
Controller Synthesis of Discrete Linear Plants Using

Polyhedra

MATTEO SLANINA

Stanford University

and

SRIRAM SANKARANARAYANAN

NEC Laboratories America

and

HENNY B. SIPMA and ZOHAR MANNA

Stanford University

We study techniques for synthesizing synchronous controllers for affine plants with disturbances,

based on safety specifications. Our plants are modeled in terms of discrete linear systems whose
variables are partitioned into system, control, and disturbance variables. We synthesize non-

blocking controllers that satisfy a user-provided safety specification by means of a fixed point
iteration over the control precondition state transformer. Using convex polyhedra to represent
sets of states, we present both precise and approximate algorithms for computing control precon-

ditions and discuss strategies for forcing convergence of the iteration. We present technique for
automatically deriving controllers from the result of the analysis, and demonstrate our approach

on examples.

Categories and Subject Descriptors: []:

General Terms:

Additional Key Words and Phrases:

1. INTRODUCTION

We propose a new method to synthesize controllers for linear discrete systems with
disturbances. Given a plant description and a safety specification, the method
computes a control invariant that strengthens the specification and uses this control
invariant as the basis for constructing a non-blocking controller that guarantees that
the system is live and satisfies the specification.

Plants are modelled as discrete-time linear transition systems, similar to the
piece-wise affine (PWA) systems of Sontag [1981] and the mixed logical dynamical
(MLD) system model studied by Bemporad & Morari [1999]. The (real-valued)

Author’s address: Matteo Slanina, Stanford University, Computer Science Department, 353 Serra
Mall, Stanford, CA 94305-9045.

e-mail: matteo@cs.stanford.edu

This is a Technical Report. Permission is granted to make digital/hard copy of all or part of
this material without fee for personal or classroom use, provided that the copies are not made
or distributed for profit or commercial advantage, the copyright/server notice, the title of the

publication, and its date appear.
c© 2007 The Authors

Technical Report REACT-TR-2007-01, January 2007, Pages 1–13

matteo@cs.stanford.edu

2 · M. Slanina, S. Sankaranarayanan H.B. Sipma, Z. Manna

variables of the plants are partitioned into system, control and disturbance (drift)
variables. The transitions are expressed by linear inequality constraints relating
the state variables before and after the transition. The behavior of the plants is
represented by infinite sequences of plant configurations that are the outcome of
games played by the three principal actors of the model: a Scheduler, which picks
the transition to be executed next, a Controller, which provides the control input,
and a Drifter, which creates the disturbances.

The method to compute the control invariant resembles backward propagation
used in invariant generation, with the exception that it uses a non-blocking control
precondition as predicate transformer instead of a weakest precondition. Techniques
from abstract interpretation [Cousot and Cousot 1977] are used to construct and
justify a backward propagation scheme that underapproximates the computation
of a greatest fixed point. An underapproximating widening operator is proposed to
force convergence. We specialize the method for the domain of convex polyhedra
and demonstrate how the control precondition can be computed exactly in many
common cases and how it can be efficiently underapproximated in the remaining
cases.

The method to synthesize the controller uses the computed control invariant to
construct a plant refinement that restricts the controller to signals that are guar-
anteed to keep the system within its specification. An method using triangulation
is proposed to extract from this restriction an efficient implementation of the con-
troller.

We have implemented our method using PPL [Bagnara et al. 2002] and applied
it to a case study consisting of a network of buffers.

Related Work. Discrete plant models have been widely used in the control the-
ory community with difference equation models being the classical discrete analog
of differential equations. Finite state systems have been studied in the framework
of Ramadge and Wonham [1989]. In this framework, the plant can be controlled
by selectively disabling or enabling certain actions over time. A number of re-
cent papers have explored the implementation of the Ramadge-Wonham framework
over infinite-state plants using abstract interpretation [Kumar and Garg 2005] and
polyhedra-based abstraction [Le Gall et al. 2005]. Piecewise affine system mod-
els [Sontag 1981] and mixed logical dynamical systems [Bemporad and Morari 1999]
integrate many aspects of finite state systems and difference equations. The safety
specifications used for the controller synthesis are based mainly on the avoidance
of a given unsafe region. Frequently, stability is the only liveness property.

Our plant models are synchronous, i.e., the plant actions including the appli-
cation of the control and disturbances are all synchronized to occur at fixed time
points. Synchronous modelling has been used by the computer systems commu-
nity to model industrial-scale systems with widely used modelling languages such
as Esterel and Lustre. The controller synthesis is presented in the setting of in-
finite games and alternating systems [Alur et al. 2002]. The actions of the plant
are modeled as an infinite game played by the controller against an adversarial
environment. The framework makes fewer assumptions on the nature of the plant
or the controller. It has been applied to infinite-state systems through abstraction
[Henzinger et al. 2000], interactive proof methods [Slanina et al. 2006], and inter-

REACT-TR-2007-01, January 2007

Controller Synthesis of Discrete Linear Plants Using Polyhedra · 3

face specifications for program modules [de Alfaro and Henzinger 2005]. However,
the computational complexity of reasoning about these games makes it hard to
apply this framework unless an abstraction is used.

