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Abstract. We present techniques for the analysis of infinite state probabilistic
programs to synthesize probabilistic invariants and prove almost-sure termina-
tion. Our analysis is based on the notion of (super) martingales from probability
theory. First, we define the concept of (super) martingales for loops in probabilis-
tic programs. Next, we present the use of concentration of measure inequalities to
bound the values of martingales with high probability. This directly allows us to
infer probabilistic bounds on assertions involving the program variables. Next, we
present the notion of a super martingale ranking function (SMRF) to prove almost
sure termination of probabilistic programs. Finally, we extend constraint-based
techniques to synthesize martingales and super-martingale ranking functions for
probabilistic programs. We present some applications of our approach to reason
about invariance and termination of small but complex probabilistic programs.

1 Introduction

Probabilistic programs are obtained by enriching standard imperative programming lan-
guages with random value generators that yield sequences of (pseudo) random samples
from some probability distribution. These programs commonly occur in a variety of
situations including randomized algorithms [24,12], network protocols, probabilistic
robotics, and monte-carlo simulations. The analysis of probabilistic programs is a rich
area that has received a lot of attention in the past, yielding tools such as PRISM [18]
that implement a wide variety of approaches ranging from symbolic [2] to statistical
model checking [33,6].

Our goal in this paper is to investigate a deductive approach to infinite state prob-
abilistic programs, exploring techniques for synthesizing invariance and termination
proofs in a probabilistic setting. Our approach is an extension of McIver and Morgan’s
quantitative invariants [21,20]. Whereas the earlier approach is limited to discrete prob-
abilistic choices (eg., Bernoulli trials), our extension handles probabilistic programs
with integer and real-valued random variables according to a range of distributions in-
cluding uniform, Gaussian and Poisson. We make use of the concepts of martingales
and super martingales from probability theory to enable the synthesis of probabilistic
invariants and almost sure termination proofs. A martingale expression for a program is
one whose expected value after the (n+ 1)th loop iteration is equal to its sample value
at the nth iteration. We use Azuma-Hoeffding theorem to derive probabilistic bounds
on the value of a martingale expression. Next, we present the concept of a super martin-
gale ranking function (SMRF) to prove almost sure termination of loops that manipulate
real-valued variables. Finally, we extend constraint-based program analysis techniques



originally proposed by Colón et al. to yield techniques for inferring martingales and
super-martingales using a template (super) martingale expression with unknown coef-
ficients [8,7]. Our approach uses Farkas lemma to encode the conditions for being a
(super) martingale as a system of linear inequality constraints over the unknown co-
efficients. However, our approach does not require non-linear constraint solving unlike
earlier constraint-based approaches [7]. The constraint-based synthesis of linear (super)
martingales yields linear inequality constraints. We present a preliminary evaluation of
our approach over many small but complex benchmark examples using a prototype
martingale generator.

The contributions of this paper are (a) we extend quantitative invariants approach of
McIver and Morgan [20] to a wider class of probabilistic programs through martingale
and super-martingale program expressions using concentration of measure inequalities
(Azuma-Hoeffding theorem) to generate probabilistic assertions. (b) We define super
martingale ranking functions (SMRFs) to prove almost sure termination of probabilis-
tic programs. (c) We present constraint-based techniques to generate (super) martin-
gale expressions. Some of the main limitations of the current work are: (a) currently,
our approach applies to purely stochastic programs. Extensions to programs with de-
monic non-determinism will be considered in the future. (b) The martingale synthesis
approach focuses on linear expressions and systems. Extensions to non-linear programs
and expressions will be considered in the future. (c) Finally, our approach for proving
almost sure termination is sound but incomplete over the reals. We identify some of the
sources of incompleteness that arise especially for probabilistic programs.
Supplementary Materials An extended version of this paper that includes many of
the omitted technical details along with a prototype implementation of the techniques
presented here will be made available on-line at our project page 1.

1.1 Motivating Examples

We motivate our approach on two simple examples of probabilistic programs.

Example 1. Figure 1 shows a program that accumulates the sum of samples drawn from
a uniform random distribution between [0, 1]. Static analysis techniques can infer the
invariant 0 ≤ x ≤ 501 ∧ i = N at loop exit [10,22]. However, the value of x remains
tightly clustered around 250, as seen in Fig. 1. Using the approaches in this paper, we
can statically conclude the probabilistic assertion Pr(x ∈ [200, 300]) ≥ 0.84. Un-
like statistical model checkers, our symbolic technique provides guaranteed probability
bounds as opposed to high confidence bounds [33]. For the example above, the behav-
ior of x can also be deduced using the properties of sums of uniform random variables.
However, our approach using martingale theory is quite general: the martingale and the
inferred bounds hold even if the call to unifRand is substituted by (say) a truncated
Gaussian distribution with mean 1

2 .

Example 2 (Almost Sure Termination). Consider the program shown in Figure 1. It
shows a program that manipulates two real-valued variables h and t. Initially, the value

1 http://systems.cs.colorado.edu/research/cyberphysical/
probabilistic-program-analysis

http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis
http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis


1 real x = 0;
2 real N = 500;
3 for ( i=0; i < N; ++i )
4 x = x + unifRand(0,1);
5 // Prob(x \in [200,300]) ?

