
The Design of the Mirage Spatial Wiki

Nels Anderson, Adam Bender, Carl Hartung,
Gaurav Kulkarni, Anuradha Kumar, Isaac Sanders

Dirk Grunwald and Bruce Sanders
Dept. of Computer Science
University of Colorado

Keywords: Location based systems, ubiquitous computing, wiki, Internet systems.

Abstract: Location based services can simplify information access but despite the numerous efforts and prototypes that
attempt to provide location based services, there are very few such systems in wide spread use. There are
three common problems that face the designers of location based systems - the basic location technology, the
complexity of establishing a service for a particular location and the complexity of maintaining and presenting
information to users of the systems. This paper outlines thesoftware architecture of and experience with the
Mirage Spatial Wiki. We describe the design decisions that have led to a system that is easy to deploy and use.

1 INTRODUCTION

This paper describes the software architecture of
and experience with the Mirage Spatial Wiki, a loca-
tion based information system that is easy to deploy
and use. Location based services are designed to sim-
plify information access by using the current location
to direct the user to relevant information. There are
many examples of such systems (we discuss many of
them in§5) and almost as many goals for those sys-
tems. Some location based systems are intended to
be globally accessible using a variety of access de-
vices. These systems commonly use a combination
of GPS satellite positioning coupled with other sys-
tems for indoor positioning and assume data access
is via existing wireless networks or cellular data net-
works such as GPRS. Other location based systems
depend on a specific infrastructure, such as location
systems for cellular phone networks, which rely on
proprietary RF detection for location and provide ser-
vice via WAP or other protocols designed for mo-
bile phones. These systems are intended for large-
scale commercial deployments and provide services
such as way-finding, location-specific shopping in-
formation or tour-guides for cities (Cheverst et al.,
2000). Some other location systems are intended for
smaller scale deployments that are focused on more
specific business needs, such as locating resources
(e.g. printers, meeting rooms,etc) within a specific
building or providing an automated docent as a tour

guide(Hightower and Borriello, 2001). Again, these
systems commonly use a variety of location detec-
tion systems, ranging from infra-red or ultrasound
“beacons” to radio network signal strength. Often,
these systems rely on specialized hardware compo-
nents or large or complex software environments and
are tightly integrated to specific applications.

Systems involving geo-spatial coordinates, such as
those obtained from GPS satellites, are difficult to in-
tegrate with approaches that use beacons; these lat-
ter systems are commonly referred to assemanticor
proximate location systems. Their goal is to pro-
vide information about objects in a particular refer-
ence frame, not to establish a mapping of an ob-
ject in an absolute coordinate system. Depending
on the intended application, knowing that the near-
est fax machine is “down the hall in room 422” may
be more meaningful than knowing the specific lati-
tude/longitude of the device. Even in the presence of
a system to assign objects locations in a coordinate
space, the maintenance of such a mapping is complex
and possibly pointless in environments where acquir-
ing geo-spatial information is difficult or impossible
(such as in buildings when using current GPS tech-
nology).

This paper describes the software architecture of a
system we developed to provide location based ser-
vices in educational environments. The system is
based on past experience with “beacon” based loca-
tion systems similar to the infrastructure used in the



Cooltown system. The difficulty in deploying the pre-
vious system guided the design choices and compro-
mises made in the eventual system. Overall, the sys-
tem relies much more on Internet enabled applications
and seeks to maximize the existing infrastructure. The
resulting system is very easy to deploy, very scalable
and easy to maintain. We have demonstrated that we
can “map” a large building in less than two hours and
provide rapid access to a “spatial wiki” that simplifies
the sharing of location-based information.

In this paper, we provide an overview of the system
in §2 and then discuss specific details of the system in
§3. We compare the system to prior work in Section 5
and summarize our findings in§6.