Hybrid models such as timed and hybrid automata necessitate controller synthesis
techniques from both communities. Recent approaches synthesize controllers for
plant models used in control theory for temporal logic specifications. Asarin et al.
investigate controller synthesis for plants modeled as linear hybrid automata and for
safety objectives [Asarin et al. 2000]. Kloetzer and Belta use polyhedral analysis to
control switched systems for ltl specifications [Kloetzer and Belta 2006]. Tabuada
and Pappas [2003] discuss ltl controllability for infinite-state discrete systems that
roughly correspond to our plants with a single transition, and without disturbances.

2. PRELIMINARIES

We introduce the computational model for linear plants. In this model, all relations
and assertions are drawn from the first-order theory of reals without multiplication.
We first recall some definitions from linear algebra [Schrijver 1986].

2.1 Polyhedra

An affine expression is of the form e : ~at~x + b, where ~a and ~x are n × 1 col-
umn vectors and b is a scalar. A linear assertion is a finite conjunction of linear
inequalities of the form

∧
i ei ≥ 0 where each ei is an affine expression. A linear

assertion can be expressed as A~x + ~b ≥ 0, where A is an m × n matrix, ~b is an
m× 1 column vector, and ≥ is interpreted entry-wise. The set of points satisfying
a linear assertion, denoted by JϕK, is a polyhedron. Any polyhedron ϕ may also
be represented by a set of generators: a set of vertices V = {~v1, . . . , ~vm} and rays
G = {~r1, . . . , ~rp} such that

JϕK =
{
~x =

m∑

j=1

λj~vj +

p∑

i=1

µi~ri

∣∣∣ λj , µi ≥ 0 and

m∑

j=1

λj = 1
}

Given a linear assertion ϕ : A~x + ~b ≥ 0, called the constraint representation, the
number of vertices and rays of the dual generator representation may be exponen-
tial in the number of constraints (the n-dimensional hypercube is an example) and
vice versa. Nevertheless, the problems of computing the generators given the asser-
tion and vice versa have been well studied and practically efficient algorithms are
available [Fukuda and Prodon 1996].

2.2 Linear Controlled Transition Systems

The omputational model that we use is a variant of alternating transition systems
[Slanina et al. 2006; Alur et al. 2002]), specialized for modeling control systems.

Definition 1 Linear Controlled Transition System (lcts).

A linear controlled transition system (lcts) Π : 〈~x, ~u, ~d, L, I, T 〉 consists of:

—~x : {x1, . . . , xn}: a vector of system (state) variables; a system state s ∈ R
n is a

valuation of all variables; Σ = R
n denotes the set of all states.

—~u: vector of control input variables;

REACT-TR-2007-01, January 2007

4 · M. Slanina, S. Sankaranarayanan H.B. Sipma, Z. Manna

—~d: vector of disturbance variables;

—L: finite set of locations;

—I: map from L to linear assertions over ~x;

—T : finite set of transitions. Each τ : 〈`,m, ξu, ξd, f〉 ∈ T consists of
—`,m ∈ L: a source and target location, respectively;
—ξu: a linear assertion over ~x and ~u restricting the control variables;
—ξd: a linear assertion over ~x and ~d restricting the disturbance variables;
—f : the transition function, an affine transformation of the form ~x′ = f(~x, ~u, ~d) =

A~x+B~u+C~d+~b, specifying the action taken by the transition, where ~x′ de-
notes the value of variables ~x in the next state.

Example 1 Flow Controller. As an illustration of an lcts consider a buffer that
smooths the flow of packets. The system is modeled by the lcts B : 〈{x1, x2}, u, d,
{`0}, I, {τ}〉, where x1, x2 represent the buffer occupancy and output flowrate, re-
spectively, u represents the adjustment in the output flowrate, and d represents the
input flow rate. The system is modeled with a single location `0 with location invari-
ant I(`0) : x1 ≥ 0 ∧ x2 ≥ 0. The system has a single transition τ : 〈`0, `0, ξu, ξd, f〉
with control restriction ξu : −1 ≤ u ≤ 1, requiring that the change in output
flowrate per time unit be less than 1, and disturbance restriction ξd : 0 ≤ d ≤ 4,
which limits the input flowrate. The transition relation is given by

f :

{
x1 := x1 + d− x2 d packets added, x2 packets removed
x2 := x2 + u adjustment to output flowrate

or

f :

(
x′1
x′2

)
=

(
1 −1
0 1

)(
x1

x2

)
+

(
0
1

)
u +

(
1
0

)
d

Semantics. The semantics of an lcts is defined in terms of an infinite game
played between three players: a Scheduler (S), a Controller (U), and a Drifter
(D). Starting from a configuration 〈`, s〉, with ` ∈ L and s a system state in JI(`)K,
a play consists of choices in the following order:

(1) S chooses an outgoing transition τ = 〈`,m, ξu, ξd, f〉;

(2) based on s and τ , U chooses a control ~u satisfying ξu(s, ~u), and

(3) based on s, τ , and ~u, D chooses an input ~d satisfying ξd(s, ~d).

A play determines the next configuration 〈m, s′〉 such that s′ is the result of applying

f to s based on the chosen values of ~u and ~d. The play is admissible only if
s′ ∈ JI(m)K, denoted 〈`, s〉 ; 〈m, s′〉. An inadmissible play is written 〈`, s〉 ; ⊥.