1 real h, t;
2 // h is hare and t is tortoise
3 h = 0; t = 30;
4 while ( h <= t ){
5 if (flip (0.5) )
6 h = h + unifRand(0,10);
7 t = t +1;
8 } // almost sure terminate?

Fig. 1: (Top, Left) Program that sums up random variables. (Top,Right) sample paths
of the program with value of i in x-axis and y-axis showing x. Loop invariants as-
suming (demonic) non-deterministic semantics for unifRand are shown on the right.
(Bottom,Left) A simple probabilistic program with a loop, (Bottom,Right) Sample ex-
ecutions of the program with x axis representing t and y axis representing h. The plot
on the bottom also contrasts the worst-case invariants inferred on h, t.

of t is set to 30 and h to 0. The loop iterates as long as h ≤ t. Does the program
terminate? In the worst case, the answer is no. It is possible that the coin flips avoid in-
crementing h or when it gets incremented, the uniform random value drawn lies in the
interval [0, 1]. However, the techniques of this paper establish almost-sure termination
using a super martingale expression t − h. Such an expression behaves like a ranking
function: It is initially positive and whenever its value is non-positive, the loop termi-
nation condition is achieved. Finally, for each iteration of the loop, the value of this
expression decreases in expectation by at least 1.5. Therefore, the techniques presented
in this paper infer the almost sure termination of this loop. Furthermore, we also con-
clude the martingale expression 2.5t−h. We use Azuma-Hoeffding theorem to conclude
that the value of this expression is tightly clustered around its initial value 75.

2 Probabilistic Transition Systems

In this section, we present a simple transition system model for probabilistic programs.
Our model is inspired by the probabilistic guarded command language (PGCL) pro-
posed by McIver et al. [21]. Unlike pGCL, our model allows non-discrete real-valued
random variables with arbitrary distributions (Gaussian, Uniform, Exponential etc.).
However, we do not allow (demonic) non-determinism. Let X = {x1, . . . , xn} be a set



`

m1 · · · · · · mk

ϕ

p1

X′ = F1(X,R)

pk
X′ = Fk(X,R)

`3

`9

h ≤ t

1
2

1
2

t′ = t + 1
t′ = t + 1

h = h + r1

h > t

h′, t′ = h,t

id

Fig. 2: (LEFT) Structure of a generic PTS transition with k ≥ 1 forks. Each fork has a
probability pj , an update function Fj and a destinationmj . (MIDDLE) PTS for program
in Figure 1 showing two transitions.

of real-valued program variables andR = {r1, . . . , rm} be a set of real-valued random
variables. The random variables are assumed to have a joint distribution D.

Definition 1 (Probabilistic Transition System). A Probabilistic Transition System (PTS)
Π is defined by a tuple 〈X,R,L, T , `0,x0〉 such that

1. X,R represent the program and random variables, respectively.
2. L represents a finite set of locations. `0 ∈ L represents the initial location, and x0

represents the initial values for the program variables.
3. T = {τ1, . . . , τp} represents a finite set of transitions. Each transition τj ∈ T is a

tuple 〈`, ϕ, f1, . . . , fk〉 consisting of (see Fig 2):
(a) Source location ` ∈ L, and guard assertion ϕ over X ,
(b) Forks {f1, . . . , fk}, where each fork fj : (pj , Fj ,mj) is defined by a fork prob-

ability pj ∈ (0, 1], a (continuous) update function Fj(X,R) and a destination
mj ∈ L. The sum of the fork probabilities is

∑k
j=1 pj = 1.

No Demonic Restriction: We assume that all PTSs satisfy the no demonic restriction:

1. For each location `, if τ1 and τ2 are any two different outgoing transitions at `, then
their guards ϕ1 and ϕ2 are mutually exclusive: ϕ1 ∧ ϕ2 ≡ false .

2. Let ϕ1, . . . , ϕp be the guards of all the outgoing transitions at location `. Their
disjunction is mutually exhaustive: ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕp ≡ true .

Mutual exhaustiveness is not strictly necessary. However, it simplifies our opera-
tional semantics considerably. The definition of a PTS seems quite involved at a first
sight. We illustrate how probabilistic programs can be translated into PTS by translating
the program in Example 2, as shown in Figure 2. The self loop on location `9 labeled id
indicates a transition with guard true and a single fork with probability 1 that applies
the identity function on the state variables. This transition is added to conform to the
no demonic restriction. The semantics for a PTS Π are now described formally starting
from the notion of a state and the semantics of each transition.

A state of the PTS is a tuple (`,x) with location ` ∈ L and valuation x for
the system variables X . We consider the effect of executing a single transition τ :
〈`, ϕ, f1, . . . , fk〉 on a state s : (`,x). We assume that τ is enabled on s, i.e., x |= ϕ.
The result of executing τ on s is a probability distribution over the post states, obtained
by carrying out the following steps:



1. Choose a fork fj for j ∈ [1, k] with probability pj , and a vector of random variables
r : (r1, . . . , rm) drawn according to the joint distribution D.

2. Update the states by computing the function x′ = Fj(x, r). The post-location is
updated to mj ∈ L.

Let POST-DISTRIB(s, τ) represent the distribution of the post states (`′,x′) starting
from a fixed state s : (`,x) for an enabled transition τ . A formal definition is provided
in our extended version. Due to the no demonic restriction, exactly one transition τ is
enabled for each state s. Therefore, the distribution POST-DISTRIB(s, τ) can simply be
written as POST-DISTRIB(s) since τ is uniquely defined given s. Operationally, a PTS
is a Markov chain, where each sample execution is a countable sequence of states.