2 SOFTWARE ARCHITECTURE

As part of a broader educational program, we
wanted to deploy a location based system in a univer-
sity setting to provide information about laboratory
equipment, contact information for people in a spe-
cific department as well as class-room specific infor-
mation such as schedules and an electronic “lost and
found”. One of the over-arching goals for our design
was to provide a system that allowed the users of the
system to easily develop new uses for the system and
for the system to require little maintenance. In our
initial experiment, we used infrared beacons to iden-
tify rooms and depended on an existing 802.11 wire-
less network to provide network connectivity. This
system proved to be unwieldy because the number of
beacons needed was prohibitive and the beacons were
difficult to use in practice since infrared signals are
fairly directional.

Based on our earlier experience, we developed a
system that would address the following goals:
• It should not require additional system hardware

components to be installed,

• It should support the targeted applications (lab spe-
cific information,etc)

• It should be extensible enough to enable new appli-
cations,

• It would be easy to maintain,

• And, it should work with common portable com-
puter operating systems,
The resulting system, called the Mirage Spatial

Wiki, uses “beacons” provided by a ubiquitous 802.11
network to provide a semantic location service. Stan-
dard 802.11 networks have limited range in most
buildings and robust installations of such networks
typically deploy numerous access points across multi-
ple frequencies or channels to provide sufficient cov-
erage and bandwidth. The beacons from these indi-
vidual stations can be used to provide approximate

Figure 1: Components in Mirage Location Service
and their interaction during a query. The laptop re-
ceives station beacons from the local access points
(A), and uses the Mirage desktop locater to launch
a web browser that relays the access point informa-
tion through the network(B) to the subscribed Mi-
rage server(C) as an HTTP request. The subscribed
Mirage server uses uses the different location blades
to resolve the request; the blades communicate with
the database(D). If the location blades can not re-
solve the query, the subscribed Mirage server can for-
ward the request to a federated Mirage server(E).
If no location is determined, the default location is
used. The URL corresponding to the resolved loca-
tion is returned to the laptop as an HTTP redirection
(F). The laptop then contacts the webserver specified
in the HTTP redirection(G) and is given the actual
content corresponding to the location(H).

location; using these beacons has the side benefit that
it simplifies the network design – access points not
only provide location information, they also provide
the data network needed for indoor location based ser-
vices.

Earlier systems used “RF triangulation” (Bahl and
Padmananbhan, 2000) to approximate a geo-spatial
location service; our own experience with this ap-
proach resulted in failure, because RF signals exhibit
signal fade and significant multipath characteristics in
many institutional buildings, particularly those made
of concrete. When using RF triangulation, we found
that the location would rapidly “jump” from one spa-
tial estimate to another. Moreover the system re-
quired considerable calibration and training to pro-
vide enough information for the RF triangulation sys-
tem, and calibration was needed when furniture was
moved around or even when doors were left open
rather than closed. Thus, rather than focusing on de-
termining precise locations, we emphasized the no-
tion of semantic locations defined as different “land-



ings” that had some external significance. For exam-
ples, a classroom, a portion of a hallway or lobby or
a specific floor in a building. By shifting to semantic
locations, we could use different location calculation
systems that traded geo-spatial accuracy for the abil-
ity to correctly identity the coarser-grained seman-
tic space. We eventually found two algorithms that
worked well when using noisy data sources such as
the RF signal strength from 802.11 network beacons.
The first algorithm, based on the K nearest-neighbor
matching algorithm, works well with limited training
data and provides sufficient accuracy to give room-
level locations. The second algorithm, based on a
back-propagation neural network, provides more ac-
curate in-room positioning, but requires considerably
more data to achieve such accuracy.

Both of these semantic location algorithms require
training data. Although some location based systems,
such as PlaceLab (Schilit et al., 2003), distribute that
data to client computers, that design appeared to be
overly complex. There are three motivations for us-
ing client-side location data. The first is to provide
location information even when a network connection
to a centralized location server is not available. The
second is to insure that the location system is scalable
as the number of clients increases and the third rea-
son is to enhance privacy in location based systems.
Although these design goals are laudable, they’re less
important for the system goals we envisioned. First,
since our location based system relied on a network
to access location-based applications, there was lit-
tle point in having location information without net-
work connectivity. We felt that scalability could be
addressed using conventional network load balanc-
ing techniques, and developed a design that allows
us to partition the components used in the full loca-
tion based application. Lastly, although privacy is an
important issue, the privacy-revealing information ex-
posed by network connections would not be directly
visible to the location system and there are other ways
to disguise such information (Gruteser and Grunwald,
2003).

