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Thesis directed by Professor Richard H. Byrd

Limited Memory BFFGS method (L-BFGS) has been shown to be an
effective way to solve large scale optimization problems. Generally, an m-step
Limited Memory method is essentially a quasi-Newton method where only m
of the updates to the n x n Hessian approximation are stored (m < n). In this
dissertation, we present an implementation of the Limited Memory Symrﬁetric
Rank One method (L-SR1) with the assistance of the compact representation
of SR1 updates. Our numerical experiments indicate that the performance of |
L-SR1 method is sensitive to the initial scaling parameter and with our special
choice, it can perform comparably with the L-BFGS method. We also prove the
global and Q-linear local convergence, which is actually true for any Hessian

approximations as long as they are uniformly bounded.
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CHAPTER 1
INTRODUCTION

1.1 Definition of Unconstrained Optimization Problems

Optimization problems are not created by scientists, but come from
the real world. The simple exampie 1s to find the highest point of a throw with
the initial speed given. More sophisticated examples and applications can be
found in science, engineering, economics and other disciplines. Basically, any
problem involving ascertaining the maximum or minimum could be catalogued
to the field of optimization. For instance, the growing rate of a given vegetable,
say celery, is a function of several factors such as soil, moisture, sunshine and
temperature. All these factors should be appropriately controlled. Otherwise,
the celery will not grow well or even die. For each such factor, there is a most
appropriate level such that celery grows at its fastest rate. The way to find
such an optimal setting based on a given objective function is the subject of
numerical optimizaﬁion, or simply optimization.

The systematic study of numerical optimization can only be traced
back to 1940’s, although Newton’s method had long been known by that time.
It was the invention of the computer that started the all-round study of nu-
‘merical optimization, and indeed, of the whole numerical analysis. In 1959,
Davidon first introduced the so-called Variablekmet'ric methods, bfinging re-
searchers out of studying problems of special structures. There is no doubt

that the 1970’s were the paramount in the development of optimization. In
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those years, Broyden, F]etchér, Goldfarb and Shanno discovered the BFGS
method independently, and Powell proved its superlinear convergence without
exact line search. Moreover, Dennis, Moré and Ortega established a rigor-
ous numerical optimizavtio'n theory and discovered several impértant tools for
further study. Ndwadays, people are concentrating on methods for supercom-
puting and for solving large-scale problems, which are considered to be the
research direction of the future. Some others are still enjoyjng refining the
optimization theory.

Mathematically, an optimization problem can be defined as

minimize f(z) w1)
such that z € S.
where z € R"™ and § is a subset of R*. If S = R™, we say that the problem
is unconstrained, otherwise it is constrained. In this dissertation, we will
talk about unconstrained problems only. Actually, constrained problems can
sometimes be tackled by being related to unconstrained problems.

There are currently plenty of methods to solve unconstrained opti- .

mization problems. They are all based on the same iteration idea: repeat
The1 = Tk + Sk, (1.2)

until an acceptable z; is found; only in the way to compute s;, do they differ.
Typically, for équasi-Newton methods, sp = =X\ By g or s, = —(Bj, + z/k)'llgk,
where Ag,vp > 0, g = Vf(zy) and By is an n X n matrix approximating
the Hessian V?f(z;). Basically, all small problems today can be well worked
out by quasi-Newton methods; if what we are concerned about is just local
minimizers. But for large problems (saying n > 500), even though we can

finally get the answer, the computing time is frequently unbearable. A single



mafrix-vector multiplication for s; takes n? scalar multiplications. Also, to
store the matrix 'B,k, we need n* memory locations. That means for a problem
of size 5000, we need at least 25M memory locations. Not to mention the case
when n is as big as millions.

There is no clear-cut answer as to which method is superior to others.
Maﬁy issues have to be taken into account when we choose a method to solve
a specific problem. This is especially true for large-scale problems, since they
come in all sorts of forms. Among all the distinct classes of methods is the
class of limited memory methods. Limited memory methods are appropriate for
large problems in which the Hessian matrix cannot be computed-at reasonable
cost and there is no advantage we can take on the structure of the objective
function. |

In the next two sections, we will briefly review methods related to
large scale unconstrained optimization in which the structure of the objective

function is unknown.

1.2 Methods Requiring O(n?) Memory
Methods in this class require at least n? memory locations to store an
n X n matrix. The typical ones are Newton’s method and all kinds of standard

quasi-Newton methods.

e Newton’s Method:
Newton’s method is the very first method to tackle optimization prob-

lems. Its sy is solved from the linear system
Gksk = —dGk, : (13)

where g, = V f(zy) and Gr = V?f(zx). Its local convergence rate is pretty



fast: Q-quadratic, For a problem of dimension less than 50, only 5 ~ 15
iterations are required to achieve a 7-digit precision. This ideal property is
preserved even when we approximate Gy using finite differences. The biggest
disadvantage of Newton’s method is the availability of Hessian matrix V2f(z).
Even it is available, n? function evaluations at a single iteration are often too
éxpensive. The other weakness of the Newton’s method is that we have to take
O(n®) solve an n x n linear system at each iteration. Unless G} has a good
sparsity structure, it is in practice impossible to get the exact ‘solyution within

acceptable time.

e Quasi-Newton Methods:

These methods solve a similar system to Newton’s method:
Brsy = —gr, (1.4)

where By, is a nonsingular symmetric (hopefully also positive definite) square

matrix updated at each iteration by some formula of the form:

By = U(Bi-1, Yr—1, Sk-1), (1.5)

where yr = Vf(2r41) — Vf(zx). In order to achieve the Q-superlinear con-
vergence, By is required to approximate Véf(xk) at least in the direction of
5. The well known methods, DFP, BFGS and SR1 are in this class. Among
them, BFGS I;as been proved a fast and reliable method of practical applica-
tions. SR1 is an awkward method, even though its performance is in general
a little better than BFGS. The problem is, the SR1 update is not guara,nﬁeed
to be nonsingular, even when the iterate is close enough to the solution, not
to mention the positive definiteness of B;. However, SR1 method has its own

unique wonder: it terminates on a quadratic function in at most n-+1 iterations.



More work is needed on the SR1 method. Asfor DFP method, experiments
have shown that it is slower than almost all the other existing Quasi-Newton
methods.

Quasi-Newton methods are usually a little bit slower than Newton’s
method. For example, for a problem of diménsion less than 50, BFGS method
requires about 10 ~ 40 iterations to achieve a 7-digit precision. However, quasi-
Newton methods do not need the Hessian matrix V2 f(z) for its computation.
All it needs is the gradient V f(z). Also, the n x n linear system (1.4) can
be solved with O(n?) operations. Compared to the Newton’s method, it is a

considerable saving.

1.3 Methods Requiring O(n) Memory

Methods in this class require at most O(n) memory locations to store
some n-dimensional vectors. The typical ones are Truncated Newton method
and all kinds of limited memory methods.
¢ Truncated Newton Method:

The Truncated Newton method originates from the conjugate gradi-
ent method. Hestenes and Steifel’s original conjugate gradient method solves
the linear system (1.3) within n (inner-)iterations over the following procedure.

Initially, po = ro = —~G’k35€0) — go. At j-th iteration,
T 12/ T o, iy =1 — (s
ay = ”TJI P; “kpPj, Ti+1 = T; — &;jGgpy,

Bi = llrsallP/lirsllP, pisa = 1w + Bipy,
sV = s + ayp;.

Note that, although we have the Hessian matrix G}, in the formula, all we

really need is the vector value of Gyp;, which can be approximated By a finite



difference with one more gradient evaluation.
Nash (1984)’s Truncated Newton method solves the Newton system
(1.3) approximately by the conjugate gradient method with a preconditioner.

The termination of the inner iteration is based on the standard

A (pred) -
Afy (p;)
(pred)

where j 1s the céunter for the ifmer iteration and A f,""*"(p) is the predicted re-
duction of function value at z; along direction p, Af,ﬁ’”ed) (p) = pTgr+ 1p" Grp.
This test guarantees a linear rate of convergence and also detects the conver-
gence of the inner loop.