Definition 2 (Sample Executions). Let Π be a transition system. A sample execution
σ of Π is a countably infinite sequence of states σ : (`0,x0)

τ1−→ (`1,x1)
τ2−→ · · · τn−→

(`n,xn) · · · , such that (a) (`0,x0) is the unique initial state. (b) The state sj : (`j ,xj)
for j ≥ 0 satisfies the guard for the transition τj+1. Note that by the no demonic
restriction, τj+1 is uniquely defined for each sj . (c) Each state sj+1 : (`j+1,xj+1) is
a sample from POST-DISTRIB(sj).

Figure 1 plots the sample paths for two probabilistic transition systems.

Almost-Sure Termination: Let Π be a PTS with a special final location `F . We
assume that the only outgoing transition at the final location is the identity transition id,
as defined earlier. A sample execution σ of Π terminates if it eventually reaches a state
(`F ,x), and thus, continues to cycle in the same state. Let π : `0

τ1−→ `1
τ2−→ · · · `F be

a syntactic path through the PTS. It can be shown that (a) for each finite syntactic path
there is a well-defined probability µ(π) ∈ [0, 1] that characterizes the probability that
a sample path traverses the sequence of locations in π, and furthermore (b) the overall
probability of termination can be obtained as the sum of the probabilities of all finite
syntactic paths πj that lead from `0 to `F .

Definition 3. A PTS is said to terminate almost surely iff the sum of probabilities of the
terminating syntactic paths is 1.

A measure theoretic definition of almost sure termination is provided in our ex-
tended technical report.

Pre-Expectation: We now define the useful concept of pre-expectation of an expres-
sion e over program variables across a transition τ , extending the definition for discrete
probabilities from McIver & Morgan [20]. Let s : (`,x) be a state and τ be the en-
abled transition on s. We define the pre-expectation E(e′|s) as the expected value of
the expression e′ over the POST-DISTRIB(s), as an expression involving the current
state variables of the program. Formally, let τ : (`, ϕ, f1, . . . , fk) have k ≥ 1 forks
each of the form fj : (pj , Fj ,mj). We define Eτ (e′|s) =

∑k
j=1 pjER(PRE(e′, Fj)),

where PRE(e′, Fj) represents the expression e′[x′ 7→ Fj(x, r)] obtained by substitut-
ing the post-state variables x′ by Fj(x, r), andER(g) represents the expectation of the
expression g over the distribution D. We clarify this further using an example.



Example 3. Going back to Example 2, we wish to compute the pre-expectation of the
expression 5 · t − 2 · h across the transition τ1 : (`3, (h ≤ t), f1, f2) with forks f1 :
( 12 , F1 : λ (h, t). (h, t +1), `3) and f2 : ( 12 , F2 : λ(h, t). (h + r1, t +1), `3) (see Fig. 2).
The precondition across F1 yields PRE(5 · t′ − 2 · h′, F1) = 5 · t − 2 · h + 5. The
precondition across F2 yields PRE(5 · t′−2 ·h′, F2) = 5 · t−2 ·h+5−2r1. The overall
pre-expectation is given by

Eτ (5 · t′ − 2 · h′|(`3, h, t)) =
(

1
2 (Er1(5 · t− 2 · h + 5)) + (∗ ← f1∗)
1
2 (Er1(5 · t− 2 · h + 5− 2r1)) (∗ ← f2∗)

)
.

Simplifying, we obtain E(5 · t′ − 2 · h′|(`3, h, t)) = 5 · t − 2 · h + 5 − Er1(r1) =
5 · t− 2 · h + 5− 5 = 5 · t− 2 · h. In other words, the expected value of the expression
5 · t− 2 · h in the post-state across transition τ is equal to its value in the current state.
Such an expression is called a martingale [32].

The rest of this paper will expand on the significance of martingale expressions.

3 Martingales and Supermartingale Expressions

A discrete-time stochastic process {Mn} is a countable sequence of random variables
M0,M1,M2, . . .whereMn is distributed based on the samples drawn fromM0, . . . ,Mn−1.
By convention, Mn denotes the random variable and mn its sample.

Definition 4 (Martingales and Super Martingales). A process {Mn} is a martingale
iff for each n > 0, E(Mn|mn−1, . . . ,m0) = mn−1. In other words, at each step the
expected value at the next step is equal to the current value. Likewise {Mn} is a super-
martingale iff for each n > 0, E(Mn|mn−1, . . . ,m0) ≤ mn−1.

If {Mn} is a martingale then it is also a super-martingale. Furthermore, the process
{−Mn} obtained by negating Mn is also a super-martingale. The study of martingales
is fundamental in probability theory [32] with numerous applications to the analysis of
randomized algorithms [12].

Martingale Expressions: Let Π be a PTS with locations L, variables X and random
variables R. We assume, for convenience, that all variables in X and random values
are real-valued. We define martingale expressions for a given PTS Π . Next, we explore
properties of martingales and super martingales, linking them to those of the PTS.

