the graph G. Otherwise, yi, yj rep-

resent mutually independent random variables.

An environment E with noise symbols y := (y1, . . . , yn) corresponds to

a set of possible random vectors Y := (Y1, . . . , Yn) that conform to the
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following constraints: (a) (Y1, . . . , Yn) must range over the set of support

support(y1) × · · · × support(yn); (b) the moment vectors lie in the appro-

priate ranges defined by the environment; and, (c) if noise symbols yi, yj
are probabilistically independent according to the dependence graph G, the

corresponding random variables Yi, Yj are mutually independent. Otherwise,

they are “arbitrarily” correlated while still respecting the range and moment

constraints above.

Given an environment E , affine forms are affine expressions over its noise

symbols.

Definition 1.18 (Affine Forms) An affine form over an environment E is

an expression of the form

a0 + a1y1 + · · ·+ anyn

where a0, a1, . . . , an are interval coefficients, and y1, . . . , yn are the corre-

sponding noise symbols.

We assume that support(yj) is bounded for all yj ∈ Y . We, however, handle

variables with unbounded set of support through the truncation procedure

described in section 3.2. Another important aspect is that of missing moment

information. We may use interval arithmetic to estimate missing information

given the information on the set of support and available moments.

Lemma 1.19 Let X be a (univariate) random variable whose set of support

is the interval I ⊆ R. It follows that E(X) ∈ I.

Let X1, X2 be two random variables. The following inequality holds:

−
√

E(X2
1 )E(X2

2 ) ≤ E(X1X2) ≤
√
E(X2

1 )E(X2
2 ) .

The inequality above follows from the Cauchy-Schwarz inequality. Fur-

ther details on how missing moment information is inferred are explained

in Bouissou et al. (2016).

Example 1.20 First we will provide an illustrative example of an en-

vironment E . Let Y = {y1, y2, y3} be a set of noise symbols such that

support(y1) = [−1, 1], support(y2) = [0, 2] and support(y3) = [−2, 3]. The

corresponding expectations are

E(y1) = [−0.1, 0.1], E(y2) = [1.1, 1.3], E(y3) = [−0.5,−0.3].

Furthermore, assume we are provided the higher order moment information

E(y2
1) = [0.2, 0.5], E(y1y2) = [−0.4, 0.6], E(y2

3) = [0.4, 0.6].
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The dependency graph has the edges (y1, y3) indicating that y3 is function-

ally dependent on y1, which in turn are both pairwise independent of y2.

An example affine form in this environment E is

η1 := [0.5, 1.5] + [2.0, 2.01]y1 − [2.8, 3.2]y3 .

Semantically, an affine form f(y) := a0 +
∑n

i=1 aiyi represents a set of

linear expressions Jf(y)K over y:

Jf(y)K :=

{
r0 +

n∑
i=1

riYi | ri ∈ ai, (Y1, . . . , Yn) ∈ JEK

}
.

Given affine forms, we can define a calculus that describes how basic

operations such as sums, differences, products and application of continuous

(and k-times differentiable) functions are carried out over these affine forms.

Sums, Differences and Products: Let f1, f2 be affine forms in an envi-

ronment E given by f1 := aty + a0 and f2 := bty + b0. We define the sum

f1 ⊕ f2 to be the affine form (a + b)ty + (a0 + b0). Likewise, let λ be a real

number. The affine form λf1 is given by (λa)ty + λa0.

We now define the product of two forms f1 ⊗ f2.

f1 ⊗ f2 = a0b0 + a0f2 + b0f1 + approx(

n∑
i=1

n∑
j=1

aiajyiyj) .

Note that a0b0, a0f2, b0f1 and aiaj denote the result of multiplying two

intervals. The product of two intervals [li, ui][lj , uj ] is defined as the interval

[min(lilj , uilj , liuj , uilj),max(lilj , uilj , liuj , uilj)] (see Moore et al. (2009)).

The product of two affine forms f1 ⊗ f2 separates the affine and linear

parts of this summation from the nonlinear part that must be approximated

to preserve the affine form. To this end, we define a function approx that

replaces the nonlinear terms by a collection of fresh random variables. In

particular, we add a fresh random variable yij to approximate the product

term yiyj .