The resulting system relies on a small desktop ap-
plication that uses the underlying operating system to
record information from available access points, in-
cluding the hardware MAC addresses, the network
names (SSID) and received signal strength. Due to the
design of the 802.11 protocol, this information can be
collected from all available networks, including those
that use security protocols or to which the user does
not actually have access. We developed similar appli-
cations for Windows/XP, Mac OS-X and two common
Linux desktop environments (Gnome and KDE). In
each case, the application records the information and
launches a web browser with a URL request directed
to a web application on a specific Mirage server.

The Mirage server determines the closest “landing”

Figure 2: Example Deployment Scenario

corresponding to the location information using one
or more of the available “location blades”. Each “lo-
cation blade” may report a degree of certainty in a
particular decision. If the location can not be deter-
mined using local information, the specified Mirage
server may communicate with other Mirage servers
using an optional federated network architecture.

There is a corresponding URL associated with
each “landing”; using the HTTP protocol, the Mirage
server directs the client browser to the specified URL.
Figure 1 illustrates the sequence of operations. As
illustrated, the system is composed of three distinct
parts (the location server(s), the database for loca-
tion information and the web server for the location
based applications), but all of these components can
be hosted on a single system if desired.

Rather than develop a complex application frame-
work, it is possible to use existing Web applications
in conjunction with the Mirage location system. One
of the continuing challenges facing any information
space is the need to provide the information needed
by the users of that space and to insure that infor-
mation is up-to-date. Our initial system uses aWIKI
(MediaWiki-Foundation, 2004) collaboration tool to
simplify maintenance of these information spaces.

Each “landing” is represented by a page in the
Wiki, and the content of that page can be edited by
users of the system. A sample page is shown in Fig-
ure 3. In our application, each landing includes a
schematic map for the region and includes links to ad-
jacent landings. That map is added as a hand-edited
graphic indicating the intended physical space repre-
sented by the “landing”. Figure 2 shows the sample
building used in the initial deployment. The build-



ing is the primary building in an engineering depart-
ment. The building is divided into different depart-
ments with a range of physical space represented by
each department; each labeled department is a “land-
ing” in our current deployment. Not shown in the
building is an office tower that occupies the region
labeled ECOT; each floor of that 8 story structure is
also a “landing”. Currently, each “landing” occupies
considerable physical space, but this is an artifact of
our prototype system. We have demonstrated that we
can subdivide a small physical region into a number
of “landings” that measure≈ 100×100 sq. ft. For ex-
ample, the region labeled “ECCS” can easily be sub-
divided into four distinct regions.

The trade-off between the granularity of a “land-
ing” and the certainty in identifying which “landing”
the user may be visiting is a key compromise in the
system we designed. Unlike earlier systems that at-
tempted to provide meter-level resolution of physical
location, such as Radar, we opted to address larger
regions and provide navigational and training mecha-
nisms to allow the user to locate their true location
from the list of possible locations. The long-term
effectiveness of this technique can not be assessed
without a longitudinal usability study, but ourad hoc
assessment is that it provides considerable utility –
rather than force the software to be completely ac-
curate, we push part of the responsibility back to the
user. Overall, the system provides a usable location
based service for the intended applications.

3 DESIGN DECISIONS

The Mirage system relies on the ability to repre-
sent physical location using information gleaned from
wireless networks. Using three of the more common
pieces of information readily available from operating
system calls: MAC address, Signal Strength, and Sig-
nal Set Identifier (SSID) we are able to form a frame-
work in which we can represent a unique location as a
combination of these attributes. To better understand
how the Mirage system is capable of deducing loca-
tion it is beneficial to follow the life of a query in the
system.