Definition 5 (Martingale Expressions). An expression e[X] over program variables
X is a martingale for the PTS Π iff for every transition τ : (`, ϕ, f1, . . . , fk) in Π
and for every state s : (`,x) for which τ is enabled, the pre-expectation of e equals
its current state value: ∀ x. ϕ[x] ⇒ Eτ (e

′|`,x) = e. Likewise, an expression is a
super-martingale iff for each transition τ , ∀ x. ϕ[x] ⇒ Eτ (e

′|`,x) ≤ e.

In other words, the stochastic process {en} obtained by evaluating the expression e
on a sample execution of Π must be a (super) martingale. Note that in the terminology
of McIver & Morgan, martingale expressions correspond to exact invariants [21].



Example 4. We noted that for the expression e : 5 · t−2 ·h, and for any τ1 enabled state
(`3, h, t), we have thatE(5 · t′−2 ·h′|h, t) = 5 · t−2 ·h. The remaining transitions in the
PTS (Cf.Fig. 2) also preserve the expression e. Therefore, e is a martingale. Likewise,
we can show that the expression f : −h is a super-martingale.

Often, it is not possible to obtain a single expression that is a martingale for the
program as a whole. However, it is natural to obtain a more complex function of the
state that maps to different program expressions at different locations.

Example 5. Consider a simple program and its corresponding PTS, as shown below.
The program increments a variable x as long as a coin flip turns heads.

1 int x := 0;
2 while (flip (0.5))
3 x ++;
4 // end

`0

`1

τ1 true

1
2

x := x+ 1 1
2 , x := x

τ2 : id

We can show that no linear expression over x can be a martingale. Any such ex-
pression must be of the form e : cx (we do not need a constant term in our analy-
sis) for some coefficient c. We note that the pre-expectation w.r.t τ1 is Eτ1(cx

′|x) =
1
2 (c(x + 1)) + 1

2 (cx) = cx + c
2 . This yields the constraint c = 0 if the expression is

to be a martingale. However, consider a flow-sensitive map of the state (`, x) given by

f(`, x) =

{
x if ` = `0
x− 1 if ` = `1

. We can conclude that f(`, x) is a martingale, since its

pre-expectation for any transition equals its current value.

Often, labeling different locations in the program with different martingale expressions
is quite advantageous.

Definition 6 (Flow-Sensitive Expression Maps). A flow-sensitive expression map η
maps each location ` ∈ L to a (polynomial) expression η(`) over X .

An expression map η is a function that maps a state s : (`,x) to a real-value by comput-
ing η(`)[x]. Let η be an expression map and τ : (`, ϕ, f1, . . . , fk) be a transition with
forks f1, . . . , fk, where fj : (pj , Fj ,mj). The pre-expectation of η w.r.t. τ is given by
Eτ (η

′|`,x) =
∑k
j=1 pjER(PRE(η(mj), Fj)).

Example 6. For the program and map η in Ex. 5, we compute the pre-expectation of η
w.r.t τ1 : (`0, true, f1, f2) where f1 : ( 12 , λx.x+ 1, `0) and f2 : ( 12 , id, `1).

Eτ1(η
′|`0, x) =

1

2
( x+ 1︸ ︷︷ ︸

PRE(η(`0),λx.x+1)

) +
1

2
( x− 1︸ ︷︷ ︸

PRE(η(`1),λx.x)

) = x(= η(`0)) .

Definition 7 (Martingales and Super Martingale Expression Maps). An expression
map η is a martingale for a PTS Π iff for every transition τ : (`, ϕ, f1, . . . , fk), we
have ∀ x. ϕ[x] ⇒ Eτ (η

′|`,x) = η(`)[x].
Likewise, the map is a super-martingale iff for every transition τ , ∀ x. ϕ[x] ⇒

Eτ (η
′|`,x) ≤ η(`)[x].



Example 7. The map η in Example 6 is a martingale under the condition for transition
τ2. The only other transition is trivial.

3.1 From Martingales to Probabilistic Assertions

We now present some of the key properties of martingales that can be used to make a
link from (super) martingale expression maps to probabilistic assertions.

Theorem 1 (Azuma-Hoeffding Theorem). Let {Mn} be a super martingale such that
|mn − mn−1| < c over all sample paths for constant c. Then for all n ∈ N and

t ∈ R such that t ≥ 0, it follows that Pr(Mn −M0 ≥ t) ≤ exp
(
−t2
2nc2

)
. Moreover,

if {Mn} is a martingale the symmetric bound holds as well: Pr(Mn −M0 ≤ −t) ≤
exp

(
−t2
2nc2

)
. Combining both bounds, we conclude that for a martingale {Mn} we

obtain Pr(|Mn −M0| ≥ t) ≤ 2 exp
(
−t2
2nc2

)
.

Azuma-Hoeffding bound is a concentration of measure inequality. For a martingale,
it bounds the probability of a large deviation on either side of its starting value. For a
super-martingale, the inequality bounds the probability of a large deviation above the
starting value. Both bounds are useful in proving probabilistic assertions.

We note the condition of bounded change on the martingale. This has to be estab-
lished on the side for each transition in the program, and the bound c calculated (using
optimization techniques) before the inequality can be applied.

