Problem Formulation

Switched System Identification

Inputs:
- Full-state observations of a system (with noise):
 \((x(t), x(t+1)), t = 0, \ldots, N - 1,\) number of modes \(m,\)
 error tolerances \(\epsilon, \tau > 0,\)

Output:
- Find \(m \times d\) matrices \(A_1, \ldots, A_m\) s.t.
 \(\|x(t+1) - A_m x(t)\|_2 \leq \epsilon\) \(\forall t\)

Overall Algorithm

Organize constraints using a tree data structure.

Each node carries the following information:
- Data points that have been assigned to modes.
- Unassigned data points.
- Polyhedra \(P_1, \ldots, P_m\) representing constraints for \(A_1, \ldots, A_m\) resp.

Key Steps of the Algorithm:
1. Choose a previously unexplored leaf.
2. Expand the leaf (see below):
 - Discover matrices \(A_1, \ldots, A_m\) or
 - Add more children.

Expanding a Tree Leaf

Leaf with unassigned data points:
- Polyhedra \(P_1, \ldots, P_m\)
- \(P_j\) child forces matrix \(A_j\) to fit unexplained data point.

Time Complexity

Idea #2: Choose maximum volume ellipsoid (MVE) center of polyhedra.
- Volume shrinks by at least \(a < 1\) \([1, \S 4.3]\).

Observations:
- Combination of simple ideas.
- Easy to implement and works well in practice.

Reformulation with a Gap

Original Problem

There are two possible outcomes:
- Yes: Successfully found \(m\) matrices satisfying error tolerances \(\epsilon, \tau\),
- No: No such matrices can fit the given data.

Idea #1: Reformulate problem with a gap.
- Input two relative error tolerances \(\epsilon_1 < \epsilon_2\)
- Yes: Successfully found \(m\) matrices satisfying error tolerances \(\epsilon_2, \tau\)
- No: No such matrices can fit the data for error tolerances \(\epsilon_1, \tau\).

Main Result

Algorithm with time complexity

Implementation

Implemented in the Python programming language.
- **Gurobi LP solver** (free academic license).
- Use Chebyshev center instead of MVE center.

Comparison against two methods:
- **MILP Solver:** Comparison with MILP.
 - Implemented using Gurobi: state-of-the-art solver \([2]\).
 - Worst-case exponential in the number of data points
- **Clustering-Based:** Fast method but inexact \([3]\).

References