T.he Truncated Newton method is considered a successful algorithm
for solving large-scale unconstrained optimization problems. It has been im-

plemented as a software package, TNPACK.

e Limited Memory Quasi-Newton Methods:

Since the early works by Buckley (1978a,b), Nazareth (1979) and No-
cedal (1980), limited memory methods have received expanding consideration
in the past two decades. It is mainly because they are considered as methods
filling the gap between conjugate gradient and Quasi-Newton methods. The for-
mer use only O(n) memory locations, but converge rather slowly and require
expensive line searches; on the other hand, quasi-Newton methods have the
" converse featurjes: fast rate of convergence (theoretically superlinear), no need
for exact line skearches7 but large memory requirement, namely O(n*) storage
locations. The actual amount of storage required by limited memory methods
is variable and can be determined by the availability of space.

There are actually two distinct approaches to limited memory meth-

ods. The first was introduced by Buckley (1978a,b), and Buckley and LeNir



(1983). It has two stages, the BFGS stage and the conjugate gradient stage.
In the BFGS stage, they update the BI'GS matrix just for few steps, in which
the BFGS matrices are not formed, but ére represented by a set of vectors.
In the conjugate gr@dient stage, they use the matrix from the first stage as a
preconditioner for the conjugate gradient method.

Then, Nocedal (1980) realized the potential of the single use of the
first stage and developed an elegant two-loop algorithm of the limited memory
BFGS (L-BFGS) method. This approach takes a pure quasi-Newton point of
view. Tt is identical to the standard BFGS method in all its implementation
except that the BFGS matrix is not explicitly present. The studies by Gilbert
and Lemaréchal (1989), and Nash and Nocedal (1989) indicate that L—BFGS
outperforms Buckley’s limited memory method and can be as pfomising as
Truncated Newton method. Liu and Nocedal (1989) proved its R-linear con-
vergence. The algorithm performs well for a very small m between 2 and 5, and
big n ranging from 100 to 10,000. It needs just 2mn + 2n memory locations
for the whole algorithm and 4mn + 2n multiplications per iteration.

In general, it has been observed that the Hessian approximation Bj
defined by (1.5) is actually a matrix made of k pairs of information: (yx_y,s._y),
(Ye—2,8k—2)s -« (Yo, 80). If we apply (1.5) m times, and write By_,, as By,

then we can get a “partial” Hessian matrix

Bk = U(U( o U(BL‘,ank-—m)Sk——rn), t ‘),Z/k~—1,5k—1)'
N —

m

Instead of explicitly storing the matrix By, we store in memory the “initial ma-
trix” Byo and the m most recent vector pairs {yr—i, si—; }7%,. After computing
the new iterate, the oldest pair is deleted from the set {Yk—i, se_i}7, and is

replaced by the newest one.
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If we choose By to be Byg = il where 7, is a positive number,
then B}, can be stored implicitly with 2mn + 1 locations of memory. Compared
to the original quasi-Newton method, limited memory methods save memory

significantly, if m < n.

1.4 Motivation and Overview

The work by Conn, Gould and Toint (1991), Khalfan, Byrd and Schn-
abel (1990), and Byrd, Khalfan and Schnabel (1993) reveals that the Symmet-
ric Rank One (SR1) method is competitive with BFGS method in both theory
and practice. In some sense, SR1 is even better. Now that the L-BFGS is
- cfficient in practice, a natural question is then: How about limited memory
SR1 method (L-SR1)? Can it be implemented with no more than 2mn + 2n
memory locations and 4mn + 2n multiplications per iteration?

Recent work by Byrd, Nocedal and Schnabel (1992) made the answer
positive. They derived the compact representations for the SR1 update and
pointed out the possibility of L-SR1 implementation using the compact form.
We also note that Sally (1992) had an interesting test of L-SR1 method. He
explicitly formed the L-SR1 matrix B,gLSRl) in memory and used a modified
Cholesky decomposition to make it safely positive definite. Then the line search
strategy was used to safeguard the convergence. His result shows that the -
BFGS method clearly dominates. It is worth mentioning that he chose the
initial scaling parameter 4 to be Nye—i|1*/vi_ sk-1.

In this dissertation, we discuss the implementation of 1-SR1 method.
Different from the L-BFGS method which is line search based, our L-SR1
method is trust-region based. That is, at each iteration, we solve a trust region

subproblem. Because of the special structure of L-SR1 matrix, the subproblem
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can be solved very efficiently with a little bit more memory than the L-BFGS

method.

In Chapter 1, we briefly summarize some fundamental issues in uncon-
strained optimization which are related to algorithms for large-scale probiems.
Then in Chapter 2, we prepare basic knowledge for limited memory method,

vespecially L-BFGS and L-SR1. After that, we discuss the L-SR1 methéd in

Chapter 3. Because of the importance of the initial scaling parameter ~;, we
devote the whole Chapter 4 tb its analysis and computation. In Chapter 5, we
analyze the memory and time expenses of our L-SR1 algorithm. In the same
chapter, we also prove the global and Q-linear local convergence of the L-SR1
algorithm. These convergence results are actually true fo‘r general Hessian ap-
proximations as long as they are uniformly bounded. In Chapter 6, we do some
numerical comparisons between the -SRI method and the L-BFGS method.
Finally, we have a short summary in Chapter 7.

Except for explicitly specified, the norm || - || we use throughout the

thesis means the Fuclidean norm.



CHAPTER 2
BACKGROUND

Suppose we are given the unconstrained optimization problem

minimize f(z),
(2.1)
r R

and we hope to solve it by iterative method. At the k-th iteration, we compute |
an acceptable step s; and then advance the iterate from zj to the next point
Try1 = Tk + Sk Thus, the ascertainment of (2.1) can be reduced to find an

acceptable si, which means
flar 4+ sk) < flzr) + aggsk, (2.2)

where g = V f(z;) and « is a constant in (0, 1) and usually we take o = 1074,
Following is the general optimization procedure. The focus of this thesis will
be mainly in Step 3, how to compute s.1

Algorithm 2.1 OPT_FRAME (IN: f,zo; OUT: z,)

1. k:=0;

2. DO WHILE V f(zy) is not close enough to zero
3. Compute sg;

4. Tyl = T + Sk;

5. k:=k+1;

6. END DO;

T. Ty i= T

8.

return. { success }
O

1Sometimes, we also call s a step. A reader should not be confused with their meanings.
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There are two widely used strategies for computing s;, line search
and trust region methods, which will be briefly addressed in the next section.
These two strategies use a Hessian approximation matrix By to adjust the
steepest descent direction —g}v When By is the exact genuine Hessian, it is
called Newton’s method. When By, is constructed with first order information,
it is called quasi-Newton method. Usually, By is stored in memory with an
n X n array.

We are interested in quasi-Newton methods only. Quasi-Newton

Hessian? By, is usually updated at every iteration by some formula of the form
Bk-l-l - U(Bkayka‘sk)) k (23)

where v, = gry1 — gi 1s the displacement of gradients. The two most widely
used quasi-Newton methods are the well-known BFGS and the SRI, whose

updating formulae are

BssTB  yyT
BFGS )= B — ‘
U (B, y,s) TBs T 475 (2.4)
and
SR1 (y — Bs)(y — Bs)"
=B .
U ' (B,y,S) + (y—BS)TS (25)
respectively.

For BFGS update (2.4), it is guaranteed that, if By, is positive definite

“and y{s; > 0, then the new matrix By = UBFCS (B yy, s4) is also positive
definite. But for SR1 update (2.5), we don’t have such a desired result even

when the objective function f(z) is strictly convex.

2Sometimes, we also call a quasi-Newton Hessian matrix By Hessian matrix. In situations
where we need to differentiate between a real Hessian and a quasi-Hessian, an adjective like
“real”, “true” or “genuine” is added for the real Hessian V2 f(z).
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If the Hessian matrix By, is positive definite, then — B gy, is a descent
direction. We can use either line search or trust region method to compute sy.

But if By, is indefinite, — By 'gx is not necessarily a descent direction any more.

The trust region strategy is then recommended.

2.1 Global Strategies

 Aswe just mentioned, line search and trust region methods ére two
widely used strategies for computing s;. Both are proved in practice very
effective, aﬁd in theory to possess global and fast local convergence under
appropriate ‘conditior‘ls.