Example 8. The Azuma-Hoeffding bound applies to the program in Ex. 1 (Section 1).
We now observe that the expression 2x − i is a martingale of the loop. Its change at
any step is bounded by ±1. Further, the initial value of the expression is 0. Therefore,
choosing t = 50, we conclude that after N = 500 steps, Pr(|(2x − i)500 − (2x −
i)0| ≥ 50) ≤ 2 exp

(
− 2500

2×500×1

)
≤ 0.16. We note that (2x − i)0 = 0 and i500 = 500.

Simplifying, with probability at least 0.84, we conclude that x ∈ [200, 300] after 500
steps.

Since the bounds depend on the number of steps n taken from the start, they are
easiest to apply when n is fixed or bounded in an interval. Another common idea is to
infer bounds |Mn −M0| ≥ a

√
n for constant a > 0 and n ≥ 0.

Example 9. Continuing with Ex. 8, for n > 0, we conclude the bounds Pr(|(2x −
i)n − (2x− i)0| ≥ a

√
n) ≤ 2 exp(−a

2n
2n ) ≤ 2 exp(−a

2

2 ). For a = 3, the upper bound
is 0.0223.

4 Almost Sure Termination

In this section, we provide a technique for proving that a PTS Π with a final location
`F is almost surely terminating (see definition of almost sure termination in Section 2).

Definition 8 (Ranking Super Martingale). A super martingale (s.m.) {Mn} is rank-
ing iff it has the following properties:



1. There exists ε > 0 such that for all sample paths, E(Mn+1|mn) ≤ mn − ε.
2. For all n ≥ 0, Mn ≥ −K for some constant K > 0.

Let {Mn} be a ranking s.m. with positive initial condition m0 > 0. A sample path
eventually becomes negative if mn ≤ 0 for some n ≥ 1.

Theorem 2. A ranking super martingale with a positive initial condition almost surely
becomes negative.

Proof. The stopping time for a sample path is defined as t = infn≥0mn ≤ 0. We use T
as a random variable for the stopping time. The stopped process is denoted Mmin(n,T )

(or MT
n ) has sample paths m0, . . . ,mt,mt,mt, . . .. Note that Mmin(n,T ) ≥ −K over

all sample paths.
Next, we define a process Yn =Mmin(n,T ) + εmin(n, T ). In other words, for each

sample path yn = mn + εn if n ≤ t, and yn = mt + εt if n > t. Note that given a
sample path prefixm0, . . . ,mn ofMT

n we can compute yn. Therefore, Yn is adapted to
Mmin(n,T ). Likewise, given y0, . . . , yn we can compute mmin(n,t). Therefore, sample
paths of Yn are one-to-one correspondent with those of MT

n .

Lemma 1. {Yn} is a super martingale (relative to MT
n ) and Yn ≥ −K .

Proof. Yn ≥ −K for all n follows from the fact that MT
n ≥ −K for all n. Next, we

show that Yn is a s.m. For any sample path, E(Yn+1|yn,mn) = E(Mn+1|yn,mn) +
min(n+ 1, t)ε. We split two cases (a) n+ 1 ≤ t or (b) n+ 1 > t.

Case (a):E(Yn+1|yn,mn) = E(Mn+1|mn)+(n+1)ε ≤ mn−ε+(n+1)ε ≤ yn.
Case (b): yn = mt + tε. We have E(Yn+1|mn, yn) = mt + tε = yn.
In either case, we conclude E(Yn+1|mn, yn) ≤ yn.

We note the well-known s.m. convergence theorem.

Theorem 3 (Super Martingale Convergence Theorem). A lower-bounded super mar-
tingale converges (samplewise) almost surely.

Therefore, with probability 1, a sample path y0, . . . , yn, . . . converges to a value ỹ.

Lemma 2. For any convergent sample path y0, . . . , yn, . . ., the corresponding {Mn}
sample path m0, . . . ,mn, . . . eventually becomes negative.

Proof. Convergence of yn to ỹ implies for any α > 0, there exists N such that ∀n ≥
N, |yn − ỹ| ≤ α. For contradiction, assume the {Mn} sample path has stopping time
t = ∞. Therefore, mn = yn − nε for all n ≥ 0. Choosing α = ε, for any n > N ,
mn ≤ ỹ+α−nε ≤ ỹ− (n−1)ε. Therefore, for n > 1+ ỹ

ε , we conclude that mn ≤ 0.
This contradicts our assumption that t =∞.

To complete the proof, we observe that (a) a sample path y0, . . . , yn, . . . converges
almost surely since {Yn} is a lower bounded s.m.; (b) for each convergent sample path
the corresponding (unique) path m0, . . . ,mn, . . . becomes negative; and therefore (c)
any {Mn} sample path becomes negative almost surely.



Definition 9 (Super Martingale Ranking Function). A super martingale ranking func-
tion (SMRF) η is a s.m. expression map that satisfies the following:

– η(`) ≥ 0 for all ` 6= `F , and η(`F ) ∈ [−K, 0) for some lower bound K.
– There exists a constant ε > 0 s.t. for each transition τ (other than the self-loop id

around `F ) with guard ϕ, (∀ x) ϕ[x] ⇒ Eτ (η
′|`,x) ≤ η(`)[x]− ε.

The SMRF definition above is a generalization of similar rules over discrete spaces,
including the probabilistic variant rule [20] and Foster’s theorem [14,4].

Theorem 4. If a PTS Π has a super martingale ranking function η then every sample
execution of Π terminates almost surely.