Upon launching the desktop client the underlying
system calls are made to query surrounding wireless
networks, the three quantities necessary to represent
location are gathered and parsed into an appropriate
URL on the Mirage system. Once the query reaches
the Mirage system a series of checks are made to ver-
ify that the MAC addresses and their corresponding
SSID’s have been seen together before. This is a
crude check to warn Mirage of possible change to the
physical layout of the network (i.e. an access point
was moved or renamed). Since the SSID is the most

Figure 3: Screen Capture Showing Location

arbitrary quantity in the set this is by no means a guar-
antee but rather a hint that Mirage may not perform as
accurately as before. Once the verifications have been
made an “encoding-pair” scheme is formed in which
each MAC address is attached to its corresponding
signal strength and the total number of encoding pairs
being submitted is pre-pended and the query is passed
to the first “location blade”, the K Nearest Neighbor
module.

Mirage currently makes use of two separate and
well-known machine-learning algorithms to help
make a determination of location. The first of those
and the more general of the two is a weighted K Near-
est Neighbor (KNN). The reason for choosing KNN
is two fold: a) There is no training time to build a
model, andb) It can easily produce a ranking system
that provides feedback on what else is nearby.

The KNN algorithm depends on the definition of
a metric in a specific “feature space”; in general this
can be a significant challenge, however for our sys-
tem it is a straightforward hashing. Using each MAC
address as a unique offset into a vector, Mirage en-
codes the signal strengths into ann-dimensional vec-
tor, wheren is the number of unique MAC addresses
that have been seen by the desktop client. It is well
documented that the KNN model is decidedly inef-
fective if the feature space has more than ten dimen-
sions (Russell and Norvig, 2002); in the case of Mi-
rage we may have a space of 1000 or more dimen-
sions corresponding to 1000 unique MAC addresses
in the deployment area. Thus far in trials, we’ve ob-
served≈ 100 unique MAC addresses on single floor
of a building. However, these vectors are very sparse,
having only 4 or 5 non-zero entries; again in practice



the most we have ever observed on a single query is
7 non-zero entries –i.e. seven unique access points.
It is a unique feature of this kind of data that has an
almost implicit feature reduction mechanism; it is un-
likely that network administrators would install many
more wireless access points to compete for the three
available wireless channels.

Once the query vector has been encoded it must
be compared with the training set data. The training
data is pulled from the database server and formed
into vectors using the same hash that created the query
vector. It is important to note that in order to reduce
the size of the “online training set” (the set of data ac-
tually used to compute a given location) and therefore
the overall computation time for a given query, it is
necessary to prune the training data to include only
those entries which are “nearby”. For a training item
to be nearby it must have at least one MAC address
in common with the query, this helps prevent some
data items which may have generally low signal val-
ues from throwing the system off and also validates
the use of the metric. Once the online training set is
complete the metric is applied to each item in the set
and a distance is computed between it and the query.
In this case the metric used is the standard Euclidian
distance, with a slight modification for weighting. In
order to give more weight to a MAC address that the
query and the training item have in common we use
a multiplier to reduce the value of the term. In effect
this helps to correct for outlier signal values, which
may be very weak and so undercut the distance cal-
culation. The results of all the distance calculations
are then sorted in ascending order and the first K val-
ues are selected from the list. In general K is an odd
number and is usually less than ten. Mirage uses a K
of three that was derivedvia empirical testing. Each
training example is also tagged with a classification;
in this case it happens to be a “landing”. Using the
first K values, a majority computation is performed
to determine the most common classification of the
K nearest neighbors. This is the value assigned to
the query. In the case of a three-way tie the first or
closest neighbor is used as the classification. This
process then begins again, removing all training ex-
amples from the online data set with the classifica-
tion initially assigned to the query and proceeds until
all the classifications have been assigned a ranking.
Upon completion a set of classifications is produced
in order of proximity to the query. These results are
then returned to the web server and the appropriate
results web page is generated, as shown in Figure 3.