Example 2. Revisiting Ex. 1, let c0 : 〈`0, (x1 : 0, x2 : 2)〉 be a configuration.
Suppose S chooses τ , U chooses u = −1 and D chooses d = 2; the resulting play is
c0 ; 〈`0, (0, 1)〉, because (0, 1) ∈ JI(`0)K. On the other hand, if D were to choose
d = 0, the resulting play would be s0 ; ⊥, because the resulting configuration is
〈`0, (−2, 1)〉, and (−2, 1) 6∈ JI(`0)K.

Definition 2 Run. A run of an lcts starting from a configuration 〈`0, s0〉 is a
finite or infinite sequence of plays 〈`0, s0〉 ; 〈`1, s1〉 ; . . .

A run is finite only if it ends in a configuration 〈`i, si〉 from which it is impossible
for any player to make choices satisfying ξu and ξd, or if it ends in ⊥.

REACT-TR-2007-01, January 2007

Controller Synthesis of Discrete Linear Plants Using Polyhedra · 5

To limit finite runs we assume the following syntactic restrictions:

—Each ` ∈ L has an outgoing transition τ , and therefore the scheduler can always
pick a transition;

—For all configurations 〈`, s〉 such that s ∈ JI(`)K, and all transitions τ : 〈`,m, ξu,

ξd, f〉 there exist ~u and ~d such that JI(`)K � ∃~u. ξu(~x, ~u) and JI(`)K � ∃~d. ξd(~x, ~d),
and therefore the Controller and the Drifter can always make a choice indepen-
dent of the Scheduler.

These restrictions ensure that from any configuration that satisfies the location
invariant, there always exists a choice for the three players. Some of these choices,
however, may still lead to an inadmissible play, and thus to a finite run. It is the
task of the Controller to avoid inadmissible plays. Its ability to do so depends on
the existence of a control strategy.

Definition 3 Control Strategy. A (control) strategy is a function ~u = fU (〈`, s〉, τ)
that maps every configuration 〈`, s〉, such that s ∈ JI(`)K, and transition τ =
〈`,m, ξu, ξd, f〉 ∈ T to a control input ~u such that ξu(s, ~u).

Definition 4 Blocking Configuration. A configuration c is called blocking if, start-
ing from c, the Controller has no strategy to prevent an inadmissible play, i.e., there
exists a choice of the Scheduler such that for all choices of the Controller there exists
a choice of the Drifter that leads to an inadmissible play.

Objective. Given a system Π and a specification Ψ, the goal is to keep Π within
Ψ without the system reaching a blocking configuration. More formally, given an
lcts Π and a safety objective Ψ, an assertion map that maps locations to linear
assertions, the goal is to find an assertion map η such that for any location ` ∈ L,
η(`) � Ψ(`) and from any 〈`, s〉 such that s ∈ Jη(`)K, the controller has a strategy
to ensure an admissable play 〈`, s〉 ; 〈`′, s′〉 such that s′ ∈ Jη(`′)K.

In the next section we describe an abstract method for obtaining such an assertion
map from a safety objective. In section 4 we provide a concrete instance of that
method using polyhedra.

3. CONTROLLABILITY

Given a system and safety objective Ψ, the goal is to have the controller keep the
system wihin Ψ. Not every safety objective, however, is controllable.

Definition 5 Controllability for Safety. An lcts Π is controllable for a safety
objective Ψ if, starting from any configuration 〈`0, s0〉 such that s0 � Ψ(`0), there
exists a strategy for U , playing against S and D, such that every resulting run
〈`0, s0〉 ; 〈`1, s1〉 ; . . . of Π is infinite and satisfies Ψ, i.e., ∀ i, si � Ψ(`i).

Example 3. Consider again the system from Example 1. The safety objective
Ψ(`0) : 0 ≤ x1 ≤ 20 ∧ 0 ≤ x2 ≤ 4 is not controllable. For instance, at the config-
uration 〈`0, (x1 : 0, x2 : 4)〉, U does not have a strategy to prevent an inadmissible
play: D may ensure this simply by choosing d < 4. Similarly, for the configuration
〈`0, (x1 : 20, x2 : 0)〉, U does not have a strategy to ensure Ψ(`0) in the next step.
The assertion map

Φ(`0) :

[
0 ≤ x2 ≤ 4 ∧ x2 ≤ x1 ≤ x2 + 16 ∧ 2x2 − 1 ≤ x1 ≤ 2x2 + 13

3x2 − 6 ≤ x1 ≤ 3x2 + 11 ∧ 4x2 − 6 ≤ x1 ≤ 4x2 + 10

]
.

REACT-TR-2007-01, January 2007

6 · M. Slanina, S. Sankaranarayanan H.B. Sipma, Z. Manna

is controllable and strengthens Ψ(`0). Such a map is derived in the next section.

3.1 Control Invariant

To construct a method for establishing controllability we introduce the notion of a
control invariant map, the counterpart of an invariant map used in the analysis of
regular transition systems [Manna and Pnueli 1995].

Definition 6 Control Invariant Map. Given an lcts Π, an assertion map Ψ is a
control invariant map of Π if Π is controllable for Ψ.