Dependencies: We add the dependency edges (yij , yi) and (yij , yj) to the

graph G to denote the newly defined functional dependences.

Set of Support: The set of support for yij is the interval product of the set

of supports for yi, yj , respectively. In particular if i = j, we compute the set

of support for y2
i . Interval Iij will represent the set of support for yij .

Moments: The moments of yij are derived from those of yi and yj , as follows.

Case-1 (i = j). If i = j, we have that the E(ypij) = E(y2p
i ). Therefore, the

even moments of yi are taken to provide the moments for yij . However, since

we assume that only the first k moments of yi are available, we have that
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the first k
2 moments of yij are available, in general. To fill in the remaining

moments, we approximate using intervals as follows: E(yrij) ∈ Irij . While this

approximation is often crude, this is a tradeoff induced by our inability to

store infinitely many moments for the noise symbols.

Case-2 (i 6= j). If i 6= j, we have that E(ypij) = E(ypi y
p
j ). If yi, yj form an

independent pair, this reduces back to E(ypi )E(ypj ). Thus, in this instance,

we can fill in all k moments directly as entry-wise products of the moments

of yi and yj . Otherwise, they are dependent, so we use the Cauchy-Schwarz

inequality (see Lemma 1.19): −
√
E(y2p

i )E(y2p
j ) ≤ E(ypij) ≤

√
E(y2p

i )E(y2p
j ),

and the interval approximation E(ypij) ∈ I
p
ij .

Continuous Functions: Let g(y) be a continuous and (m+1)-times differ-

entiable function of y, wherein y belongs to a compact interval J . The Taylor

expansion of g around a point y0 ∈ interior(J) allows us to approximate g

as a polynomial.

g(y) = g(y0) +Dg(y0)(y − y0) +
∑

2≤|α|1≤m

Dαg(y0)(y − y0)α

α!
+Rm+1

g ,

wherein Dg denotes the vector of partial derivatives ( ∂g∂yj )j=1,...,n, α :=

(d1, . . . , dn) ranges over all vector of indices where di ∈ N is a natural num-

ber, |α|1 :=
∑n

i=1 di, α! = d1!d2! · · · dn!, Dαg denotes the partial derivative
∂d1g···∂dng
∂y

d1
1 ···∂y

dn
n

and (y − y0)α :=
∏n
j=1(yj − y0,j)

dj . Finally, Rm+1
g is an interval

valued Lagrange remainder :

Rm+1
g ∈

 ∑
|α|1=m+1

Dαg(z)

α!
(z− y0)m+1 | z ∈ J

 .

This computation is automated in our implementation through a combina-

tion of standard ideas from automatic differentiation and interval arithmetic

(Cf. Moore et al. (2009)).

Since we have discussed sums and products of affine forms, the Taylor

approximation may be evaluated entirely using affine forms.

The remainder is handled using a fresh noise symbol y
(m+1)
g . Its set of

support is Rm+1
g and moments are estimated based on this interval. The

newly added noise symbol is functionally dependent on all variables y that

appear in g(y). These dependencies are added to the graph G.

The Taylor expansion allows us to approximate continuous functions in-

cluding rational and trigonometric functions of these random variables.

Example 1.21 We illustrate this by computing the sine of an affine form.
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Let y1 be a noise symbol over the interval [−0.2, 0.2] with the moments

(E(y1) = 0,E(y2
1) ∈ [0.004, 0.006],E(y3

1) = 0,E(y4
1) ∈ [6×10−5, 8×10−5],E(y5

1) = 0) .

We consider the form sin(y1). Using a Taylor series expansion around y1 = 0,

we obtain

sin(y1) = y1 −
1

3!
y3

1 + [−1.3× 10−5, 1.4× 10−5] .

We introduce a fresh variable y2 to replace y3
1 and a fresh variable y3 for

the remainder interval I3 := [−1.3× 10−5, 1.4× 10−5].

Dependencies: We add the edges (y2, y1) and (y3, y1) to G.

Sets of Support: I2 := [−0.008, 0.008] and I3 := [−1.3× 10−5, 1.4× 10−5].