We specifically chose to limit the number of re-
turned locations because our initial testing indicated
that users were less receptive to a system that pre-
sented a large number of alternative locations – they
felt the system was defective rather than realizing the
importance of the probability of a particular location

estimate.
The generation of the base training set for use with

KNN is a very quick process. Using an automated
desktop client that uses the same database interface
as the end user version, an administrator can collect
wireless network data at a specified interval (i.e. ev-
ery two seconds during a scan) and submit the infor-
mation via a web based mechanism. The adminis-
trator simply indicates the current “landing” and then
walks through the physical area corresponding to the
landing. Once the data reaches the Mirage server it
is parsed into encoding pairs, tagged with a “landing”
classification and inserted into the database. The data
is then immediately ready for use by the next call of
the Mirage system.

The second level of location detection in the Mi-
rage system is done using a back propagation neural
network. This technique can provide a significantly
finer granularity in terms of distance than KNN (in
practice the neural net model has achieved accuracy
on the order of±1.5m), however there is a signif-
icant overhead associated with training the network.
We modeled the neural network algorithm on a sim-
ilar project at the University of Trento, Italy (Battiti
et al., 2002) and choose a three layer, fully connected
neural network structure. A fully connected neural
network implies that every node in layern is con-
nected to every node in layern + 1 except for the
output layer, which has no upward connections. The
input layer size is equal to the number of unique MAC
addresses in the nearby vicinity. This is potentially a
much smaller set than that which is used by the KNN
module, because the system has already performed a
level of determination. It is only necessary to include
MAC addresses present in training examples with the
same classification. This also means the network will
have to learn a much smaller variance with regards to
the input layer. The hidden layer of the network con-
sists of ten nodes; this parameter was derived empir-
ically and further investigation may prove to change
its size. The output layer of the network consists of
two nodes, one representing thex coordinate and the
other representing they coordinate. The result which
is presented at these outputs will represent the models
prediction of the physical location in(x, y) space of
the user that generated the query. In order to build the
model, the network must be trained on a set of data
specific to the physical location it is to model. Each
“landing” as specified by the KNN module will have a
corresponding neural net that has been trained specifi-
cally on examples that are considered to be physically
connected to it. Of course what belongs to a certain
landing is somewhat at the discretion of the admin-
istrator who first trains the system. The data itself is
very similar to the data used in the KNN module (i.e.
encoding pairs) except that the landing classification
is now an(x, y) coordinate pair.



This is perhaps the biggest draw back to the neu-
ral network approach, as it requires a very extensive
training set. Once a training set has been loaded, the
network is presented each example and the signal is
propagated to the output layer, the deviation of the
output and the stored classification is determined us-
ing Euclidian distance in the plane. This error signal
is sent back down through the layers and used to ad-
just the weights in the network. This process is re-
peated for each example in the training set and a run-
ning total of the squared error is kept to monitor the
network progress. The training is terminated once the
error rate per pass through the data or “epoch” has
crossed below a minimum threshold. At this point
the network structure is stored and can be used for
classification of new examples. The neural networks
generally train within a minute or two but can have
a training time as high as ten minutes depending on
training set size. Once the model is built and stored,
queries can be passed to it and encoded as a vector.
This vector is then presented to the input layer of the
network; the resulting signals are propagated upward
to the output layer and produce a set of coordinates.
These coordinates are then passed to the web server
and used to generate a location on the floor plan.

Although the neural network system can provide
fairly accurate location determination, it is still sensi-
tive to vagaries of RF propagation. In general, we’ve
found that the users of the prototype prefer to be pre-
sented with information that provides a higher assur-
ance of their location and which facilitates navigation
to the specific items of interest. Thus, rather than at-
tempting to determinee.g. the specific location of
a user in a hallway, it is better to display the whole
hallway and allow the user to zero in on the specific
room of interest. Since the rapid KNN classification
system is able to accurately determine location for
≈ 100 × 100 ft. regions, this places little practical
burden on the user.