For transition systems (without control), we know that an assertion map χ can
be proven invariant if it is inductive, i.e., if for each τ ∈ T , χ implies the weakest
precondition of χ with respect to τ : χ � wpc(χ, τ).

Analogously, for alternating systems, an assertion map Ψ is control invariant if,
for each τ ∈ T , Ψ implies its control precondition with respect to τ :

Definition 7 (Non-Blocking) Control Precondition. Given an lcts Π : 〈~x, ~u, ~d,
L, I, T 〉, let τ : 〈`,m, ξu, ξd, f〉 be a transition in T and ϕ(~x) an assertion such that
ϕ � I(m). The (non-blocking) control precondition of ϕ with respect to τ , denoted
cpre(ϕ, τ), is

cpre(ϕ, τ) : I(`) ∧ ∃~u.
(
ξu ∧ ∀~d. ξd → ϕ(f(~x, ~u, ~d))

)
,

where ϕ(f(~x, ~u, ~d)) is ϕ(~x) with f(~x, ~u, ~d) substituted for ~x.

Thus, cpre(ϕ, τ) represents the set of all states s from which U has a (one-step)
strategy to ensure that all plays starting from s are admissible and result in a state
satisfying ϕ.

Lemma 8. If ψ : cpre(ϕ, τ) then starting from configuration 〈`, s〉 with s ∈ JψK, if
S chooses to execute τ , then U has a strategy to ensure that every play is admissible
and leads to a configuration 〈m, s′〉 such that s′ ∈ JϕK.

In general, for a set of transitions τ1, . . . , τk and assertions ϕ1, . . . , ϕk, the asser-
tion

∧k
i=1 cpre(ϕi, τi) describes the set of states s from which U has a strategy to

ensure that, if τi is chosen by S, all plays starting from s are admissible, and the
result of executing τi satisfies ϕi.

Theorem 9. Let Π be an lcts and η be an assertion map. If for all transitions
τ : 〈`,m, . . .〉 ∈ T , η(`) � cpre(η(m), τ) then η is a control invariant map.

Corollary 10. Let Π be an lcts and η be an assertion map. If, for all transi-
tions τ : 〈`,m, . . .〉 ∈ T , η(`) � cpre(η(m), τ), then Π is controllable for η by means
of a memoryless strategy.

3.2 Backward Propagation

In classical backward propagation, a symbolic simulation is performed using weakest
preconditions starting from the target assertion ϕ until a (greatest) fixed point χ is
reached. If χ includes all initial states, χ proves that ϕ is invariant. For controlled
systems, we perform backward propagation starting from a given safety objective
Ψ. The goal, in this case, is to compute a (largest) set of states that is included in
Ψ and is controllable.

REACT-TR-2007-01, January 2007

Controller Synthesis of Discrete Linear Plants Using Polyhedra · 7

Formally, backward propagation starting from a safety objective Ψ is performed
using a predicate map transformer B consisting of a family of predicate transformers
B〈`,m〉, for each pair of locations `,m such that τ : 〈`,m, . . .〉 ∈ T :

B〈`,m〉(η(`))
def
= Ψ(`) ∧ η(`) ∧

∧

τ :〈`,m,...〉∈T

cpre(η(m), τ)

It computes the sequence η(0) → B(η(0))︸ ︷︷ ︸
η(1)

→ B2(η(0))︸ ︷︷ ︸
η(2)

→ . . .,

with η(0)(`) = true for all ` ∈ L, until η(i) = B(η(i)) = η(i+1). The operator B is
monotonic and, hence, a unique greatest fixed point exists.

Theorem 11. Given an lcts Π and a safety objective Ψ, the greatest fixed point
of B is the weakest control invariant of Π that strengthens Ψ.

Similar to propagation-based methods in the analysis of regular transition sys-
tems, this approach has two problems: (1) for many domains checking for con-
vergence is not decidable, and (2) convergence may not be reached in a finite
number of steps. The classical solution to the first problem is abstract interpre-
tation [Cousot and Cousot 1977], that is, perform the propagation in an abstract
domain using an abstract transformer BA that guarantees that the fixed point of
the abstract transformer is also a fixed point of the original (concrete) transformer.

Lemma 12. Let BA be a predicate map transformer such that BA underapprox-
imates B, i.e., for any assertion map η, BA

〈`,m〉(η(`)) � B〈`,m〉(η(`)) for all ` ∈ L.

If η(`) is a fixed point of BA then η(`) is a fixed point of B. Moreover, η(`) is a
control invariant of Π that strengthens Ψ.

The common solution to the second problem is widening [Cousot and Cousot 1977;
Cousot and Cousot 1992].

Definition 13 Dual Widening. A binary operator
â

is a dual widening operator
if it satisfies the following two criteria:

—Underapproximation: For any two assertions ϕ1 and ϕ2, ϕ1

â
ϕ2 � ϕ1 ∧ ϕ2;

—Descending chain condition: For any sequence ϕ1, ϕ2, . . . of assertions such that

ϕi+1 � ϕi, the dual widened sequence defined by ψ1 = ϕ1 and ψi+1 = ψi

â
ϕi+1

always converges.