2.1.1 Line Search Method Let dj be a descent direction of

f(z) at @, or Vgldy < 0. Typical descent directions can be —G¢lgx, —B; gx
or just —gx, if Gx = V?f(xx) and By, are positive definite. Find a steplength
Ak € (0,1] such that

Flae + Xedy) < flar) + oMV f (i) dy, (2.6)

Vf(zk + Aedi)Tdi > BV f(zi)T dy, (2.7)

where the two constants o and § satisfy « € (0,1) and 8 € («,1). Then
let skv: Aedy. We call (2.6) the a-condition, (2.7) the #-condition and (2.6),
(2.7) together the Wolfe condition. The a-condition ensures that the function
is reduced sufﬁciently, and the f-condition prevents the steps from being too
small. It is easy to show that if dy is a descent direction, f(z) is continuously
differentiable and {f(zr + Ady) : A > 0} is bounded below, then there is a
steplength Ay > 0 WhiCh‘ satisfies the Wolfe condition. Followiﬁg is a sample
algorithm which finds a Ay > 0 such that both (2.6) and (2.7) are true.
Algorithm 2.2 LINE_SEARCH (IN: f, 2y, di; OUT: Ay)
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Ar=1, A =1, N:=0, )\, :=0;
DO WHILE either (2.6) or (2.7) is not satisfied
IF (2.6) is satisfied THEN

IF X, =0 THEN
Ap 1= 2% A
ELSE
Ap = 0.5% (A 4+ A,);
END IF;
ELSE
Ay 1= A

IF A > A THEN X := A_;
backtrack Ay from (A, A,);
END IF;
A=A A=
END DO;
Ap = A

return.

Note that the f-condition implies that
yisp > —(1 — Br)gl sk > 0.

So, the BFGS method with line search (2.6)-(2.7) retains the positive definite-
ness of its Hessian matrix. This is an important feature, because the line search

direction dj, is usually computed by
dp = —B;lgk .

When By, is pésitive definite, the search direction is then automatically descent.
Another important property for line search (2.6)-(2.7) is the admissibility of
stepleﬁgth one when zj is close enough to the solution z,, proved by Dennis
and Moré (1974). This allows the q-superlinear convergence, which is desirable
by all regular quasi-Newton methods. When we implement line search method,

we always try A\p = 1 first.
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In practice, we usually ignore the g-condition, and backtrack \ until
a-condition is satisfied. When a step which Violates yisk > 0 is detected, the
update simply skip it. However, for Limited Memory mefhods, all information
pairs {y;, s;} are precious. None of them should be skipped imprudently. VA15,
the Harwell subroutine for Limited Memory BFGS method, uses both a- and
[-conditions. |

2.1.2 Trust Region Method In view of the good performance -
of the steepest descent direction —g, when z is remote to solution and the
quasi-Newton direction —B; g, when zy 1s close to solution, it would be de.z—
sirable to locate the new iterate in a direction like —(By + vI)" gy, where the
scalar v is chosen so that the matrix Bk + v1 is positive definite. Hopefully,
we have v = 0 when it is close to solution and v > 0 when —B; 'g, predicts an
unexpected direction.

Precisely, at each iteration, we solve the quadratic trust region sub-

problem
minimize f(zx) + V f(zr)"s + 157 Bys (2.8)
' 2.
such that |[s|| < &
where 65, is the trust region radius. If we define the R' — R™ function
Sv) = ~(Be + 1)1V f(a), (2.9

then when By is positive definite and |[s;(0)|| < &, the Newton step s5(0)

solves (2.8). Otherwise, some v = v, > Iy such that
[s: ()] = 6 - - (2:10)
can solve (2.8), where

vp = — min {0, all eigenvalues of By}.
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We see that, for ‘crﬁst region method, the Hessian By does not necessarily have
to be positive definite.

While the one—dimensional equation problem (2.10) is crucial to the
success of trust region method, the update of é also plays a signiﬁéant role.

We can define the ratio :
Afr
Aflgpred)
as the accuracy to which the quadratic model f(zx) + V f(zx)Tsi + 157 Brsy

approximates f(zy + si), where

Te 1
Af,lgp d) — HVf(ij)TSk — 535Bk5k7

Afe = flzr) = f(zr + sp).

vThen we decrease the trust region radius when we have to and increase it
adaptively when the quadratic model maintains a certain degreé of agreement
with the original function. We always try to make ¢ as large as possible
(internal doubling). But when z is close to the solution, ideaﬂy the constraint
of (2.8) should be inactive. Before proceeding to any specific method for solving
(2.10), we would like to give a prototype algorithm for updating & first.
Algorithm 2.3 TRUST_REGION_UPDATE_1 (IN: f, zy, By, 6;
OUT: sk, 6x41)

compute s based on &y;
IF f(zx + sx) > f(zx) + agf s, THEN
DO
reduce 6y;
compute sx based on &y;
UNTIL f(oy + ) < f(a) + agF s
ELSE IF s is not Newton step AND Afy >+ Af%*) THEN
DO

b_ 1= 0p, s_ 1= 8y;

© 0N D A 0N
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10. O 1= 2% &y;

11. compute s based on g;

12. UNTIL s is Newton step OR Afy < % AfFred
13. IF f(zx + sk) > f(zx + s=) THEN s := s_;

14.  END IF; ’

15 (Sk-}-l = 5k§

16. return.

We will use Algorithm 2.3 for the L-SR1 algorithm. However, there is
aﬁother trust region updating technique which evaluates the objective function
once per iteration. For completion, we list it here as Algorithm 2.4, where p
and ¢ are constants, 0 < ¢ < pu < 1.

Algorithm 2.4 TRUST_REGION_UPDATE.2 (IN: f, zy, By, 65
' OUT: sk, 6r41)

1. compute s based on ¢;
2. IF Afy < px AfP THEN
3. Sryr = |[sll/4;
4. ELSE IF s; is Newton step AND Afy > (1 — p) * Af,ﬁp’“ed) THEN
5. 5k+1 = 26k§
6. ELSE
7. 5k+1 = 5k3
8. END IF,
9. IF Afp < £+ AfP*) THEN s, = 0;
10.  return.

Now we turn to ways to compute s; based on the current trust region
radius &, (Step 1, 5 and 11 of Algorithm 2.3). Since no finite method exists
for solving (2.10), we have to consider computational alternatives. There are

several successful strategies. Interested reader can refer to the book by Dennis
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and Schnabel (1983). The most straightforward method is to eigendecompose
- By, first and then solve a one-dimensional rootfinding problem. Basically, if we

have the eigendecomposition of matrix By,

w1 0 .o 0
0 [#55) T

By = K, K] (2.11)
0 -+ 0 w,

where Kj is an orthonormal matrix and all w;’s are eigenvalues of By, then

equation (2.10) can be reduced to

(V) — 65 =0 (212)
where
_ 2 G :
hv) = I = L s, (2.1
and ) i k
91
e
L gn .

We can see that (2.12) can be easily solved by applying Newton’s iterative
method.

This ‘qmethod has an obvious drawback. The eigendecompositionw
(2.11) can be very expensive. When n is large (n > 100), it can make the
algorithm unbearably slow. However, for specially structured By, its eigende-
composition may have some special way out. The discovery of compact forms
of quasi-Newton matrices by Byrd, Nocedal and Schnabel (1992) makes it pos-

- sible for all quasi-Newton methods to have a cheap eigendecomposition of their
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Hessian matrices.
Finally, we give the algorithm to compute the step sy.

Algorithm 2.5 TRUST REGION_STEP (IN: By, gk, 6x; OUT: s, newton)

1. [K,Q)] := eigendecomposition (By);
2. DEFINE function ¢(v) by (2.13);

3. IFall w; >0 AND ¢,(0) < 62 THEN
4. v = 0; -

5. newton :=TRUFE;

6. ELSE

7. find vy > max{0, —w;} from (2.12) by Newton’s method;
8. newton := FALSE,

9. END IF; |

10. compute s;, by (2.9);

11. return.

2.2 Limited Memory BFGS Method
The BIGS update was discovered independently by Broyden,
Fletcher, Goldfarb, and Shanno in 1970. Given B,EBFGS), Sp = Tjy1 — T

and yr = gri1 — g, the new BI'GS update for the next iteration is

BF B
R(BFGS) _ pBFGS) _ B W), 7 pBFGS
k+1 k sgB,EBFGS)Sk jykTSk'

if pBFGS) (BFGS) .

1s symmetric positive definite and ylsy > 0, then By
also symmetric positive definite. Powell (1976) proved that, if f(z) is strictly
convex, then for any positive definite starting matrix By and any starting point
zo, the BFGS method gives liminf ||gx|| = 0. The Dennis-Moré (1974) theory
then guaranfees the Q-superlinear convergence.

