
INTEGER LINEAR PROGRAMMING - 
INTRODUCTION 
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Integer Linear Programming  
•  Relaxation to a (real-valued) Linear Program 
•  How does the LP relaxation answer relate to the ILP answer? 
•  Integrality Gap 

• Complexity of Integer Linear Programs 
•  NP-Completeness 
•  Some special cases of ILPs. 

• Algorithms: 
•  Branch-And-Bound 
•  Gomory-Chvatal Cuts 



INTEGER LINEAR PROGRAMMING: 
LP RELAXATION 
1.  Relax an ILP to an LP 
2.  Examples with same answers and different 

answers. 
3.  Integrality gap. 
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Integer Linear Program  
•  Feasibility of ILP: 
•  Integer feasible solution. 

• Unbounded ILP: 
•  Integer feasible solutions can achieve arbitrarily large values for the 

objective. 

max c1x1 +c2x2 + · · ·+ cnxn

s.t. a11x1 +a12x2 + · · ·+ a1nxn  b1

. . .
...

am1x1 +am2x2 + · · ·+ amnxn  bm

x1, . . . , xn 2 Z



Linear Programming Relaxation 

max c1x1 +c2x2 + · · ·+ cnxn

s.t. a11x1 +a12x2 + · · ·+ a1nxn  b1

. . .
...

am1x1 +am2x2 + · · ·+ amnxn  bm

x1, . . . , xn 2 Z
Q: What happens to the answer if we take away the integrality constraints? 



Feasible Regions 
max c1x1 +c2x2 + · · ·+ cnxn
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Case-1: Both LP and ILP are feasible. 

Opt. Solution of 
ILP 

Opt. Solution of 
LP relaxation 



Case-I 
Optimal Objective of ILP ≤ Optimal solution of LP relaxation. 

Opt. Solution of 
ILP 



Example-1 
Write down an example where LP optimum = ILP optimum 



Example-2 
Write down an example where the two optima differ 



Case-II: LP relaxation is feasible, ILP is 
infeasible. 

max x

s.t.
3  10x  5

0 1 

0.3 0.5 

ILP is infeasible.  
 
LP relaxation has optimal solution: 0.5 



Case III: ILP is infeasible, LP is unbounded. 
Example: 
 

max y

3  10x  5

0  y

0.3 0.5 

ILP is infeasible.  
LP relaxation is unbounded 



ILP outcomes vs. LP relaxation outcomes 

Infeasible Unbounde
d 

Optimal 

Infeasible Possible Impossible Impossible 

Unbounde
d 

Possible Possible Possible (*) 

Optimal Possible Impossible Possible 

Integer Linear Program (ILP) 

LP  
Relaxation 

(*) Impossible if ILP has 
rational coefficients 



Summary (LP relaxation) 
•  LP relaxation: ILP minus the integrality constraints. 

•  LP relaxation’s feasible region is a super-set of ILP feasible 
region. 

• Analysis of various outcomes for ILP vs. outcomes for LP 
relaxations. 



COMPLEXITY OF ILP 



Polynomial Time Solvable Problems 

Complexity of Integer Linear Programs 
Integer Linear Programming problems are NP-complete 

Polynomial Time Solvable 
Problems 

Non-determinstic Polynomial Time (NP) 

Integer Linear 
Programming 



Implications of P vs NP question 
•  P=NP 
•  Considered an unlikely possibility by experts. 
•  In this case, we will be able to solve ILPs in polynomial time. 

•  P != NP 
•  In this case, we can show a non-polynomial lower bound on the 

complexity of solving ILPs. 



Current State-of-the-art 
• We have some very good algorithms for solving ILPs 
•  They perform well on some important instances. 
•  But, they all have exponential worst-case complexity. 

• Compared to LPs,  
•  The largest ILPs that we can solve are a 1000-fold smaller. 

•  Two strategies: 
•  Try to solve the ILP 
•  Find approximate answers for some special ILP instances. 



ILP AND COMBINATORIAL 
OPTIMIZATION 
Reducing 3-SAT to ILP 



3-SAT Problem 

x1, x2, x3, x4 Boolean Variables 

(x1 OR x2 OR ¬x3)

(¬x2 OR ¬x4 OR x1)

(x1 OR x2 OR ¬x3)
Find values for Boolean variables  
 
such that  
 
All the Clauses are True. 



3-SAT Problem (Infeasible/Unsat) 

x1, x2, x3, x4 Boolean Variables 

(x1 OR ¬x4 OR x2)

(¬x1 OR ¬x4 OR x2)

(x4 OR x2)

(¬ x2)

No Boolean valuation satisfies all 4 clauses. 



Reducing 3-SAT to ILP 

x1, . . . , xn are Boolean variables.