Backward propagation with widening computes the sequence

η(0) → B(η(0))︸ ︷︷ ︸
η(1)

→ . . . → Bi(η(0))︸ ︷︷ ︸
η(i)

→ B̂(η(i))︸ ︷︷ ︸
γ(i+1)

→ B̂(γ(i+1))︸ ︷︷ ︸
γ(i+2)

→ . . .

with

B̂(η)
def
= η

â
B(η)

until a fixed point is reached. The underapproximation property of the widening
operator with Lemma 12 guarantees that the resulting fixed point is a control
invariant, and the descending chain condition guarantees that a fixed point will be
reached in a finite number of steps.

REACT-TR-2007-01, January 2007

8 · M. Slanina, S. Sankaranarayanan H.B. Sipma, Z. Manna

Theorem 14. Given an lcts Π and an objective Ψ, backward propagation with
widening computes a control invariant strengthening Ψ in finitely many steps.

4. POLYHEDRAL CONTROLLABILITY

We describe how the generic backward propagation scheme described previously
can be implemented efficiently in the domain of polyhedra. Recall that back-
ward propagation requires the repeated computation of the operation Ψ(`)∧ η(`)∧∧

τ :〈`,m,...〉∈T cpre(η(m), τ) with control precondition (Def. 5):

cpre(ϕ, τ) ≡ I(`) ∧ ∃~u. (ξu ∧ ∀~d. ξd → ϕ(f(~x, ~u, ~d))︸ ︷︷ ︸
ϕ1

) ,

in which we now assume all assertions are linear. In general, the result of this com-
putation may contain disjunctions of linear assertions. Particularly, the elimination
of the universal quantifier ∀~d may result in a union of polyhedra. To compute in
the domain of polyhedra we underapproximate ϕ1 by a single polyhedron, resulting
in a backward propagation operator BP that underapproximates B. By Lemma 12,
BP will still lead to a control invariant. We begin by considering restrictions to the
model, so that B itself results in a single polyhedron.

In many systems the restrictions ξd are independent of the actual system state,
i.e., ξd does not contain variables from ~x. In such cases, the assertion ∀~d. ξd →
ϕ(f(~x, ~u, ~d)) can be represented by a linear assertion over ~x and ~u.

Theorem 15. Let ϕ : G~x+H~u+J ~d+~c ≥ 0 be a linear assertion over ~x, ~u, and
~d and let ξd be a linear assertion over ~d represented (in generator representation) by

vertices ~v1, . . . , ~vm and rays ~r1, . . . , ~rk. Then ∀~d. ξd → ϕ is equivalent to the linear
assertion

∧m
i=1G~x+H~u+ J~vi + ~c ≥ 0 ∧

∧k
j=1 J~rj ≥ 0.

Notice that having ξd be independent of ~x and ~u does not compromise the ability
of the Drifter to choose a disturbance based on ~x and ~u.

Example 4. Reconsider the system from Example 1 with safety objective ϕ : 0 ≤
x1 ≤ 20∧ 0 ≤ x2 ≤ 4. For transition τ , ϕ(f(~x, ~u, ~d)) ≡ 0 ≤ x1 + d−x2 ≤ 20 ∧ 0 ≤

x2 + u ≤ 4. Restriction ξd is dependent only on ~d, with vertices {(d : 0), (d : 4)}.
Application of Theorem 15 yields (after simplification) ξd → ϕ : 0 ≤ x1 − x2 ≤
16 ∧ 0 ≤ x2 + u ≤ 4. Finally, eliminating u and conjoining with I(`) yields
cpre(ϕ, τ) : 0 ≤ x1 − x2 ≤ 16 ∧ 0 ≤ x2 ≤ 5.

As presented above, the universal quantifier elimination requires a vertex enu-
meration of ξd which can be exponential in the number of drift variables. This can
be improved using linear programming.

Lemma 16. Let ϕ : G~x +H~u + J ~d + ~c ≥ 0, let Ji denote the ith row of J , and
let δi be the result of the linear program (LP): δi : minimize Ji

~d subject to ξd .

Let ~δ represent the vector of values of δi. If δi 6= −∞ for all i, then ∀~d. ξd → ϕ is
equivalent to G~x+H~u+ ~δ +~c ≥ 0. If some δi = −∞, then ∀~d. ξd → ϕ is false (the
empty polyhedron).

Thus, the universal elimination of ∀~d. ξd →ϕ can be performed in polynomial time
and results in an assertion that has the same number of conjuncts as ϕ.

REACT-TR-2007-01, January 2007

Controller Synthesis of Discrete Linear Plants Using Polyhedra · 9

Table I. Polyhedra encountered in the fixed point iteration for Example 1.

Iter γi : cpre(ηi, τ) η(i+1) : η(i) ∧ γi

0 x1 − x2 ∈ [0, 16] ∧ x2 ∈ [0, 5] x1 − x2 ∈ [0, 16] ∧ η(0)

1 x1 − 2x2 ∈ [−1, 13] ∧ γ0 x1 − 2x2 ∈ [−1, 13] ∧ η(1)

2 x1 − 3x2 ∈ [−3, 11] ∧ γ1 x1 − 3x3 ∈ [−3, 11] ∧ η(2)

3 x1 − 4x2 ∈ [−6, 10] ∧ γ2 x1 − 4x2 ∈ [−6, 10] ∧ η(3)

4 ≡ γ3 ≡ η(4)

If a transition τ does not satisfy the syntactic restriction above, we may still
use the theorem by over-approximating ξd and thus under-approximating the con-
trol precondition operator. A simple overapproximation of ξd is given by ξ′d ≡

∃~x, ~u. I(~x) ∧ ξu(~x, ~u) ∧ ξd(~x, ~d) .