The BFGS method is fast and robust, and is currently being used to

solve a myriad of optimization problems. A natural idea is then try to get a



19

limited memory method based on it. When studying L-BFGS, Nocedal (1980)

considered the inverse BFFGS formula of the form

BFGS BFGS '
Hiy ) =V H] Wi + pjsssT

and applied it m times recursively, where p; = l/ijsj is a scalar and
Vi =1~ pjy;s]

i1s an n X n matrix. Formally, the inverse L-BFGS Hessian is

(LBFGS) _
. =

H VI VEVHO Vi - Viy)

+ pk——m(l/kj-j—l to ‘/Ic];m+1)sk—m‘sz—m(%“m+1 e %“1>
+ Pk—m+1(Vk7;1 T ij;m+2)3k—m+15kT—m+1 (Vk—m+2 U Vk~1)
+

T
4+ Pr—18k-1Sk_1-

It looks bizarre. But the computation of line search direction d;, =

_HéLBFGS)

g can be very efficient. Following is the famous two-loop re-
cursion pseudo-code for the case when ngo)‘ = 7,I. The line search direction is

finally stored in vector dj.

Algorithm 2.6 L-BFGS_DIRECTION

(IN: 1™, e, ol (it 51-i )7 OUT: dy)

pr-1 = 1)y sk

q = Gk

DO FOR:=1,2,...,m

' Qi = pk~iSZ~iq
q=4q— Ok jYk—y

END DO;

dp = Hq
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DOi=m,m-1,...,1

B = pr-iyi_id
dp = di + (ap—i — ) Sk—s
END DO;
return.
O
Note that, we don’t have to calculate all py_;,7 = 1,2,...,m, every

time when Algorithm 2.6 is called. There are always (m — 1) of them can be

Vs diagonal, a total of 4mn + 2n

carried from iteration to iteration. So, if H,£°
multiplications and 2mn 4 2n memory locations are needed for step matrix
computation.

The L-BFGS method is considered a successful new tool in solv-
ing large-scale unconstrained optimization problems. Liu and Nocedal (1989)
showed its R-linear convergence and reported an obvious win of L-BFGS over
Buckley and LeNir’s (1983) Variable Storage Conjugate Gradient method.
Nash and Nocedal (1991)’s work revealed a close tie with Truncated New-
ton’s method. L-BFGS has been collected into Harwell Subroutine Library as
VALS.

L—BFGS method can be also implemented through the compact form
of BFGS formula. Its computation cost and memory requirement can be the

same as those of the two-loop recursion. One can refer to Byrd, Nocedal and

Schnabel (1992) for details.

2.3 Standard SR1 Method
The Symmetric Rank One update (2.5) was first introduced by Davi-

don (1959) and then re-discovered by several other researchers about ten years
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later. It is the only symmetric rank one method which satisfies the quasi-
Newton condition Byyqs; = y. Although its formula is simpler, it does share
some nice properties with other quasi-Newton methods. The first vproperty
below is even unique to SR1 update.

Properties: Suppose the objective function f is a strictly convex
quadratic function, f(z) = 127Gz, where G is a symmetric positive definite

matrix, and the Hessian matrices are defined by

SR1
BOMY = p

' 1
(SR1) n (yr — B;£SR )Sk)(yk - B,ESRDSIC)T
k .

(2.14)
(yr — B]E:SRl)Sk)TSk

(1) If we take quasi-Newton step sj, = —[B,ESRl)]“lgk at each iteration and
all the steps are linearly independent, then the SR1 method terminates
B(SRl )

within n + 1 iterations with B;7"" = G.

(2) SRI method with exact line searches terminates within ny < n itera-

tions and the following is true for j = 1,2,... n,
BEM s =y, i=12,.

sTGs; =0, 1=1,2,...,5—1.

Also, if ny = n, then Bg?l) =G,

(3) SRI1 method is scaling invariant. That is, for a general objective func-
tion f; if we make a nonsingular transformation # = Az and apply
the same method to the new optimization problem ;n7izn J(A7'%) with

zER™

éSRl) — A—-TB(()SR“]‘)“,4“‘17 then QN;k = ALCk for all

initial #o = Azg and B
k> 1.
SR1 method had been taken for granted as a method of “fatal flaw”

since its discovery, even though careful numerical computation suggests a good
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perspective. Nevertheless, it is understandable. SR1 update does not necessar-
ily produce a positive definite matrix B,f_?h when B,ESRI) is positive definite
and ygsk’ > 0, and in fact, the dénominator (yk — B,gSRl)sk)T sk can be sud-
denly exactly zero when we apply the method to a strictly convex quadratic
problem.

Recently, several new theoretical and experimental studies have re-
versed the traditional prejudice. In‘ste‘ad of being considered inherently weak, it
is now regarded by many researchers as a serious challenger to BFGS method,
especially in applications where the positive definiteness of BFGS matrix is
hard to retain.

Conn, Gould and Toint (1991) showed that, if the sequence of steps

{sr} is uniformly linearly independent (u.l.i.), and
T . ,
(?/k - B;SSR’l’sk) sk 0 | (2.15)

and .
(yk - B£SR1)81<> Sk

e — B,ESRl)sk

cos by =

> p (2.16)
skl

for some constant p € (0,1), then the Hessian approximations {BI(CSRI)} gen-
erated by SR1 formula converge globally to the true Hessian V2 f(z,). It is re-
ally a unique result because for all other superlinearly convergent quasi-Newton

methods, one can expect at most

H [B,gSRl) - Vif(ibk)J 3;@'

= o(|lsk]])-

Khalfan, Byrd and Schnabel (1990) proved that, SR1 method is actually (n4-1)-

step Q-superlinearly and (2n)-step Q-quadratically convergent even with the

B,ESRD

u.l.i. condition replaced by the boundedness of
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Numerical experiments indicate that SR1 method appears to be sub-
stantially competitive with other quasi-Newton methods, like BFGS, especially
when trust region method is used to solve subproblems. In some cases, SRI1'
method shows slight superiérity over BFGS method. One of the possible rea-
sons is that when an iterate is remote to a local optimizer, there is no reason to
assume any positive definiteness of the true Hessian at that point. Therefore,
any approximation of positive definiteness (e.g. BFGS) does not reflect the
fact and might prevent the iterate from a longer step.

Since we haven’t known much about the behavior of denominator

SR1) \7 . |
yr — By Sk | sk yet, 1t 1s suggested that the safeguard check

‘ T
o s

be enforced at each iteration. Whenever a violation is detected, the update is

skipped, or B,E?_?l) = B,gSRl). Note that, condition (2.17) includes both (2.15)

(SR1)

;p]]wak el llse] (2.17)

and (2.16). One could refer to Khalfan, Byrd and Schnabel (1990) for more
implementation skills.
It is worth mentioning here that SR1 method is self-dual, that is, the

SR1) _ [BzESRl)]_l

inverse SR1 matrix H,ﬁ can be computed recursively by a

similar formula:

T
(Sk B HéSRhyk> <Sk _ H}gSRl)y}g)
T
<5k - H§SRI)yk> Yk

2.4 Limited Memory SR1 Method

H(SRlyz H;ESRI) .

Generally, let By be a quasi-Newton matrix defined by (2.3). Note
that this is a recursively defined matrix. The raw data are information pairs

{yi,s:}i0}. To get a formula of By with respect to the raw data, we have to
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recursively apply (2.3) k times. Now we recursively apply (2.3) just a certain
number of times, saying m. Then we get a formula for Bk depending only on

Bj_,, and the m most recent vector palrs {yi,s }1_k_ .

Bk - U(U( c U( Bk——ma Yk—m» Sk——m)) e ‘)) yk—175k—1)~ (219)
N

Instead of storing the matrices By, we store in memory the “initial matrix”
By, and the m most recent vector pairs {yi,s,-}f__fkl_m. After computing the
new iterate, the oldest pair {yr—m, Sk—m } ié deleted from the set and is replaced
by the newest one {y, sr}. Bim in (2.19) is usaually rewritten as By.

If we choose Bkk,o to be By = vl where 74 is a positive number, then
By, can be stored implicitly with 2mn 4 1 locations of memory. Compared to
the original n?, limited memory methods. save memory significantly, if m < n.

If we apply the SRI update (2.14) m times recursively to itself, we
get the so-called L-SR1 formula According to Byrd Nocedal and Schnabel

(1992), the L-SR1I formula can be written in a compact form:

BMRD oo QT (2.20)
where
Qr = Yi— ﬁsk,
My = Wy =SS, (2.21)
Sk = [Sk-m -~ Sk-2 Sp-1],
Vi = [Yrom o Yr—2 Yr-1],
and

yijjrk~m—lsj+k—7h—l if ¢ <y, ;
[Wili; = | (2.22)

T .
Yiphomet Sitk—m—1 1L 1> 7.
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However, in that paper, the authors did not give any implementation details
on step computation. They did point out that condition (2.15) is equivalent to
the nonsingulaﬁty of thé principal minors of M}, which could be tested when
compufing a triangular factorization of M} without pivoting. But they failed
to find out the counterpart of condition (2.16).