4 EXPERIMENTS

To examine the accuracy of Mirage, we designed
several experiments to populate the system with vary-
ing numbers of training data points for different loca-
tions. We then launched the system at different posi-
tions within the trained location and recorded the rank
returned by the system. A rank of 1 means the sys-
tem returned our correct location, whereas a rank of 2
means the system thought our location was 2nd most
likely. All training data for these experiments was en-
tered and taken using an Apple iBook. All training
data points were taken at 2 second intervals walking
down the centers of hallways, or across rooms.

Our first experiment was in a seven story office

tower to examine the effects of physical barriers be-
tween landings. For floors 2-6 and 8 we used 90
points of training data per floor in order to create
existing landings for our experiments. On floor 7
we trained the system using 30, 45, 60, and 90 data
points. For each level of training, we then launched
the system at 10 different positions and recorded the
rank given to the 7th floor. For each of the 30,
35, 60, and 90 data points our system returned an
average rank of 2.0, 1.7, 1.8, and 1.2 respectively.
We conducted an ANOVA analysis comparing the
importance of the number of training samplesvs.
the wireless card used to evaluate a location. That
analysis indicated that the amount of training was
more significant than the type of card used, but the
predictive accuracy of the ANOVA model was very
low. Given The “mean rank” across different wireless
cards ranged from1.2 − 1.7.

Next, we used the building’s lobby to test landings
without physical barriers. We used the system to di-
vide the lobby into 3 logical zones (1 larger, and 2
smaller) which did not have any physical barriers. We
trained the two smaller areas with 60 data points and
the large area with 90. We then proceeded as before
and took 5 readings in each area, moving progres-
sively toward the invisible borders of the areas. Our
system returned an average rank of 1.0 for all three
partitions, indicating that our system is accurate even
in the absence of physical barriers.

Our final experiment addressed many small land-
ings in close proximity to one another. We trained
four smaller classrooms on the edges of a large class-
room. The smaller classrooms were trained with 20
data points while the larger classroom was trained
with 30. We then took readings in two of the smaller
classrooms and the one larger classroom in random
locations. Once again, our system returned an aver-
age rank of 1.0 for all three of the classrooms, show-
ing that our system is accurate in the presence of many
landings in close proximity.

From our experiments we can see that physical bar-
riers tend to affect the accuracy of the system. This
makes sense since radio propagation can be greatly
affected by shadowing affects produced by different
objects. However, even with such variances our sys-
tem was highly accurate; we think the accuracy could
be improved by training using a number of different
brands of wireless cards and using that card-specific
data for location queries.

5 PRIOR AND RELATED WORK

The benefits of location detecting systems have
been well explored and documented over the past
decade or so. The advent of systems such as GPS and



the cellular telephone network have allowed a multi-
tude of applications to be developed using their wide
infrastructure. However, there are several downfalls
with the previously mentioned technologies. GPS,
for example, has trouble providing accurate readings
indoors, and both GPS and cellular networks require
specialized hardware and software to be able to use.
These problems have led to the development of a
handful of systems which attempt to use more com-
mon hardware and ubiquitous infrastructures to pro-
vide location information.

Many systems now use ’beacons’ such as 802.11
wireless access points and cellular towers, to help de-
termine location. In all of these systems, the bea-
cons must be recorded (Byers and Kormann, 2003)
in some fashion in order to determine location. An
example of such a system is PlaceLab (Schilit et al.,
2003). The PlaceLab client notes the current beacons
which it sees, and then checks a previously populated
database to attempt to determine the user’s location.
The database is pre-populated either with location in-
formation provided by the owner of the network, or
by “war-driving” where a user travels through a city
with a GPS unit marking the location of any seen bea-
con. In either case, previous access point location in-
formation must be known and entered into the system
before the client can report accurate data. However,
the benefit of such a system is that it works indoors as
well as outdoors.

PlaceLab was also designed to provide location de-
tection in the absence of a data network. In practice,
installing PlaceLab on a laptop requires installing an
SQL database, a webserver and desktop clients. By
providing “client side” location information, Place-
Lab not only provides location services in the absence
of network connectivity, it also preserves anonymity
by not exposing location information or queries to
centralized systems.