Example 5 Flow Controller. Returning to the flow controller example, we now
carry out the fixed point iteration starting from η(0)(`) ≡ x1 ∈ [0, 20] ∧ x2 ∈ [0, 4].
Table I shows the polyhedra encountered during the iteration.

The backward propagation for the example converged in four steps. The domain
of polyhedra, however, does not have the finite descending chain property, and thus
convergence is not guaranteed in general. We need a widening operator to force
convergence.

Definition 17 Polyhedral Dual Widening Operator. Given two polyhedra ϕ1, ϕ2,

the dual widening ϕ ≡ ϕ1

â
P ϕ2 is defined as follows:

(1) If either polyhedron is empty, then ϕ ≡ false.

(2) The generator representation of ϕ contains those generators of ϕ1 that are also
generators of ϕ2. In other words, we drop those generators of ϕ1 that are not
generators of ϕ2.

Theorem 18. The operator
â

P over polyhedra is a dual widening operator.

5. CONTROLLER SYNTHESIS AND IMPLEMENTATION

Given a system Π and safety objective Ψ, the controller may not have a strategy
to keep the system within Ψ starting from any configuration in Ψ. It may have a
strategy, however, to keep the system within a smaller set of configurations, repre-
sented by the control invariant map η. In the previous two sections we presented
a method to compute η from Ψ. In this section we show how to use η to refine Π
into a new system Π′ that is controllable for η and propose an implementation for
the controller.

5.1 Refinement

Given an lcts Π : 〈~x, ~u, ~d, L, I, T 〉 and a safety objective Ψ, let η be a control
invariant map of Π that strengthens Ψ. If η(`) = false for all ` ∈ L then we
fail: no refinement is possible based on η. Otherwise we construct a refinement
Π′ : 〈~x, ~u, ~d, L′, I ′, T ′〉 as follows:

—L′ = L− {` | η(`) = false};

—I ′(`) = I(`) ∧ η(`) for all ` ∈ L′;

REACT-TR-2007-01, January 2007

10 · M. Slanina, S. Sankaranarayanan H.B. Sipma, Z. Manna

—T ′ = {τ : 〈`,m, ξ′u, ξd, f〉 | τ : 〈`,m, ξu, ξd, f〉 ∈ T and `,m ∈ L′} with

ξ′u : ξu ∧ ∀~d. ξd → η(m)[~x 7→ f(~x, ~u, ~d)] (1)

that is, we restrict ξ′u such that every choice of ~u by the controller leads to a
state that satisfies η(m).

Theorem 19. Let Π′ be the refinement of an lcts Π with respect to a con-
trol invariant map η. Every run of Π′ is (a) a run of Π, (b) non-blocking, and
(c) satisfies η.

System refinement is computationally inexpensive, and yields a refined plant that
is guaranteed to keep the system within the original safety objective.

5.2 Controller Implementation

In this section, we synthesize a non-blocking strategy for the controller U . Fol-
lowing the discussion on refining plant specifications, we restrict our attention to
the locations in L′ and transitions between them. Let τ = 〈`,m, ξu, ξd, f〉 be a
transition, ϕ` ≡ η(`), and ϕm ≡ η(m). By the nature of the set L′, both ϕm and
ϕ` are non-empty.

Specifically, we seek a function ~u = fτ (~x) that, given a point ~x ∈ Jϕ`K, chooses a
control input ~u ensuring that the resulting play satisfies ϕm. The available choices
for the control variable ~u are given by ξ ′u from (1).

The construction of an actual controller requires us to choose a single ~u from the
available choices given a state ~x. Given a state ~x it is possible to obtain constraints
over ~u by substituting in ξ′u. In the polyhedral domain, these constraints are linear
inequality and solving them requires solving a linear feasibility problem. Although
LP solvers are efficient enough for off-line computation, using them in real time
to compute controllers is usually not possible. A more efficient solution can be
obtained by storing some precomputed data, as we show next.

Control Using Triangulations. We may choose control inputs at the vertices of
Jϕ`K and handle interior points based on the choices at the vertices. Assume, for
ease of presentation, that Jϕ`K is bounded, i.e.,its generator representation does not
contain any rays. Let ~v1, . . . , ~vm be the vertices of Jϕ`K. Any point ~x ∈ Jϕ`K can
be written as ~x = λ1~v1 + · · · + λm~vm, with λi ≥ 0 and λ1 + · · · + λm = 1. The
values of the multipliers λi uniquely identify the state ~x. If we fix control inputs
~u1, . . . , ~um at the vertices ~v1, . . . , ~vm of Jϕ`K, a valid control for the interior point
~x is given by ~u = f(~x) = λ1~u1 + · · · + λm~um.

Lemma 20. If ~u1, . . . , ~um are valid control inputs at vertices ~v1, . . . , ~vm satisfying
ξ′u(~vi, ~ui) for all i, then ~u = λ1~u1+· · ·+λm~um is a valid control input at any interior
point ~x = λ1~v1 + · · · + λm~vm (i.e., it satisfies ξ′u(~x, ~u)).