Moments: E(y2) = E(y3
1) = 0. Further moments are computed using interval

arithmetic. The moment vector I(m2) is (0, [0, 64×10−6], [−512×10−9, 512×
10−9], . . .). For y3, the moment vector

I(m3) := (I3, square(I3), cube(I3), . . .) .

The resulting affine form for sin(y1) is [1, 1]y1 − [0.16, 0.17]y2 + [1, 1]y3.

4.3 Approximating Computations using Affine Forms

Having developed a calculus of affine forms, we may directly apply it to

propagate uncertainties across control deterministic computations. Let X =

{x1, . . . , xp} be a set of program variables collectively written as x with

an initial value x0. Our semantics consist of a tuple (E , η) wherein E is an

environment and η := X → AffineForms(E) maps each variable xi ∈ X to

an affine form over E . The initial environment E0 has no noise symbols and

an empty dependence graph. The initial mapping η0 associates each xi with

the constant xi,0. The basic operations are of two types: (a) assignment

to a fresh random variable, and (b) assignment to a function over existing

variables.

Random Number Generation: This operation is of the form xi :=

rand(I,m), wherein I denotes the set of support interval for the new ran-

dom variable, and m denotes a vector of moments for the generated random

variable. The operational rule is (E , η)
xi:=rand(I,m)−−−−−−−−−→ (E ′, η′), wherein the

environment E ′ extends E by a fresh random variable y whose set of sup-

port is given by I and moments by m. The dependence graph is extended

by adding a new node corresponding to y but without any new edges since

freshly generated random numbers are assumed independent. However, if the
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newly generated random variable is dependent on some previous symbols,

such a dependency is also easily captured in our framework.

Assignment: The assignment operation is of the form xi ← g(x), assign-

ing xi to a continuous and (j + 1)-times differentiable function g(x). The

operational rule has the form (E , η)
xi←g(x)−−−−−→ (E ′, η′). First, we compute

an affine form fg that approximates the function g(η(x1), . . . , η(xn)). Let

Yg denote a set of fresh symbols generated by this approximation with new

dependence edges Eg. The environment E ′ extends E with the addition of

the new symbols Yg and and new dependence edges Eg. The new map is

η′ := η[xi 7→ fg].

Let C be a computation defined by a sequence of random number gen-

eration and assignment operations. Starting from the initial environment

(E0, η0) and applying the rules above, we obtain a final environment (E , η).

However, our main goal is to answer queries such as P(xj ∈ Ij) that seek

the probability that a particular variable xj belongs to an interval Ij . This

directly translates to a query involving the affine form η(xj) which may in-

volve a prohibitively large number of noise symbols that may be correlated

according to the dependence graph G.

Example 1.22 (2D robotic end effector) Consider a simplified version of

the 2D robotic end effector model presented in Example 1.1, yielding an

affine form with 6900 noise symbols for the variable x that we care about.

The computation required 15 seconds of computational time on a laptop

with Intel 3.1 core i7 processor and 16GB RAM.

x =



[8.06365, 8.06441] + [1, 1] ∗ y0 + [0.984807, 0.984808] ∗ y2+
[0.0303060, 0.0303069] ∗ y3 + [−1,−1] ∗ y4+
[0.0303060, 0.0303069] ∗ y5 + [−1,−1] ∗ y6+

[0.499997, 0.500026] ∗ y9+
[0.90686, 0.906894] ∗ y10+

· · ·
[0.119382, 0.119386] ∗ y6885 + [−1,−1] ∗ y6886 + [0.984807, 0.984808] ∗ y6889

+ [0.0303060, 0.0303069] ∗ y6890 + [−1,−1] ∗ y6891 + [0.0303060, 0.0303069] ∗ y6892+
[−1,−1] ∗ y6893 + [1, 1] ∗ y6896 + [−1,−1] ∗ y6898 + [−1,−1] ∗ y6899

Based on the affine form, we can bound the support for x ∈ [213.19, 326.12]

and its expectation as E(x) ∈ [268.61, 270.7], and the second central moment

(variance) in the range [0.12, 0.28].

4.4 Applying Concentration of Measure Inequalities

We will now apply the results from section 3 to analyzing the affine forms

generated from control deterministic programs. First, we note that each
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affine form is a sum of possibly dependent random variables with information

about sets of support, first and possibly higher order moments available.