Matrix Wy is interesting. It is symmetric and its upper triangular
is identical to that of Y,CTSk. ’We now know that, an SRI update is valid
only if all its previous denominators are nonzero, which is equivalent to the
nonsingularity of all principal minors of M. But even if some principal minors
of My are singular, the whole matrix M, may still be invertible. That méans,
Q\}ell if some previous denominators are zero, the current SR1 matrix can stil]
be well defined through the compact form (2.20). This reveals that SR1 update
is kind of “self-adjustable” and explains why the SR1 matrix update should be
rarely skipped.

The inverse formula of B,gLSRl) can also be obtained by app]ying the

‘inverse SR1 update (2.18) m times recursively. We will use it to choose an

(LSR1)
k

appropriate -y, to make B positive definite in the next chapter.

1 1 = 1 - 1 !
Vi Tk Tk Tk

where

T e

. Yighom—1Sith-m-1 11 < g,
[Wili; = (2.24)

Yibmt Sjtkeme T 1> 5.

Note that Wy is a symmetric matrix whose lower triangular is identical to that

Of YkTS)C.






CHAPTER 3
DESCRIPTION OF THE L-SR1 METHOD

In the beginning of Chapter 2, we gave a program frame for general
~ optimization algorithm, Algorithm 2.1, where Step 3 will be carried out by
Algorithm 2.3 for our L-SR1 method. We also mentioned there that we would
like to use Algorithm 2.5 for Step 1, 5 and 11 of Algorithm 2.3. In this chapter,
we will give the frame of L-SR1 algorithm first, and then describe some of
Algorithm 2;3 and 2.5 in details, especially the way to eigendecompose Hessian?
By (Step 1 of Algorithm 2.5) and the way to compute s;, (Step 11 of Algorithm

2.5). We will leave the computation of initial 75 to the next chapter.

3.1 The L-SR1 Algorithm
The L-SR1 algorithm is basically a trust region method (Algorithm

2.3) with a different way to compute the step s;. Following is the algorithm,

where a and p are two constants. We take the value o = 10~ and p = .

Algorithm 3.1 L-SRI (IN: f,zo; OUT: z.)

L.~ k:=0;

2. DO WHILE g is not close enough to zero

3. compute initial vx;

4. finiteness assurance and index adjustment;
3. compute s; based on éy;

6. IF f(or 4+ sk) > f(zr) + agl sy THEN

7. 607"[3] = 6k)

8. DO

'From this Chapter on, we will use By, exclusively for B,(CL_SRI) unless explicitly specified.



10.
11.
12.

13.
14.
15.
16.
17.
18.
19.

20

21.
22.
23.
24.
25.
26.
27.

We will devote all of Chapter 4 to this issue. For now, we can assume it is
a positive number. The finiteness assurance and index adjustment (Step 4)

deals with a cosine value condition similar to (2.16) and index adjustment

reduce &y;
compute s; based on &;
UNTIL f(zr + si) < fax) + agf si;
Okt1 := max (6, 0.050,mi0 };
ELSE IF ||sx|| = 6x AND Afy, > p+ Af7*) THEN
DO
b 1= by, s_ = sy
5}c = 25k;
compute s based on &;
UNTIL ||sg]l < 6 OR Afy < o+ AfFed
Spq1 =6
IF f(xr + sk) > f(zr 4+ s-) THEN s 1= s_;
END IF;
Tyt 1= Tp + Sy g1 = V[ (Trp1);
update Y and S; { and others }
k:=k+1;
END DO;
Ty 1= Tp
return.

27

The computation of initial v; (Step 3) is very important for our study.

if the condition fails. This will be covered in Section 3.2. Since the [-SR1

matrix has special structure, its eigendecomposition and step assembly can be
much cheaper’ than its original version (Algorithm 2.5). We will talk about

step computation (Step 5, 10 and 17) in Section 3.3. The last section of this

chapter will discuss the trust region radius reduction when the current step is

not acceptable.
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3.2 Finiteness Assurance and Index Adjustment

Since the standard SR1 method performs well only if both (2.15) and
(2.16) hold, a natural question is then: How to test (2.15) and (2.16) with the
compact form (2.20)? For standard SR1 method, we have B,ESRI) in memory
and therefore the test of (2.15) and (2.16) is just some simple matrix/vector
operations. But for ‘L-SRI method, we don’t have any recursively-defined in-
tefmediate matrices Blg%SRl) in memory. More importantly, we don’t Want to
have any expensive extra cost on computation. In this section, we will talk
about how to test the cosine value condition efficiently and how to adjust the

Hessian when some defects are detected.

3.2.1 Finiteness Assurance  The recursively-defined version of

B;iLSRl) can be written as
B = B 4 il (3.1
8
where
Tk = Ykemis — BIE,I}SRI)Sk—mm - (32)
and |
Mg = ThjShemeti (3.3)
With BESRD 3, 7 siven, we will arrive at the identity BZSRD pLSRD
See Byrd, Nocedal and Schnabel (1992) for details.
If we define
cos by, = Mk,j (3.4)

[ | [ Ta——y

then the counterparts of (2.15) and (2.16) can then be expressed officially by

Mk; # 0 and |cos by ;| > p, v (3.5)
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or
(1,31 > pllrsillllse-msll, (3.6)

for all j = 0,1,...,m —1. We call (3.6) the finiteness assurance of the L-

SR1 method. Since B,gLSRl)

; 1s not explicitly stored in memory, the finiteness

assurance can not be easily executed as in the implementation of standard SR.1
method.

Before stating the theorem that leads to the algorithm for computing
both m; ; and |cos 0y |, we introduce a special notation. Let E be a matrix.
We use [Elijis 5,5, to denote the (i — 21 + 1) X (jo — 4, + 1) submatrix of £
that is the intersection block of rows 7, through 7, with columns 7, through
J2. We use [E; .., to déﬁote the (j2 — j1 + 1)-dimensional row vector which
consists of ji-th through' j2-th elements on row 2. We use [E]y4, 7 to denote

the (i3 — 71 + 1)-dimensional column vector which consists of. 21-th through

superscript

subscript. alWays represents for

i2-th elements on column j. The notation [F£]
({E}subscﬂpt)superscript_
Theorem 3.2 Given m x m symmetric square matrix M; defined by (2.21).
If all its leading submatrices are nonsingular, then there is a unique m x m
unit lower triangular matrix Ly and a unique m x m diagonal matrix H}, such
that

My, = Lt ALY (3.7)

Moreover,
Ak = diag (Uk,o; Mey - 771c,m——1) . (38)

Proof:
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We prove the uniqueness first. Suppose M has another decomposi-

tion of the form (3.7),

3

My = E2V AL LT
where Ly, is a unit lower triangular matrix and Hy is a diagonaﬂ matrix. Then
Lili' Ay = A LTLT. (3.9)

The left hand side of (3.9) is a lower triangular matrix while the right hand
side an upper triangular one. So both sides of (3.9) are actually a diagonal
matrix. That means i}kL;1 is a diagonal matrix with all diagonal entries being
one. Thus L} = f/k and furthermore A; = Ak.

"To prove the existence of the decomposition, we make the following

notations for the reason of simplicity.

M = [Milijsnig41,
Qk,j - [Qk]l:n,l:j+17

: T
Uk, = Qk,j—15k—m+j)

Ak, = {Qk]flrzn,j-i-l Sk—m+j-

where, for a certain j, My; is a (7 +1) x (j + 1) square matrices; @y ; is an
n % (j + 1) matrix; uy; is j-vectors; and ay ; is a scalar. The index J can run
from 0 through m — 1.

Forj =0,1,...,m—1, let Hy; be the (j+1) x (j+1) diagonal matrix
defined by

Ar; = diag (ko M1y - -5 k5

and Ly ; the (7 +1) x (5 + 1) unit lower triangular matrix defined recursively
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by
kaj_l 0
Lk»]—
K, 1

where Lg,—y and [y can be considered empty (Thus, Lio = [1]) and
los = = [MRT 1@k i1 Skt (3.10)
What we will prove is actually a more general result:
My = Li s Ag ;LT S (3.a1)

for y =0,1,...,m—1. Thé existence of the decomposition (3.7) is simply the
special case of (3.11) when j = m — 1. We prove (3.11) by induction.
The correctness for j = 0 is trivial. Now suppose (3.11) is also true
for 7 — 1, ie.,

= T
Mpj1=Lg,; Aria Ly .