C1 : (`1,1 OR `1,2 OR `1,3)
...

. . .

Cm : (`m,1 OR `m,2 OR `m,3)

m Clauses. 

`i,j stands for a variable xk or its negation ¬xk



ILP reduction. 

xj ! yj 2 {0, 1} False =  0 
True = 1 

¬xj ⌘ (1� yj)

(x1 OR x2 OR ¬x5) ! y1 + y2 + (1� y5) � 1

Clauses  Inequalities 



Example-1 

(x1 OR x2 OR ¬x3)

(¬x2 OR ¬x4 OR x1)

(x1 OR x2 OR ¬x3)

Convert this SAT problem to an ILP 



Example-2 (x1 OR ¬x4 OR x2)

(¬x1 OR ¬x4 OR x2)

(x4 OR x2)

(¬ x2)
Convert this SAT problem to an ILP 



LP RELAXATION VS. ILP 
RELAXATION 



Claim 
LP relaxation’s answer can be arbitrarily larger than the ILP’s 
answer. 

(0,0) (1,0)

( 12 ,K)

max x2

s.t x2 � 0

2Kx1 �x2 � 0

�2Kx1 �x2 � �2K

x1, x2 2 Z

.



ILP AND VERTEX COVER 
A flavor of approximation algorithms 



Rounding Schemes 
•  LP relaxation yields solutions with fractional parts. 

• However, ILP asks for integer solution. 

•  In some cases, we can approximate ILP optimum by “rounding” 
•  Take optimal solution of LP relaxation  
•  Round the answer to an integer answer using rounding scheme. 
•  Deduce something about the ILP optimal solution. 



Vertex Cover Problem 
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87

6

Choose smallest subset of vertices 
       Every edge must be “covered” 

Eg,  { 1, 2, 3, 5 }  
or   
     {1, 2, 3, 7 } 
 



ILP for the vertex cover problem (Example) 
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x1, . . . , x8

xi =

⇢
0 Vertex # i not chosen in subset

1 Vertex # i is chosen in subset

ILP decision variables 



ILP for the vertex cover problem (Example) 
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min x1 + x2 + · · ·+ x8

s.t. x1 + x7 � 1  Edge: (1, 7)
x1 + x6 � 1  Edge: (1, 6)
x2 + x4 � 1

· · ·
xi + xj � 1  (i, j) 2 E

· · ·
x1  1
...

x8  1
x1, . . . , x8 � 0
x1, . . . , x8 2 Z



Vertex Cover to ILP 
•  Vertices {1,…, n}  
•  Decision variables: 

x1, . . . , xn xi 2 {0, 1}

min
Pn

i=1 xi

s.t. 0  xi  1 8 i 2 V

xi + xj � 1 8 (i, j) 2 E

xi 2 Z 8 i 2 V



LP relaxation of a vertex cover 
•  Problem: we may get fractional solution. 
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x1 1
x2 1
x3

3
4

x4 0
x5

5
6

x6 0
x7

1
6

x8
1
4

Objective value: 4 
 
But solution meaningless for 
vertex cover. 



Rounding Scheme 
•  Simple rounding scheme: 
 

x

⇤
i � 1

2 ! xi = 1
Real-Optimal Solution 
is at least 0.5  

Include vertex in  
the cover. 

x

⇤
i <

1
2 ! xi = 0



LP relaxation of a vertex cover 
•  Problem: we may get fractional solution. 
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x1 1
x2 1
x3

3
4

x4 0
x5

5
6

x6 0
x7

1
6

x8
1
4

x1 1
x2 1
x3 1
x4 0
x5 1
x6 0
x7 0
x8 0



Rounding Scheme 
Rounding scheme takes optimal fractional solution from LP 
relaxation and produces an integral solution. 

x

⇤ rounding�������! ˆ

x

1.  Does rounding always produces a valid vertex cover? 
2.  How does the rounded solution compare to the opt. solution? 



Rounding Scheme Produces a Cover 

x

⇤ rounding�������! ˆ

x

x

⇤
i + x

⇤
j � 1, for each (i, j) 2 E

x̂i = 1 or x̂j = 1 for each (i, j) 2 E

To Prove: The solution obtained after rounding covers every edge. 



Rounding Scheme Approximation Guarantee 

x

⇤ rounding�������! ˆ

x

Opt.  
Vertex  
Cover 

LP  
relaxation 
Opt.  
Cost 

Rounded 
Scheme 

Cost 

Fact: 2x

⇤
i � x̂i for all vertices i.

2
Pn

i=1 x
⇤ �

Pn
i=1 x̂i

2 * (Cost of LP relaxation) � (Cost of Rounded Scheme Vertex Cover)



Approximation Guarantee 
•  Theorem #1: Rounding scheme yields a vertex cover. 
• Cost of the solution obtained by rounding: C  
• Optimal vertex cover cost: C* 

•  Theorem #2:   C* ≤ C ≤ 2 C* 

•  LP relaxation + rounding scheme:  
•  2-approximation for vertex cover!! 