One efficient way to obtain the multipliers λ1, . . . , λm is to compute a trian-
gulation [Lee 1997] of the polyhedron Jϕ`K. This divides the polyhedron ϕ` into
many simplices ϕ1, . . . , ϕk. The design of a controller for the transition τ on the
entire polyhedron ϕ` is thus reduced to designing acontroller for each simplex in
the triangulation. The resulting controller can then use a search tree to locate
the simplex to which a given state ~x belongs in the triangulation and compute the

REACT-TR-2007-01, January 2007

Controller Synthesis of Discrete Linear Plants Using Polyhedra · 11

0

2

d

-0.8

-0.4

0

0.4 u

0

8

14 x

0

1

1.8 o

-0.5

-0.3

0

0.4 u

2

10

16 x

0

1

1.8 o

u x1 x2

Fig. 1. Values of the control, buffer occupancy x1 and output flow rate x2 for same drift pat-
tern (shown left). The controller on the top row minimizes |u| while the bottom row controller

minimizes u.

control based on this simplex, with a total time at most quadratic in the number
of system variables:

Let ~v0, . . . , ~vd be the (affinely independent) vertices of a d-simplex ϕi in the tri-
angulation. Any point ~x ∈ JϕiK can be expressed using the barycentric coordinates
~λ as ~x = V ~λ, such that ~λ ≥ 0 and 1

t~λ = 1. By the affine independence of the
columns of V , we may write ~λ = (V tV + 1)−1(V t~x + 1) to directly express the
barycentric coordinates in terms of the cartesian coordinates. (1 is a matrix of all
ones, 1 is a vector of all ones.) Let ~u0, . . . , ~ud be the control inputs chosen at the
vertices and arranged as the columns of a matrix U . The control inputs at ~x are
then given by

~u = U~λ = U(V tV + 1)−1(V t~x+ 1) = Λ~x+ ~x0 .

In other words, the control ~u inside a simplex can be expressed as a (closed form)
affine expression over the system variables. The controller for a transition τ : `→ m

is obtained by performing a triangulation of ϕ` and using the affine control law
~u = Λi~x + x0,i in the i-th simplex of the triangulation to compute the control
input. Note that if the fixed point iteration computation converges quickly, we
expect the resulting polyhedron to have a compact generator representation. As a
result, we expect the simplicial decomposition to be tractable.

Example 6. Recall that the result of the fixed point iteration starting from the
initial specification is shown in Example 5. Given a particular system state 〈x1, x2〉,
the conditions ξ′u(x1, x2, u) on the single control u form an interval. Any value from
this interval is a valid input that maintains safety. We consider two “control strate-
gies”: (a) Low flow-rate input: Simply apply the least possible control input. (b)
Low “rate-change” control: Minimize |u| to keep the change in x2 small. Fig-
ure 1 contrasts the two control strategies by plotting the control input, x1 and x2

observed for the same drift input pattern.

6. APPLICATIONS AND CONCLUSIONS

Our prototype Planter implements the fixed point iteration over polyhedra using
the polyhedral library PPL [Bagnara et al. 2002]. It implements the dual widening

REACT-TR-2007-01, January 2007

12 · M. Slanina, S. Sankaranarayanan H.B. Sipma, Z. Manna

operator described earlier, along with a heuristic extrapolation operator that under-
approximates the conjunction but does not guarantee convergence.

Example 7 Parametric Flow Controller. We modify the flow controller in Exam-
ple 1 to include a parameter α ≥ 0 which restricts the range of control inputs, and
thus the rate of change of the ouput flow rate x2. The control condition for τ is
replaced by ξu : (−α ≤ u ≤ α). We wish to determine the smallest value of α for
which the system is controllable.

The model is modified to include α as a system variable without any constraints
on its values. We obtain a fixed point polyhedron ϕ, such that (minα s.t. ϕ) = 4

9 .
This demonstrates the sufficiency of α ≥ 4

9 for controlling the system. A simple
hand calculation demonstrates the necessity of α ≥ 4

9 .

Example 8 Flow network. Consider networks of buffers as shown below:

· B1 B2 ·

· B1 ·

· B2 B3 ·

· B1 B2 B4 ·

B3

1.5

.5

1

.5

.25

.5

.75

.75

2 2

Each network has N > 0 buffers B1, . . . , BN , and weighted edges i→ j signifying
that the output flow of Bi is input to Bj . The weight on each edge limits the rate of
flow along the edge as a fraction of the maximum possible. Edges without sources
model inputs while edges without targets model outputs.

The controller visits each node from B1, . . . , BN in a round-robin fashion. At
a visit to a node Bi, it uses the available controls to set the flow rate at each
outgoing edge of Bi. After this visit, the flow rates are held constant until the next
visit. To adjust the flow rates, the controller requires as many control inputs as
the maximum out-degree ∆ of the network nodes. Inputs are modelled using drifts.
The system variables include x1, . . . , xN , to model the buffer occupancies, and yij ,
for each edge i → j, to model the flow rates. All buffers are assumed to be of the
same size. The system description can be derived from the network specification.