We can verify that

My 1w
My ; ;
ki
and
Lyj1 0 Mo ugy Liiy
LMy LE; = ’ ] ’ B
l;{,j 1 u{] ap,; 0 1
L. M. . LT, 0
. kyg—1iWk -1 5y
] 0 Qr; + uz,jlk,j
But the identity
LSR1)
Bi)]’

=l + Qo M Qi (3.12)
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together with (3.2) and (3.3) implies that
Nk = Qg ; + u;l;jlk,j-

Therefore,
| My = L A LT
O
We may call (3.7) the inverse LDL”T decomposition of My, since
it can be implemented block by block forwards, a similar pattern as in doing ’
LDLT decomposition. We show the algorithm skeleton in Algorithm 3.3. The
cost of the inverse LDLT decomposition of an m x m matrix is %mg’ flops, the

same as LDLY decomposition.

Algorithm 3.3 INVERSE LDL? (IN: M; OUT: L, A)

FOR ) )=0TOm—-1DO

' L;I+1,1:j = —‘Lr{:j,l:j f:},ujf?l:j,l:le:j,jJrl;
Ajp101 0= Lipn g Magjan + Mgy jaq;
END FOR; :
return.

The inverse LDLT decomposition can be carried out to the end if
and only if all the leading submatrices of M} are nonsingular. Since we can
not make any éssumption other than symmetry on M}, numerical stability can
be a problem. However, this decomposition is purely for finiteness assurance.
Few digits accuracy is actually good enough for us. Also, after each step of
Algorithm 3.3, we will check condition (3.6), and then reshuffie the order of
information pairs {pr_, si—i}%; so that no zero will show up on the diagonal

of Ay. We will discuss this in detail in the next subsection.
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Theorem 3.4 Suppose the matrix My has inverse LD L” decomposition (3.7),
where Ly, is a unit lower triangular matrix and A; is a diagonal matrix. Then
the cosine values defined by (3.4) can be computed by

[Ak]JH,J-H

H‘Sk m+]”\/ J+11m Qka] [Lk]]-i-llm.

cos Oy ; =

(3.13)

Proof:
By (3.2) and (3.12),

LSR1
Tkg = yk—m+j_Bl(c,j )Sk——mﬂ’

= [Qilinjy1 + Qrjo1lr;

I j
= Qu;| |,
| .,

where the symbols () ; and [;, ; are defined in the proof of the previous theorem.

Then

sl = QML ol

Mk,j
7kl 18k —rmets ]
‘ [Akljs1,5+1
ki 1y L8 1,20 (QF Q] Lk it

COSs gk,j =

g
In reality, we prefer to using a scaled version of M) and Q for the

finiteness assurance. Let

Dy = diag(|[sk-mll; -+, llse—2ll, llsk-1]]). (3.14)

Define the scaled version of Q; and M by

Qr = QeDy!

M, = D;'MiD;'.
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Then the L-SR1 matrix can be rewritten as
Br =yl + Qu M QF .

Suppose we have the inverse LDLT decompositions to matrices M,

and Mk,

Since

M, = Dy'MD;!
= D'L AL DL

= (Dy L D) (D A D) (DF L D)™
by the uniqueness of inverse LDL? decomposition, we must have that

L. = DpL.Dt

A, = DyAiDy.

Thus

?

(D ArDiljs1,541
Iskems 13/ [Dx L D7 1,10 QT Q1) [Dk L D 1y 1o
[Akb’i“l,]"i-l

- )

\/[Lk]j-i—l,l:m[D};l QngDk*l]{Ek]};l,l:m

cosOr; =

and the cosine value condition (3.6) can be finally reduced to

{Ak}?+1,]‘+1 > P2 ) [Ek]jJrl,l:m[Di;lQkapizl}[zk]?+1,1:m7 (3~15)

which is the condition we will use in real computation.
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3.2.2 Index Adjustment We discuss how to efficiently incor-
porate the process of inverse LDLT decomposition and finiteness assurance
together to fix possible defects of the L-SR1 matrix Bj.

 To start, let’s take a look at the mechanism how By is stored and
updated in memory. Since we don’t have the explicit expression of By in
memory, By is actually represented by some other quantities. Logically, if we
have Y}, Sk and v in memory, the whole matrix B), and therefore all its related
‘computations can be retrieved through the (2mn + 1) memory locations.

First, we store the n x m array Y in Cy and S} m Ls. The order
is maintained through an index table I;. Thus, the actual slots for Yk—; and
sg—j will be the Jy(m — j + 1)-th columns of Ly and Lg, respectively. When
By, is updated, we replace the Ii(1)-th column of Ly by thé new y; and the
same column of Lg by sp. Then let [i(7) = Li(j+ 1) for y = 1,2,....,m — 1
and Ir(m) point to the position where the previous I;(1) points to.

Second, as we pointed out in the previous subsection, the inverse
LDLT decomposition is carried out in a block-by-block-forward pattern. If we
examine the procedure carefully, we can find out that the j-th step touches
information pairs {yx—:, sk—i}/%,,_; only. At the same time, the j-th finiteness
assurance touches only the same information pairs. The rest, {y_;, sk,i}zn:;j—l,
remains intact. So, we don’t have to start ﬁniteness assurance after the finish of
LDL" decomposition. And also, if at some moment j the finiteness assurance
fails, we don’t have to drop the current information pair (yx_pm.;, Sk—m+j). But
instead, we can keep them by temporarily swapping them with some other
Palr {Yr-mte; Sk-m+c}, ¢ < j, which can make the finiteness assurance pass.

If no such pair exists, we ignore all the remaining information and reduce m
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to the real size. We believe this is a better strategy than simply dropping
(yk;m+j,8k_m+j)‘ The swapping can be easily carried out by using the index
table I;.
‘ So, our m is actually not a constant, it can vary from iteration to
iteration. A Better represéntation can be fwo symbols my and my;, with m,
being the real size and my;, being the maximum size. But using the single
symbol m does not seem to bother our presentation and analysis. We Will keep
the way as it is. |
Following is the algorithm for both finiteness assurance and adjust- -
ment of Hessian By. For simplicity, the index techniqvue is not shown on ma- -

trix/vector operations.

Algorithm 3.5 FINITENESS (IN: Dk,Mk,Qng; OUT: I )

J = candidate := 0;
My, .= D' MDY
DO WHILE j < m
k) 0= =000l ARG k) 1 [ M 415
(A1 = (Ll 1 [Miluggen + [Midj i
IF (3.15) is true THEN ‘
7 = candidate := 7 + 1;
ELSE
candidate = candidate + 1;
IF candidate < m THEN
swap Ip(j + 1) with [;(candidate + 1);
ELSE
mi=j;
break DO;
END IF;
END IF:
END DO;

return.
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Obviously, the matrix M}, after finiteness assurance and index adjust-

ment is invertible.

3.3 Computation of Step s;

As we see from Section 2.1.2 that, the eigendecomposition of Hessian
By, is required to solve the trust region subproblem, which usually costs tremen-
dous compufation. However, if we take advantage of the special structure of
L-SR1 matrix, the cost can be lowered significantly.