For any sample execution of Π , we define the process {Mn} where mn = η(sn). It
follows that {Mn} is a ranking super martingale. The rest follows from Theorem 2

Example 10. For the PTS in Example 1, a.s. termination is established by the SMRF
η(`0) : N−i, and η(`1) : −1. Consider the PTS in Example 2 and Figure 2, the SMRF
η(`3) : t−h+9 and η(`9) : t−h proves a.s. termination. The PTS in Ex. 5 has a SMRF
η(`2) : 1 and η(`4) : −1.

Unlike standard ranking functions, we do not obtain completeness. Consider a purely
symmetric random walk:

1 int x := 10; while (x >= 0) { if (flip(0.5)) x++; else x --; }

We can show using recurrence properties of symmetric random walks, that the program
above terminates almost surely. Yet, no SMRF can be found since the martingale x does
not show adequate decrease. However, if the flip probability is changed to 0.5− δ, then
the variable x is a SMRF for the program.

5 Discovering (Super) Martingales

Next, we turn our attention to the discovery of (super) martingale expression maps
and super martingale ranking functions (SMRF). Our approach builds upon previous
work by Colón et al. for constraint-based invariant and ranking function discovery
for standard non-deterministic transition systems [7,8]. We restrict our approach to
affine PTS wherein each transition τ : (`, ϕ, f1, . . . , fk), the guard ϕ is polyhedral
(conjunctions of linear inequalities) and the update function Fi for each fi is affine,
Fi(X,R) : Aix+Bir + ai.

A template expression is a bilinear form d+
∑n
i=1 cixi with unknowns c1, . . . , cn, d.

We may also consider a template expression map η that maps each location `j to a
template expression η(`j) : dj +

∑n
i=1 cjixi. We collectively represent the unknown

coefficients as a vector c. We encode the conditions for a template expression (map) cor-
responding to our objective: (super) martingales or super martingale ranking functions.
Solving the resulting constraints directly yields (super) martingales.



Example 11. Consider the PTS in example 2 (see Fig. 2). We wish to discover a s.m.
using the template c1h + c2t at locations `3, `9.

Encoding Super Martingales We discuss how the conditions on the pre-expectations
of s.m. can be encoded using Farkas Lemma. Let τ : (`, ϕ, f1, . . . , fk) be a tran-
sition with k forks. Let η be a template expression map. We wish to enforce that
η is a s.m. (∀ x) (ϕ[x]) ⇒ Eτ (η

′|`,x) ≤ η(`)[x]. Recall that Eτ (η′|`,x) =∑k
j=1 pjER(PRE(η(mj), Fj)). Each PRE(η(mj), Fj) can be expressed as PRE(η(mj), Fj) =

cTAx+ cTBr + cTa.

Example 12. Returning back to Ex. 11, we wish to encode pre-expectation condition
for the transition τ : (`3, (h ≤ t), f1, f2), where f1 : (12 , (λ(h, t). h, t + 1), `3) and
f2 : ( 12 , (λ(h, t). h + r1, t + 1), `3). We encode the pre-expectation condition for τ :

(∀h, t) (h ≤ t) ⇒
[

1
2Er1(c1h + c2(t + 1))+
1
2Er1(c1(h + r1) + c2(t + 1))

]
≤ c1h + c2t .

We note that Er1(r1) = 5 (See Figure 1). By linearity of expectation, we obtain

(∀h, t) (h ≤ t) ⇒ c1h + c2t + c2 +
1

2
c1Er1(r1) ≤ c1h + c2t .

Simplifying, we obtain (∀h, t) (h ≤ t) ⇒ c2+
5
2c1 ≤ 0. Here, the RHS is independent

of the variables h, t. Therefore, we obtain c2 + 5
2c1 ≤ 0.

Let µ represent the vector of mean values where µj = ER(rj). Therefore,

ER(PRE(η(mj), Fj)) = c
TAx+ cTBµ+ aTc .

To encode the s.m. property for τ , we use Farkas Lemma to encode the implication

(∀ x) (ϕ[x]) ⇒ Eτ (η
′|`,x)︸ ︷︷ ︸

template expression

≤ η(`)[x]︸ ︷︷ ︸
template expression

(1)

Let ϕ be satisfiable and represented in the constraint form as Ax ≤ b.

Theorem 5 (Farkas Lemma). The linear constraint Ax ≤ b ⇒ cTx ≤ d is valid iff
its alternative is satisfiable ATλ = c ∧ bTλ ≥ d ∧ λ ≥ 0.

Encoding the entailment in Eq. (1) using Farkas’ Lemma ensures that the resulting
constraints are linear inequalities.

Example 13. Continuing with Ex. 12, the transition id yields the constraint true . There-
fore, the only constraint is c2 + 5

2c1 ≤ 0. Solving, we obtain the line (c1 : 1, c2 : −52 ),
yielding the martingale h− 5

2 t, while the ray (c1 : −1, c2 : 0) yields the s.m. −h. Other
s.m. such as t− h are obtained as linear combinations.

Finding Super Martingale Ranking Functions The process of discovering SM-
RFs is quite similar, but requires extra constraints. An abstract interpretation pass can
be used to yield helpful invariants by treating the random variables and forks as non-
deterministic choices. Let I(`) be a polyhedral invariant inferred at the location `.