Thus, many strategies for applying the results in the previous section are

available. These are summarized in detail in Bouissou et al. (2016). In what

follows, we will illustrate the application of these results directly to some of

the motivating examples from Section 1 using a prototype implementation

of the ideas mentioned thus far. The prototype implementation in the C++

language interprets a given program using a library of affine forms. Next, it

mechanizes the process of answering queries by analyzing the dependency

graph. The automatic analysis uses a series of approaches that include:

(i) The application of Chernoff-Hoeffding bounds by using a compaction

procedure that combines multiple noise symbols into a single one, so that

the affine forms are all summations over independent random variables.

Similarly, Bernstein inequalities are used whenever second moments are

consistently available.

(ii) The application of Janson (2004) chromatic number bound, using 1+∆

as an approximation for the fractional chromatic number, wherein ∆ is

the maximum degree of any node in the dependence graph.

Example 1.23 (2D end effector) Resuming the analysis in Ex. 1.22, we can

automate the application of various approaches discussed thus far, starting

with the Chernoff-Hoeffding bounds.

The original affine form has 6900 variables which are not all mutually

independent. To obtain mutual independence, we analyze the strongly con-

nected components of the undirected dependence graph yielding 3100 dif-

ferent components such that variables in distinct components are pairwise

independent. Using this, we compact the affine form into one involving 3100

random variables and apply Chernoff-Hoeffding bounds. This is performed

by computing the strongly connected components (SCC) of the dependency

graph G, and taking the set of support and mean of the sum of random

variables belonging to each SCC. Note that Chernoff-Hoeffding bounds can

be applied since noise symbols belonging to different SCCs are mutually

independent.

This yields

P(x ≥ 277) ≤ exp

(
−(268.6170484− 277)2

7.486493141

)
≤ 8.38× 10−5 .

Applying Bernstein’s inequality yields:

P(X ≤ t) ≤ exp

(
−(268.6170484− t)2

0.4868099186 + 0.3333 ∗ (t− 286.6170484)

)
≤ 5.18×10−10 .
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(a) (b)

Figure 4 (a) Simulated (x, y) positions of UAV over the time horizon [0, 3.6] seconds

and (b) Histogram of final position x(3.6) + y(3.6).

The Chromatic number bound of Janson (2004) computes a weaker bound

given by 0.106.

Now, we will consider the example of a fixed-wing UAV collision proba-

bility estimation from Ex. 1.3.

Example 1.24 Consider a prediction horizon of t = 20 × 0.18 = 3.6

seconds. Our goal is to run the model twenty times, starting from a given

initial state and query the probability that x + y ≥ 165. We obtain an

affine form for x + y with 88 noise symbols. The mean value E(x + y) ∈
[65.85, 65.86] matches very well with the empirical estimate of 65.84 from

10, 000 simulations. Furthermore, the variance is estimated in the range

[78.95, 78.96] which also matches quite well with the empirical variance of

78.76 obtained from 10, 000 simulations. Some of the trajectories of the

system and the scatter plot with 10000 end points are shown in Figure 4.

Using the Bernstein inequality, we obtain the estimate

P(x+ y ≥ 165) ≤ 9.6× 10−4 .

and more generally,

P(x+ y ≥ 65.859 + t) ≤ exp

(
−t2

157.8869 + 12.57t

)
.

5 Supermartingales and Concentration of Measure

In the final section, we look at concentration of measure inequalities using

super-martingales. A previous chapter in the same volume by Chatterjee

et al adapts the concept of a super-martingales to prove termination. We
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will recall the definition and show that super-martingales are also useful for

proving concentration. First let us recall conditional expectations. Let X,Y

be two random variables. The conditional expectation E(X|Y ) is defined as

a function f(y) defined over the support of the distribution Y such that

f(y) =

∫
X
xdP(x|y)

In other words, for each value of y, the expectation integrates x over the

conditional distribution of x given y.

Definition 1.25 (Martingales, Super- and Sub-Martingales) A sequence

of random variables X0, X1, . . . , Xn is a martingale iff for each i ≥ 0,

E(Xi+1 | Xi, . . . , X0) = Xi .

A supermartingale satisfies the condition

E(Xi+1 | Xi, . . . , X0) ≤ Xi .