Let Dy be the diagonal scaling matrix defined by (3.14). Since
D'QTQD; ' is symmetric semi-positive definite, it has singular-value de-

composition of the form
Di'Qy QD = Uk SiUL, (3.16)

where X, 1s an m x m diagonal matrix and Uy an orthonormal matrix.
Then the matrix Sy UF Dy M DyULY is also symmetric. Let ¢ be its

rank. It can be eigendecoméosed into the form
SkUL DM Dy ULS, = VALV (3.17)

where Ay is a ¢ x t nonsingular diagonal matrix and V4 an m x ¢ orthonormal
matrix.
%

We claim that the diagonal entries of matrix v,/ 4 Ay, are By’s eigen-

values and the columns of the matrix
Py, = QeM DU VAL

are the corresponding eigenvecfors. All the other eigenvalues of By are 7;. To

prove the claim, let Zj; be an n x (n —t) orthonormal matrix spanning the null

space of Qy, i.e. QL Zy = 0 and Z{ Zy = I.
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Theorem 3.6 The n x n matrix K} defined by
Ky =[P, 7]

is orthonormal and the Hessian By defined by (2.20) can be eigendecomposed

as
I+ A 0 '
Bo=k,| & KT
0 Yid ‘
Proof:

The matrix K} is obviously orthonormal if we notice that P/ P, = I,

Z,?Zk = [ and Png = (. In addition,

Qilr = [QiF 0]
= [QTQuM[ ' DU L VAT 0]

= [DUSeVi 0]
Therefore

KI'BuK, = KI(l+QiM'QTVK,
= wl+ K[ QM QY K,
el +Ay 0
0 yil
O
We will show later that the presence of Zj is actually not necessary
for our computation, since all we need to know‘afbout Zy, 1s the square matrix
Zx ZL, which can be expressed by 5 =1~ P.PL.
Let -

Qp = Vil + Ag.
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Then
¢e(v) = eI
, . 9
Qp + vl 0 T
= Kk 9k
0 (m+u)!
12
B (e +vI) Pl g,
(e +v) 2L g
‘_ ZT ”2
— Q ] IPT : 2 ” k 9k )
(Q + 1) kgk1!+‘”“’*_”(7k+l/)2
But
1Z¢ g1 lI” = g (I — P PT)gs.
So we have
_ S 12, laell? = 16k ’
be(v) = (e +vD)0] + v (3.18)
where '
by = A VIS UL DM QT g, (3.19)

If we use the Newton’s method to solve the one-dimensional equation ¢r(v) —

6f = 0, the derivative of ¢z(v) with respect to v can be calculated by

der(v)

) (O 1) b= 2 (el - ) S+ 0 (3.20)

After getting vy, the computationbof sk(vg) can then be

Sk(l/) = (Bk—i—ykf)“lgk
-1
. Q. + vl 0
= K| &Y g,
0 (ve +v)I

= — [P %A+ P+ (e ) 2028 ] g

— [(’Yk + 1/)*1] + P ([Qk + I/I]_1 — ["Yk - l/]—1]> PkT] G-
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So, the actual formula for computing s, is

1
Tk + Vg

(gr — Qrhs), (3.21)

sk = sk(ve) = —

where

hk = M;:leUkEkV}C(Qk + I/kf)—lbk. ' (3.22)

We can see that, since m < n, the main cost for computing sy is the
matrix/vector multiplication Q7 g, in (3.19) and Qihy in (3.21). All the other
operations are minor. We will discuss the cost in detail in Chapter 5.

Algorithm 3.7 L-SR1_STEP (IN: Dy, My, Qx, Ay, S, Ur, Vi, vi, g, b

OUT: s;)

S (12 Mgl — 16 f?
1. DEFINE ¢y(v) = |[Ax + (v + 7)1] b + T
2. IF Ay + 3 positive definite AND ¢(0) < 62 THEN
3. vy = 0; v
4. ELSE
5. » ! = 1.1 + max (0, —min_eigenvalue (Ay, + ,1));
6. solve ¢r(v) = 67 with initial I/ISO) to get vy;
7.  END IF;
8. hy = M;leUkEka[Ak -+ (I/;C + ’Yk)]]—}bk}
9. Sk = —~7k ¥ (gk - Qkhk);
10. return.

There is in fact another way to compute the step s5. We describe it in
Appendix B. However, we believe the method we present here is numerically

more stable.
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3.4 Updating Trust Region Radius

Given the trust region radius Ok, we can .get a solution s, to the
quadratic subproblem (2.8), no matter what method is used to solve the sub-
problem. However, the step s; such obtained is not necessarily a good step
for the’original problem (2.1). Sb, after getting s, we have an acceptance
test (2.2) to see if the objective funcfion value is decreased significantly at
ok + sg. If ), fails the test, it means f(x) vibrates a lot at z, or B, is a bad
approximation to the true Hessian V*f(z;). ‘A natural way to proceed is to
keep backtracking 65 until (2.2) is satisfied. The reduction factor can be de-
termined by the quadratic model ¢x(é) which approximates f (:vk + -—i—sk>.

sl

With ¢x(0) = f(zx), gx(lfsell) = f(zx + sx) and ¢ (0) = g si/||sk|| are given,

qx(8) is uniquely determined and its minimizer is

T
6}(€pred) _ G Sk

2 f(ar +se) = f(z) — g k) ol

It §{rred) ¢ [556k, 26k], we accept 577 as new & Otherwise, we set new &y, to
the closer endpoint of this interval. Here is the algorithm in detail.

Algorithm 3.8 TR_RADIUS_REDCTN (IN Gk, Sk, f(a:k)7f(:ck + Sk);

INOUT: &)
1. IF ||sg]l = 6 THEN § := |[ss]S
2. IF f(zp + sp) = f(xk) +ggsk THEN
3. § = 0-5513;
4. ELSE '
5. 8 := —0.5|[skllgi si/[f(zk + si) = f(zk) — gl si];
6. IF 6 <0.16, THEN
7. 6 1= 0.1;
8. ELSE IF 6 > 0.56;, THEN
9 § 1= 0560
10. ELSE
11. 6= 5k;
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12. END IF;
13.  END IF;
14. & :=6;

15. return.

Now, suppose we finally find an acceptable step sj- with the trust
region radius 6;. If §; is the original trust region radius in the beginning of the

current iteration, we update
Spy1 = max{&,’c, iék} .
, 20
for the next iteration. The term §;/20 is supposed to avoid the influence of
possibly too many contractions of trust region over the next iteration. It is
necessary because sometimes By is so bad that (2.2) holds only when ||s,|| is
sufficiently small while Bj41 might be pretty good.
If an s passes test (2.2) at the first try, it might be because of a

recovered By and a good quadratic model (2.8). In this case we should give it

a chance to make a bigger stride. Formally, if
AR — AL < BIAS (3.23)
where

re 1 ' '
AfFY = §(I/k\18kl|z*ggsk)

Afe = flog) — flzg + s8),

then we increase §; by a certain ratio until either (2.2) or (3.23) does not hold
any more. We let 8,4 be the last accepted 6 for the next iteration. If at some
moment the Newton step happens (s, = —B; gy ), we stop expanding the

trust region and let dpq1 = ||sz]].



CHAPTER 4
CHOOSING THE SCALING PARAMETER

As we know, for standard quasi-Newton methods, the initial Hessian

approximation does not play a significant role in the performance. Usually, we
T
Yo S0

So Doso

choose By = I initially, and then after the first iteration, we use I as

initial Hessian for updating, or

- l [ S .
! 30 BOSO ,y07 0

For limited memory methods, we can certainly do the same thing. But
since we have lots of information in hand at the beginning of each iteration,
we should be able to have a better initial guess for B,ﬁ‘)). Usually, we let B,(co)

be the scalar matrix ;I where «; is computed by either

Hyk—lﬂ2 ykT~13k—1
Uiy Sk llsr—1l]?’

(4.1)

as long as yi_;si—1 > 0. Nocedal and Liu (1989) reported the importance of
7 to L-BFGS method. They even tried a diagonal initial Hessian but it does
not seem to have significant superiority over some scalar ones.

In thivs chapter, we will compare several different ways to compute the
parameter v, for L-SR1 method. It looks like that our new method described
in Section 4.3 is significantly superior to all others.

Traditionally, we call v, the scaling parameter and B,ﬁ") the scaling
matrix. But we will see in Section 4.3 that, with the new method, ~; is not

simply a scaling parameter any more, it can change the Hessian’s pattern.
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4.1 Traditional Scaling Parameter

| ‘The traditional practice for choosing 7 is to let it be one of the
two listed in (4.1), provided yg_lsk;l > 0. Since |lyp—1]]*/vi_ 851 >
Yi_18k—1/|[sk=1]|?, we can consider Nye—1l*/yE_1 k-1 as the “biggest” eigenvalue
of the true Hessian V2 f(zx_1) and y}_;sp—1/|[sk-1]|* the “smallest”. Many re-
searchers observe that the choice of v, has significant effect for L-BFGS method
z;nd llyr—1|l*/yE_,sk—1 appears to be the best.