1 real x,y, estX, estY := 0,0,0,0
2 real dx, dy, dxc, dyc := 0,0,0,0
3 int i, N := 0,500
4 for i = 0 to N {
5 cmd := choice(N:0.1,S:0.1,
6 E:0.1,W:0.1,NE:0.1,SE:0.1,
7 NW:0.1,SW:0.1,Stay:0.2)
8 switch (cmd) {
9 N: dxc,dyc := 0, rand(1,2)

10 S: dxc, dyc := 0, -rand(1,2)
11 Stay: dxc,dyc := 0,0
12 E: dxc,dyc := rand(1,2), 0
13 ...
14 }
15 dx:= dxc+rand(-.05,.05)
16 dy:= dyc+rand(-.05,.05)
17 x := x + dx
18 y := y + dy
19 estX := estX + dxc
20 estY := estY + dyc }

1 int i := 0;
2 real money := 10, bet
3 while (money >= 10 ) {
4 bet := rand(5,10)
5 money := money - bet
6 if (flip(36/37)) // bank lost
7 if flip(1/3) // col. 1
8 if flip(1/2)
9 money := money + 1.6*bet // Red

10 else money := money + 1.2*bet // Black
11 elseif flip(1/2) // col. 2
12 if flip(1/3)
13 money := money + 1.6*bet; // Red
14 else money := money + 1.2*bet // Black
15 else // col. 3
16 if flip(2/3)
17 money := money + 0.4*bet // Red
18 i := i + 1 }

Fig. 3: (Left) Probabilistic program model for dead reckoning and (Right) Modeling a
betting strategy for Roulette.

1. To encode the non-negativity, we use the invariants at each location ` 6= `F , I(`) |=
η(`) ≥ 0. For location `F , we encode I(`F ) |= −K ≤ η(`F ) < 0. The latter
condition requires the Motzkin’s transposition theorem, a generalization of Farkas’
lemma that deals with strict inequalities [17]. Here K is treated as an unknown
constant, whose value is also inferred as part of the process.

2. The adequate decrease condition is almost identical to that for s.m. However, we
introduce an unknown ε > 0 and require that Eτ (η′|`,x) ≤ η(`)− ε.

Example 14. Revisiting Ex. 12, we perform an abstract interpretation to obtain the facts
I(`3) : 0 ≤ h ≤ t + 9 ∧ h ≤ 9t− 270 ∧ t ≥ 30 and I(`9) : h > t ∧ h ≤ t + 9. We
use the template η(`3) : c3,1h + c3,2t + d3 and η(`9) : c9,1h + c9,2t + d9. We obtain
the result c3,1 = c9,1 = −1, c3,2 = c9,2 = 1 and d3 = 10, d9 = 0, with ε = 3

2 and
K = −9. This yields the SMRF η(`3) : t− h + 9, η(`9) : t− h.

6 Evaluation

We have implemented the ideas presented thus far using a constraint generation frame-
work that reads in the description of a PTS and generates constraints for super-martingale
expression maps. Our tool uses the Parma Polyhedra Library [1] to generate all possible
solutions to these constraints in terms of martingale and super-martingale expressions.
Currently, our implementation does not directly communicate with an abstract inter-
preter for deriving useful invariants. In some of the examples presented in this section,
such invariants are computed using a numerical domain polyhedral abstract interpreter
and added manually to the PTS description.
Robot Dead Reckoning: Dead reckoning is an approach for position estimation start-
ing from a known fix at some time t = 0. Figure 3 (left) shows a model for robot



Table 1: Results on a set of benchmark programs. #M: # of non-trivial martingales
discovered and # S.M. # of non-trivial super martingales. All timings are under 0.1
seconds on Macbook air laptop with 8 GB RAM, running MAC OSX 10.8.3,

ID Description |X| |R| |L| |T | #M #S.M.
ROULETTE betting strategy for roulette 3 1 1 1 1 1
TRACK Target tracking with feedback 3 5 3 9 1 3
2DWALK Random walk on R2 4 1 1 4 3 1
COUPON5 coupon collectors with n = 5 coupons 2 0 5 4 4 8
FAIRBIASCOIN simulating a fair coin by biased coin 3 0 2 3 0 2
QUEUE queue with random arrivals/service 3 0 1 2 1 2
CART steering a cart on a rough surface 5 4 6 12 2 4
INVPEND discrete inverted pendulum under stochastic disturbance 5 6 3 3 0 0
PACK packing variable weight objects in cartons 6 2 3 5 3 4
CONVOY2 leader following over a convoy of cars 6 1 2 4 1 0
DRECKON dead reckoning model 10 4 3 3 4 1

navigation that involves estimating the actual position (x,y) of the robot as it is com-
manded to make various moves. Each step involves a choice of direction chosen from
the set of compass directions {N,W,E, S,NE,NW,SW,SE} each with probability
0.1 or a “Stay” command with probability 0.2. The variables dxc,dyc capture the com-
manded direction, whereas the actual directions are slightly off by a random value. Our
goal is to estimate how the position x,y deviates from the actual position estX,estY.

Our analysis shows that the expressions x − estX and y − estY are martingales at
the loop head. The absolute change in these martingales are bounded by 0.05. Given
the initial difference of 0 between the values, we infer using Azuma-Hoeffding theorem
that Pr(|x− estX| ≥ 3) ≤ 1.5 × 10−3. In contrast, a worst-case analysis concludes that
|x− estX| ≤ 0.05 ∗ 500 ≤ 25. The analysis for y− estY yields identical results.