A submartingale satisfies the inequality:

E(Xi+1 | Xi, . . . , X0) ≥ Xi .

A martingale is, therefore, both a supermartingale and a submartingale.

Typically, the stochastic processes that are studied arise from Markovian

models such as probabilistic programs wherein the next state distribution de-

pends on just the current state. Thus, the conditional expectation E(Xi+1 |Xi, . . . , X0)

is written as E(Xi+1 | Xi).

Example 1.26 Consider a random walk involving x(t) ∈ Z that is updated

as

x(t+ 1) =

{
x(t) + 1 with probability 1

2

x(t)− 1 with probability 1
2

It is easy to see that x(t) is a martingale since

E(x(t+ 1) | x(t)) =
1

2
(x(t) + 1) +

1

2
(x(t)− 1) = x(t) .

It is easy to see that a martingale is always a supermartingale, but not nec-

essarily vice-versa. Another important observation is that often a stochastic

process is not a (super) martingale itself. However, another process built,

for instance, by computing a function of the original process forms a (super)

martingale.
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Example 1.27 Consider a different scenario wherein x(t) ∈ R.

x(t+ 1) =

{
0.8x(t) with probability 1

2

1.1x(t) with probability 1
2

x(t) is neither a martingale or a super martingale. However, note that

y(t) = x(t)2 is a super martingale.

E(y(t+ 1) | x(t)) =
1

2
0.82y(t) +

1

2
1.12y(t) = 0.925y(t) ≤ y(t) .

Some of the constructions that have been previously encountered such as

the McDiarmid’s Inequality (Theorem 1.11) involve a martingale under the

hood.

Example 1.28 (Doob Martingale) Let f(x1, . . . , xn) be a function with n

inputs which are drawn from independent random variables X1, . . . , Xn.

Consider the stochastic process

Yi = EXi+1,...,Xn(f(X1, . . . , Xi, Xi+1, . . . , Xn)) ,

for i = 0, . . . , n. Note that each Yi is a function of X1, . . . , Xi while taking

expectations over the remaining arguments. As a result Y0 is the expected

value of f under all its inputs, Yi for i > 0 fixes random samples for the

arguments indexed from 1 to i, and Yn is the function f computed over some

random sample of all the arguments.

Note that for every i < n, it is easy to show that

E(Yi+1 | Xi, . . . , X1) = Yi .

This construction can be achieved for any function f and is called Doob mar-

tingale. However, also note the independence requirements for the random

variables X1, . . . , Xn.

Super-martingales from programs: As previously noted in chapter on

termination, we seek expressions involving variables of the programs that

form super-martingales.

Consider the program shown in Figure 5 (taken from our previous work Chakarov

and Sankaranarayanan (2013)), wherein the position of an underwater vehi-

cle (x, y) is updated at each step through a command that can be randomly

chosen direction or just staying in one position. Based on this command, the

actual position changes through a noisy execution of the command. How-

ever, at the same time, the estimation of the current position is updated.

The question is how far the estimate deviates from the true position after
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1 x, y, estX, estY = 0, 0, 0, 0
2 dx, dy, dxc, dyc = 0, 0, 0, 0
3 N = 500
4 for i in range(N):
5 cmd = choice {N:0.1, S:0.1, E:0.1, W:0.1, NE:0.1, SE:0.1, NW: 0.1,
6 SW: 0.1, Stay: 0.2}
7 if (cmd == ’N’):
8 dxc, dyc = 0, Uniform(1,2)
9 elif (cmd == ’S’):

10 dxc, dyc = 0, Uniform(-2, -1)
11 elif (cmd == ’E’):
12 dxc, dyc = Uniform(1,2), 0
13 ...
14 else // cmd == ’Stay’
15 dxc, dyc = 0,0
16 dx = dxc + Uniform(-0.05, 0.05)
17 dy = dyc + Uniform(-0.05, 0.05)
18 x = x + dx
19 y = y + dy
20 estX = estX + dxc
21 estY = estY + dyc
22 assert( |x - estX| >= 3)

Figure 5 Program simulating a sequence of moves by a submarine, where (x, y) model

the true position, dxc, dyc model the commanded change in position at any step, and

(estX, estY ) model the estimates through dead-reckoning.