A few other specifically indoor location systems in-
clude RADAR (Bahl and Padmananbhan, 2000) and
Cricket (Priyantha et al., 2000). RADAR uses spe-
cial base stations that process the signal strength in-
formation of RF signals. The locations of the base
stations must be previously known for this system,
and the system requires extensive training. In our
own implementation of a system similar to this, we
found that the training data was very sensitive to room
and building configurations. Each major change in
that configuration (e.g.moving a metal filing cabinet)
required retraining. In part, this was caused by the
over-specification of the final location; in many cases,
users are willing to trade precision for accuracy. Sim-
ilarly, the Cricket location system uses special bea-
cons that emit ultrasonic pulses combined with radio
signals to determine distance measurements. Again,
the location of the beacons must be previously deter-
mined and a mapping must be established between

geo-spatial coordinates and the semantic coordinates
of the tagged items.

The Cooltown system (Kindberg et al.,
2002)(Caswell and Debate, 2000) uses infrared
beacons to mark specific locations and regions. An
earlier implementation of our system used Cooltown
“beacons” to designate locations at the level of indi-
vidual rooms. We found that maintaining the beacons
was cumbersome. Moreover, considerable software
was needed to detect and react to the beacons. One
benefit of IR-based systems such as Cooltown is that
the system can determine the direction the user is
facing and then use that information to guide the
user. However, the complexity of guiding users to
point their IR receivers in the intended direction is
considerable; we theorize that it would be better
to simply present a photo to the user indicating the
direction that theyshouldface to make sense of the
information presented. We plan on evaluating this
decision for a museum docent we are deploying.

Another system utilizing only 802.11 access points
is the ActiveCampus system (Griswold et al., 2002).
ActiveCampus uses the reported RF signal strength
from currently seen access points and infers the user’s
location by a least-squares fit algorithm; the loca-
tion of the access points must be known in advance.
However, the ActiveCampus system provides the lo-
cation service independent of an underlying applica-
tion framework. This means the locations can be used
by applications such as “chat” or “graffiti”, but it also
means that there is little support for casual orad hoc
use of location information.

Our system differentiates itself from the above ap-
proaches by not necessarily needing to know the ex-
act locations of access points, or know their locations
in advance. If a user comes across an unknown ac-
cess point, they can create a landing at that location
which other users can connect to later. Also, our sys-
tem learns from use where specific access points are,
and never needs to be given strict location information
about any access point. Furthermore, our system re-
quires no special hardware because it uses the existing
802.11 infrastructure. Conveniently, this infrastruc-
ture is being deployed rapidly in a large percentage of
places where people spend most of their time.

In addition, our system protects a user’s privacy
while still being extensible in such a way that if a user
wishes to reveal more information about him/herself,
other features are possible such as a buddy list or ’last
seen at’ person finder.

6 CONCLUSION

Overall, our experience with Mirage has demon-
strate the tradeoff between accuracy and usability as



well the necessity of using existing Internet applica-
tions where possible. At the current time, it is possi-
ble to “map” a sizable building in a few hours and to
provide meaningful location-based content in a simi-
lar amount of time. This implies that location-based
systems may be able to move from being academic
“science projects” to being usable systems that ad-
dress the needs of an increasingly mobile workforce.
It also opens new applications for location based sys-
tems, including meetings, conferences and other tem-
porary events.

Both the K Nearest Neighbor and neural network
models appear to offer advantages in the Mirage sys-
tem. The KNN system has a very low setup time and
can become accurate with a very sparse training set.
It also can be updated rapidly and facilitates rapid de-
ployment of location base information space. Unfor-
tunately, it is not able to pick out the subtle differences
once the distances become very close together, such
as in the same room. On the other hand the neural
network approach requires a high overhead of train-
ing examples and training time so it is not nearly as
easily configured. However, once in place it can pro-
duce extremely accurate results. Current investigation
is being directed at producing very high-resolution
training sets for use in the neural network to possibly
extend accuracy even further and the corresponding
work on determining how to incorporate that more ac-
curate information into meaningful location based ap-
plications. In either case the Mirage system provides
an ensemble approach to location determination that
is capable of satisfying both the “quick and dirty” set
up and the much more finely tuned requirements.