Roulette: For our next example, we analyze a betting strategy for a game of Roulette.
The game involves betting money on a color (red or black) and a column (1,2 or 3).
At each step, the player chooses an amount to bet randomly between 5 and 10 dollars.
We skip a detailed description of the betting strategy and simply model the effect of the
strategy as a probabilistic program, as shown in Figure 3 (right). The model captures the
various outcome combinations ({Bank} ] {Red,Black}×{1, 2, 3}), including the one
where the bank wins outright with probability 1

37 . Our analysis discovers the martingale
expression 15× i−74×money which can be used to bound the probability of the money
exceeding a certain quantity after n rounds. We generate the SMRF: −money. Thus,
the program terminates almost surely in the gambler’s ruin.

Table 1 shows an evaluation of our approach over a set of linear PTS benchmarks. A
description of the benchmarks and the inferred properties are provided in our extended
technical report available on-line 2.

2
http://systems.cs.colorado.edu/research/cyberphysical/
probabilistic-program-analysis

http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis
http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis


7 Related Work

Probabilistic programs can be quite hard to reason about. A large volume of related
work has addressed techniques for formally specifying and verifying properties of prob-
abilistic systems. Statistical approaches rely on simulations [33,6,19], providing high
confidence guarantees. On the other hand, symbolic techniques including BDD-based
approaches [2], probabilistic CEGAR [16], deductive approaches [21] and abstract in-
terpretation techniques [23,11,3] attempt to establish guaranteed probability bounds on
temporal properties of programs.

Martingale theory has been employed to establish guarantees for randomized algo-
rithms [24,12]. In particular, the method of bounded differences is a popular approach
that establishes a martingale and uses Azuma’s inequality to place bounds on its values.
The contribution of this paper lies in a partial mechanization of the process of dis-
covering martingales and the termination analysis of programs using super-martingale
ranking functions.

Our work is closely related to the quantitative invariants proposed by McIver and
Morgan, and summarized in their monograph [20]. Informally, quantitative invariants
involve program expressions whose pre-expectations are at least their current value.
These are used to establish pre-/post-annotations for programs, and in some cases they
lead to an almost sure termination proof principle. In the framework of this paper, a
quantitative invariant roughly corresponds to the negation of a super-martingale (also
known as a sub-martingale). There are many differences between McIver & Morgan’s
approach and that of this paper. Chiefly, our approach considers real-/integer-valued
random variables with a large variety of probability distributions, whereas the proba-
bilistic distributions studied by McIver & Morgan are restricted to discrete distributions
over a finite set of choices. The use of concentration of measure inequalities and the
presentation of almost sure termination proofs using martingale theory are unique to
this work. On the other hand, our work does not consider (demonic) non-determinism.
Furthermore, we do not integrate martingales and super-martingales into a deductive
proof system for proving properties of expectations. Part of the reason for this lies in
the difficulty of establishing that expectations of program variables are well-defined for
a given program. Many simple examples fail to yield well-defined expectations. We
plan to study these issues further and achieve a more complete deductive verification
framework as part of our future work.

The constraint-based analysis of (non-probabilistic) programs has been studied for
invariance and termination proofs by many authors, including Colón et al. [8,7], Bradley
et al. [5], Cousot [9], Podelski et al. [28] and Gulwani et al. [15]. Extensions to polyno-
mial invariants were considered by Sankaranarayanan et al. [31], Carbonell et al. [30],
Müller-Olm et al. [25] and Platzer et al. [26]. Recent work of Katoen et al. uses a
constraint-based invariant synthesis method to derive quantitative invariants, general-
izing earlier approaches [17]. Our work in this paper was inspired, in part, by this
generalization. Katoen et al. derive quantitative invariants that involve a combination
of characteristic functions over linear assertions and program expressions. As a result,
their approach yields nonlinear (bilinear) constraints of the same form as those obtained
by earlier work by Colón et al. [7]. Our approach focuses on linear (super) martingales
and therefore, we obtain linear inequality constraints.



The almost sure termination of probabilistic programs was studied for finite state
and “weakly” infinite programs by Esparza et al. using patterns [13]. Their approach
attempts to find the existence of a sequence of discrete probabilistic choices that will
lead to termination from any reachable state. As such, finite length patterns do not
exist for general infinite state systems studied here. Other approaches to almost sure
termination including that of Morgan [20] and Bournez et al. [4] use the probabilistic
variant rule, or equivalently Foster’s theorem, a well-known result in (discrete) Markov
chain theory [14]. In fact, these principles turn out to be specializations of the SMRF
principle presented in this paper.

(Super) martingale theory is widely used in stochastic calculus to reason about con-
tinuous time systems. Recently, Platzer considers an extension of differential logic to
stochastic hybrid systems [27]. Martingale theory is used as a basis for proving prop-
erties in this setting. However, Platzer’s work does not deal directly with martingale
expressions over state variables or the generation of such expressions. The techniques
presented in this paper are dependent on discrete time martingale theory. We plan to
extend our use of martingale theory to reason about stochastic hybrid systems. Another
future direction will consider the use of (super) martingales to infer relational abstrac-
tions of probabilistic systems [29].
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