SOLVING ILP USING GLPK 
Specifying integer variables in Mathprog 



GLPK integer solver 
• GLPK has a very good integer solver. 
•  Uses  branch-and-bound + Gomory cut techniques 
•  We will examine these techniques soon. 

•  In this lecture, 
•  Show how to solve (mixed) integer linear programs 
•  Continue to use AMPL format. 

•  This is the best option for solving ILPs/MIPs 



Example-1 (ILP) 

min x1 +x2 +x3 +x4 +x5 +x6

x1 +x2 � 1
x1 +x2 +x6 � 1

x3 +x4 � 1
x3 +x4 +x5 � 1

x4 +x5 +x6 � 1
x2 +x5 +x6 � 1

x1, x2, x3, x4, x5, x6 2 Z



Specifying variable type 

var x; # specifies a real-valued decision variable 
var y integer; # specifies an integer variable 
var z binary; # specifies a binary variable 



Example – I expressing in AMPL 
var x{1..6} integer; 

# Declare 6 integer variables

minimize obj: sum{i in 1..6} x[i]; 

c1: x[1] + x[2] >= 1; 

c2: x[1] + x[2] + x[6] >= 1;

c4: x[3] + x[4]  >= 1;

c5: x[3]+ x[4] + x[5] >= 1;

c6: x[4] + x[5] + x[6]   >= 1;

c7: x[2] + x[5] + x[6] >= 1;

solve;

display{i in 1..6} x[i]; 

end


min x1 +x2 +x3 +x4 +x5 +x6

x1 +x2 � 1
x1 +x2 +x6 � 1

x3 +x4 � 1
x3 +x4 +x5 � 1

x4 +x5 +x6 � 1
x2 +x5 +x6 � 1

x1, x2, x3, x4, x5, x6 2 Z



Example-1 Solving using GLPK 
Ø  glpsol -- math ip1.math



Display statement at line 25

x[1].val = 0

x[2].val = 1

x[3].val = 0

x[4].val = 1

x[5].val = 0

x[6].val = 0

Model has been successfully processed

 




Example -2  
Vertex Cover Problem 

source mathpuzzle.com 

16 



Vertex Cover to ILP 
•  Vertices {1,…, n}  
•  Decision variables: 

x1, . . . , xn xi 2 {0, 1}

min
Pn

i=1 xi

s.t. 0  xi  1 8 i 2 V

xi + xj � 1 8 (i, j) 2 E

xi 2 Z 8 i 2 V



Vertex Cover AMPL (Model + Data) 
param n;

var x {1..n} binary;

# binary specifies that the variables are binary



set E within {i in 1..n, j in 1..n: i < j}; 

# specify that the edges will be a set.

# each edge will be entered as (i,j) where i < j



minimize obj: sum{i in 1..n} x[i]; 

# minimize cost of the cover

s.t.

c{(i,j) in E}: x[i] + x[j] >= 1;



solve;

display{i in 1..n} x[i];




data;

param n := 16;



set E :=  (2,3) (3,5) (5,8)

               (4,16) (5,16) (8,14)

           (1,8) (4,12) (3,12) (4,14) 

        (1,12) (2,14) (2,15) (1,15) (15,16) ;







end;

 



Running GLPK … 
Ø  glpsol -m vertexCover.model

x[1].val = 0

x[2].val = 1

x[3].val = 0

x[4].val = 1

x[5].val = 1

x[6].val = 0

x[7].val = 0

x[8].val = 1

x[9].val = 0

x[10].val = 0

x[11].val = 0

x[12].val = 1

x[13].val = 0

x[14].val = 0

x[15].val = 1

x[16].val = 0


16 



SOLVING ILPS IN MATLAB/
OCTAVE 



MATLAB Optimization Package 
•  Supports solving binary integer programming problem 
•  “bintprog function” 
•  Same interface as linprog. 
•  Except that all variables are assumed binary. 

• Uses branch-and-bound 
•  Not considered to be a good implementation. 



CVX 
• Unfortunately, does not support integer programming in the 

free version. 

•  Links to commercial tools Gurobi/MOSEK/CPLEX 
•  Powerful state of the art integer solvers. 
•  They make it available to academic users for free. 

• We will continue to use GLPK for MATLAB/Octave. 



Solution for MATLAB 
• We will use glpkmex: a glpk interface to matlab and octave. 

• Octave users may already know about this interface. 

•  It implements a convenient function glpk(..) 

http://sourceforge.net/projects/glpkmex/ 



Over to matlab demo… 