N = 500 steps? Note that for this program it is straightforward to establish

that x− estX and y − estY are supermartingales.

Azuma-Hoeffding’s Inequality: Let {Xn}Nn=0 be a super martingale that

satisfies a bounded difference condition that |Xi+1 − Xi| ≤ ci for each i ∈
{0, . . . , N − 1}. It follows that for any j ∈ {0, . . . , N},

P(Xj −X0 ≥ t) ≤ exp

(
−t2

2
∑j−1

i=0 c
2
i

)
.

Furthermore, if Xn is a sub-martingale, we can conclude that

P(Xj −X0 ≤ −t) ≤ exp

(
−t2

2
∑j−1

i=0 c
2
i

)
.

Thus, for a martingale which is a supermartingale as well as a submartingale,

both inequalities hold.

The Azuma-Hoeffding bound is a concentration of measure inequality

much along the lines of previously encountered inequalities in this chapter.

For a martingale, it bounds the probability of a large deviation on either

side of its starting value. For a super-martingale, the inequality bounds the

probability of a large deviation above the starting value. The martingale

condition generalizes from the need for independent random variables that
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was seen for the case of Chernoff-Hoeffding inequalities. Just as the latter

inequalities are applied to random variables with bounded sets of support,

we note the condition of bounded change on the (super) martingale.

Example 1.29 Returning to the dead-reckoning example, we can use the

martingale x − estX to estimate the failure probability of the assertion at

the end of the program. We note that every loop iteration, the absolute

change in this expression is bounded by 0.05. Therefore, we obtain

P(|x− estX| ≥ 3) ≤ 1.5× 10−3 .

Identical bounds are obtained for the deviation of y from estY , as well.

Super martingale approaches form very powerful approaches for quanti-

tative reasoning. However, two important roadblocks exist to their wider

application:

(i) Automatically discovering super martingale expressions remains a hard

problem, especially for nonlinear expressions. However, a variety of ap-

proaches summarized in the termination chapter can be used in this re-

gard. At the same time, the applications have been limited thus far.

(ii) The resulting bounds remain conservative since independent random

variables are often treated as possibly dependent in the analysis for super-

martingales. For instance, treating x − estX as the sum of independent

random variables for the previously considered dead-reckoning example

yields much more precise bounds.

However, super martingales remain a promising approach for quantitative

reasoning for more complex models that involve programs with branch con-

ditions that cannot be treated with the approaches for control deterministic

computations reviewed in the previous sections.

6 Conclusion

Thus far, we have examined situations where concentration of measure in-

equalities can be applied to analyze probabilistic programs. As the reader

may have noticed, the key issue lies in mechanizing the process of inference,

since even small programs can lead to cumbersome calculations that are hard

to carry out by hand. However, there are numerous challenges that must be

tackled before the full power of these approaches can be realized. First, most

approaches are restricted to reasoning about programs that manipulate real

values, whereas programs can exhibit a rich variety of structures ranging
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from Booleans, strings, lists, trees and graphs. Extending the concentration

of measure approach to reason about a richer set of programs is an important

area of future work.

Also, one notes that concentration of measure inequalities are often de-

rived to uniformly exploit available moment information such as first mo-

ments, second moments and so on. It is easy to envision a process of cus-

tomization that can derive inequalities based on the available moment in-

formation on a “per-problem” basis. This approach of “designing” new in-

equalities on demand is yet another promising area of future investigation.

Finally, the broader area of analyzing probabilistic programs has been

seemingly disconnected from the problem of Bayesian inference, which is an

important concern for probabilistic programming. We note that the problem

of model inference and analysis are important steps in the overall “analyt-

ics” pipeline. It is therefore natural, as a first step to study these problems

separately. The problem of integrating Bayesian inference and subsequent

analysis of the “posterior” model/program remains an important unsolved

problem. Current approaches that combine Monte-Carlo techniques with

their approximate convergence guarantees are not directly compatible with

the use of concentration of measure or other symbolic approaches presented

here. In this regard, the study of imprecise models of probability distribu-

tions, representing sets of distributions, along with concentration of mea-

sure inequalities on functions of samples drawn from such models is another

promising area of future investigation.
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