The modular structure of the “location blades”
should allow us to interface to different data sources
to provide useful location information even in
the absence of specific training sets. For ex-
ample, theWireless Geographic Logging Engine
(http://www.wigle.net) provides pervasive mappings
of wireless information to approximate geo-spatial
information. It should be possible to build “feder-
ated” Mirage server that uses that information to di-
rect users to existing location-based search engines,
such as those provided by Google or Yahoo.

At the current time, the Mirage system is being de-
veloped under an “open source” development model
that will allow the rapid expansion of location-based
systems. The complete system will be available for
download in May 2005.

REFERENCES

Bahl, P. and Padmananbhan, V. N. (2000). Radar: An in-
building rf-based user location and tracking system. In
IEEE INFOCOM 2000, Tel-Aviv, Israel. IEEE Com-
puter Society Press.

Battiti, R., Le, N. T., and Villani, A. (2002). Location-aware
computing: a neural network model for determining
location in wireless lans. Technical Report Technical
Report DIT-02-083, Informatica e Telecomunicazioni,
University of Trento.

Byers, S. and Kormann, D. (2003). 802.11b access point
mapping. InCommunications of the ACM, volume
46, no. 5, pages 41–46.

Caswell, D. and Debate, P. (2000). Creating web represen-
tations for places. InIn Proceedings of the Second In-
ternational Symposium on Handheld and Ubiquitio,us
Computing (HUC 2000), Bristol, UK.

Cheverst, K., Davies, N., Mitchell, K., and Friday, A.
(2000). Experiences of developing and deploying a
context-awar tourist guide: The guide project. In
Proceedings of MOBICOM 2000, Boston, MA. ACM
Press.

Griswold, W. G., Shanahan, P., Brown, S. W., , R. B.,
Ratto, M., Shapiro, R. B., and Truong, T. M. (2002).
Activecampus — experiments in community-oriented
ubiquitous computing. InTechnical Repeort CS2003-
0750, UC San Diego. Computer Science and Engi-
neering.

Gruteser, M. and Grunwald, D. (2003). Enhancing location
privacy in wireless lan through disposable interface
identifiers: a quantitative analysis. InProceedings
of the 1st ACM international workshop on Wireless
mobile applications and services on WLAN hotspots,
pages 46–55. ACM Press.

Hightower, J. and Borriello, G. (2001). Location systems
for ubiquitous computing.IEEE Computer, 34(8):57–
66.

Kindberg, T., Barton, J., Morgan, J., Becker, G., Bedner, I.,
Caswell, D., Debaty, P., Gopal, G., Frid, M., Krishnan,
V., Morris, H., Pering, C., Schettino, J., Serra, B., and
Spasojevic, M. (2002). People, places, things: Web
presence for the real world.MONET, 7(5).

MediaWiki-Foundation, T. (2004).
Mediawiki development.
http://mediawiki.sourceforge.net.

Priyantha, N. B., Chakraborty, A., and Balakrishnan, H.
(2000). The cricket location-support system. InPro-
ceedings of the 6th ACM MOBICOM, Boston, MA.

Russell and Norvig (2002).Artificial Intelligence, A mod-
ern Approach. Prentice Hall Series in Artifical Intel-
ligence. Prentice Hall. Chapter 20 Statistical Models
(pg 733).

Schilit, B. N., LaMarca, A., Borriello, G., Griswold,
W., McDonald, D., Lazowska, E., Balachandran, A.,
Hong, J., and Iverson, V. (2003). Challenge: Ubiqui-
tous location-aware computing and the “place lab” ini-
tiative. In The First ACM International Workshop on
Wireless Mobile Applications and Services on WLAN
(WMASH 2003). ACM Press.