The specification requires us to operate each buffer occupancy without causing
overflow/underflow, and restrict flow along edges to satisfy the capacity constraints.
The table below shows the run times for controller synthesis on the three networks
shown above, measured on a 3 GHz pentium processor with 4 GB RAM:

Network (#Sys,#Ctrl,#Drift) #Iter #Widen Time (sec) Controllable?
net2 〈5, 2, 1〉 2 0 .2 Yes
net3 〈8, 2, 2〉 5 0 114 Yes
net4 〈9, 2, 2〉 –time out 30 min– No

Note that the control problem presented for networks of buffers can be naturally
decomposed into instances of the single buffer flow control problem of Example 1
with extensions for multiple output lines. In fact, each well-balanced flow network
can be shown to be controllable using such a decomposition. The liberal assump-
tions made on the drift inputs, in particular their non determinism makes such a
decomposition possible.

REACT-TR-2007-01, January 2007

Controller Synthesis of Discrete Linear Plants Using Polyhedra · 13

In the future, we wish to explore domains such as zonotopes, which have been used
successfully in the analysis of large continuous systems [Girard 2005]. We wish to
extend our scheme to incorporate liveness properties in the controller specification.
Using the theoretical scheme presented here, we intend to explore ways of realizing
real-time controllers for larger real-life plant models.

REFERENCES

Alur, R., Henzinger, T. A., and Kupferman, O. 2002. Alternating-time temporal logic. Journal
of the ACM 49, 5 (Sept.), 672–713.

Asarin, E., Bournez, O., Dang, T., Maler, O., and Pnueli, A. 2000. Effective synthesis of
switching linear controllers for linear systems. Proceedings of the IEEE 88, 7 (July).

Bagnara, R., Ricci, E., Zaffanella, E., and Hill, P. M. 2002. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. In SAS. LNCS, vol. 2477. Springer, 213–229.

Bemporad, A. and Morari, M. 1999. Control of systems integrating logic, dynamics, and con-
straints. Automatica 35, 407–427.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL. ACM Press,

238–252.

Cousot, P. and Cousot, R. 1992. Comparing the Galois connection and widening/narrowing

approaches to abstract interpretation. In PLILP ’92. LNCS, vol. 631. Springer, 269–295.

de Alfaro, L. and Henzinger, T. A. 2005. Interface-based design. In Engineering Theories of

Software-Intensive Systems. NATO Science Series: Mathematics, Physics, and Chemistry, vol.
195. Springer, 83–104.

Fukuda, K. and Prodon, A. 1996. Double description method revisited. In Combinatorics and
Computer Science. LNCS, vol. 1120. Springer, 91–111.

Girard, A. 2005. Reachability of uncertain linear systems using zonotopes. In Hybrid Systems:
Computation and Control. LNCS, vol. 3414. Springer, 291–305.

Henzinger, T. A., Majumdar, R., Mang, F., and Raskin, J.-F. 2000. Abstract interpretation
of game properties. In SAS. LNCS, vol. 1824. Springer, 220–239.

Kloetzer, M. and Belta, C. 2006. A fully automated framework for control of linear systems

from LTL specifications. In HSCC, J. Hespanha and A. Tiwari, Eds. LNCS, vol. 3927. Springer,
333–347.

Kumar, R. and Garg, V. K. 2005. On computation of state avoidance control for infinite state
systems in assignment program framework. IEEE Transactions on Automation Science and

Engineering 2, 1 (Jan.), 87–91.

Le Gall, T., Jeannet, B., and Marchand, H. 2005. Supervisory control of infinite symbolic

systems using abstract interpretation. In Proceedings of IEEE CDC-ECC’05. IEEE Press,
30–35.

Lee, C. W. 1997. Subdivisions and triangulations of polytopes. In Handbook of Discrete and
Computational Geometry. CRC Press, 271–290.

Manna, Z. and Pnueli, A. 1995. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, New York.

Ramadge, P. and Wonham, W. 1989. The control of discrete event systems. Proceedings of the
IEEE: Special Issue on Dynamics of Discrete Event Systems 77, 1, 81–98.

Schrijver, A. 1986. Theory of Linear and Integer Programming. Wiley.

Slanina, M., Sipma, H. B., and Manna, Z. 2006. Proving atl* properties of infinite-state

systems. In 3rd International Colloquium on Theoretical Aspects of Computing (ICTAC2006),
K. Barkaui, A. Cavalcanti, and A. Cerone, Eds. LNCS, vol. 4281. Springer, 242–256.

Sontag, E. D. 1981. Nonlinear regulation: The piecewise linear approach. IEEE Transactions on
Automatic Control 26, 2 (April), 346 – 357.

Tabuada, P. and Pappas, G. 2003. Model checking LTL over controllable linear systems is

decidable. In HSCC, O. Maler and A. Pnueli, Eds. LNCS, vol. 2623. Springer, 498–513.

REACT-TR-2007-01, January 2007

CHANGE LOG

January 5, 2007. Submitted as technical report.

REACT-TR-2007-01, January 2007

	Introduction
	Preliminaries
	Polyhedra
	Linear Controlled Transition Systems

	Controllability
	Control Invariant
	Backward Propagation

	Polyhedral Controllability
	Controller Synthesis and Implementation
	Refinement
	Controller Implementation

	Applications and Conclusions
	References