Abtually, there is another reasonable choice of ;. It is the geometric

mean of the two formers, ||yx_1]|/|[sk-1]|. Since

vicise—t _ lyr=ill _ Nlyees]?
Hsk—1”2 N ”5k~1|| B yg-lsk—l’

it looks like that||yk—1]|/||sk-1]| can be a better choice. But our numerical test
for L-SR1 shows that, the bigger the scaling parameter, the better its perfor-
mance. Table 4.1 and 4.2 show the comparisons between the three choices.
The test problems are selected from CUTE (We'll talk more about the test
problems in Chapter 6). Their sizes for the experiment in Table 4.1 and 4.2
care all 100. The parameter m is set to 4. For the convenience of comparison,
we list only those problems upon which all the methods run successfully.
Although the superiority of bigger scaling parameter 0§er small ones is
slight and even controversial for some test problems, this phenomenon persists
in all of our experiments. While the real reason is unknown, we speculate
that a bigger x 1s easier to make Newton steps and therefore speeds up the
convergence.

Another thing we can see from Table 4.1 and 4.2 is that the number,

fun

. )
tn



Table 4.1: Traditional Scaling Parameters (M1/M2/M3/M4)

Pname itn fun
ARGLINA 1/1/1/2 3/3/3/4
ARGLINC 2/2/2/3 15/15/15/4
ARWHEAD 7/8/9/10 11/14/15/11
BDQRTIC 41/49/43/43 98/119/97/53
BROYDNTD 50/42/43/73 97/83/86/17
BRYBND 167/155/35/104 | 418/394/66/115

COSINE 7/7/7/13 - 9/9/9/36
CRAGGLVY | 88/112/85/64 211/258/202/66
‘DQDRTIC 14/13/9/18 38/35/18/24

DQRTIC 46/43/45/38 86/69/78/41

ENGVALL 15/13/21/14 31/22/40/15
FLETCBV2 | 336/303/230/165 | 892/768/587/175
FREUROTH 17/22/16/17 56/64/38/25
LIARWHD 18/17/18/20 31/28/31/23
MANCINO 10/10/10/13 18/26/26/17
MOREBV | 234/287/320/351 | 573/688/807/365

NCB20B 96/96/101/98 250/223/224/106

M1: L-SR1 with v = y7_ sk 1/|lse-1||%;
M2: L-SR1 with v, = ||ys—1]|/]|s5-1]l;

M3: L-SR1 with v = |lye-1]|?/vi_ s6-1;
M4: L-BFGS with v = [Jye—1||*/yi_56-1.
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Table 4.2: Traditional Scaling Parameters (MI/M2/M3/M4), continue

Pname itn fun
NONCVXUN | 289/247/380/177 749/571/954/186
NONDIA 10/10/10/17 20/20/20/19
PENALTY1 115/127/117/49 254/304/307/61

'PENALTY? 15/16/16/16 22/37/28/17
POWELLSG 31/38/33/37 80/109/90/45
POWER 78/65/54/46 199/165/145/48
QUARTC 46/43/45/38 86/69/78/41
SCHMVETT 29/30/25/23 55/69/52/28
SENSORS 19/19/21/19 30/30/32/21
SINQUAD 82/62/63/80 308/179/170/109
SPARSQUR 21/27/23/21 28/43/33/22
SPMSRTLS 95/101/98/62 217/213/222/68
SROSENBR 12/18/13/14 17/35/24/17
TOINTGSS 11/8/8/21 29/19/24/30
TQUARTIC 16/14/13/16 30/30/26/24
TRIDIA 395/433/409/223 1009/1007/962/240
WOODS 103/95/96,/108 279/232/258 /133
Total 2516/2533/2419/2013 | 6249/5950/5767/2266

MI: L-SR1 with v, = y! se 1 /|[se-1]|%;

M2: L-SR1 with vu = ||ys—1]l/I[sk-1]];

M3: L-SRI with v, = [|ye_1]|*/yl_ sr-1;

M4: L-BFGS with v, = |lys_1]|®/vi_ sk-1.

46
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the ratio of the number éf function evaluations (fun) to the number of iferations
(itn), looks irrational. In average, they are 2.48, 2.35 and 2.38, respectively for
M1, M2 and M3. | .

The method M4 in Table 4.1 and 4.2 is the result for L-BFGS method.
As we can see, both L-SR1 and L-BFGS methods have some wins and losses
in the number ofkitérations with L-BFGS win in average. But talking about

the number of function evaluations, L-BFGS wins definitely.

4.2 Osborne and Sun’s Positive Scalar
It looks like that the losing of the L-SR1 with traditional scaling
parameters is because of the lack of Newton steps'. One can confirm this by
having a preview of Table 4.6, where the test problems are all stricﬂy convex
and the “0” in the “0/1” strings means indefinite L-SR1 matrix. It clearly
shows that the L-SR1 matrices can be indefinite anywhere, no matter how
| close the iterate is close to the solution and how convex the objective function
is. |
Without Newton step, trust region method tends to change the radius
6 frequently so that the solution to subproblem model predicts a better descent
direction for the original problem. To have Newton steps, a positive definite
Hessian is imperative. Now, let’s have a look at the issue of positive definiteness
of SR1 updates.
We know that the standard SR1 Hessian matrix is not necessarily
positive definite. Although this creates some difficulty in theoretical analysis,

it might explain why standard SR1 method is generally a little bit faster than

1By the term “Newton step”, here we mean the step sp = ~—Bglgk. Sometimes, we use
another term “full step” for it. ‘
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standard BFGS method in unconstrained optimization.
However, a positive definite Hessian is highly desirable when the ob-
jective function becomes convex as the iterates approach the local minimizer.

Osborne and Sun (1988) presented a scaled version of SR1 update (OSSR1)
(OSSR1)

that if yFs, > 0 and B; is positive definite, then the new matrix
B,g?lsSRl) updated by
( | (OSSR ) ( (OSSR1) )T
Yr — wi By Sk )\ ye — wi By Sk
B}g?lSSRl) _ kalgOSSRl) n

T
(yk . ka;EOSSRl)Sk> s)
(4.2)

is positive definite if and only if the scaling parameter wy, is chosen such that

OSSR1)1~*
ylsr e [B,ﬁ )} o
0 <w, < or wy >
TR L pOSSRI * y sk

They a,lso*‘presented a way to compute wy, by following an analysis by Davidon
(1975). However their numerical experiment showed that a value of Luk diﬂ?erent
from one should be applied selectively only to some iterations. Following 1s
the kalgorithm for computing wy, suggested by Osborne and Sun (They call it
OCSSR1). |
Algorithm 4.1 SSR1.SCALAR (IN: BLOSSRD o o 0UT: wy)

OSSR,
a:=yl[B 7 )

b=y sk;
B,EOSSRl)sk'

iy

ks

ci= st
IF b >a THEN
wy =1
ELSE
A= 4/(c/b)? —c/a;
0y :=c/b+ A,
by i=c/b— A
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c— bl

IF (6;) > (6;) THEN

wi = 1/0y;
ELSE
wy = 1/0y;
END IF;
END IF;

return.

Generally, OSSR1 method is worse than the standard SR1 method.
Table 4.3 shows the comparison of standard SR1 method with Osborne and
Sun’s. Both of them are implemented with Algorithm 2.5 as the solver to trust
region subproblems and Algorithm 2.3 as the frame for updating trust region
radius.

It is obvious that Conn, Gould and Toint (1991)’s theory requires
wy — 1 for the superlinear convergence of methods defined be (4.2). But Os-
borne and Sun’s choice for wy, does not possess such property. Our experiment
shows that the wj, computed by Algorithm 4.1 frequently deviate from value
one, even though z is already close enough to the solution.

But for some problems, OSSR1 performs great. Table 4.4 is a compar-
1ison for problem SROSENBR, a separable extension of Rosenbrock’s function.
Even in Table 4.3, we can see that the fun/itn ratio for OSSR1 looks more
reasonable than the standard SR1’s for the problems we choose. They are 1.60
and 1.47 respectively.

What we tried to explain in the past two paragraphs is that, although
OSSR1 method is generally not superior to the standard SR1 method, it does
help to improve the fun/ztn ratio. It proves that to rﬁake the L-SR1 ma-

trix positive definite can be the right direction to fix L-SR1’s fatal defect we



Table 4.3: Comparisons of Standard SR1 to OSSR1

Pname dim itn fun
ALLINITU 4 9/12 15/15
BARD 3 | 17/24 | 27/44
BEALE 2 15/17 19/24
BOX3 3 8/9 13/12

BRKMCC 2 5/5 8/8
BROWNBS | 2 | 11/11 | 29/15
BROWNDEN | 4 17/23 37/46
DENSCHNA | 2 8/9- | 10/11
DENSCHNC 2 13/21 23/32
DENSCHNE 3 24/40 29/57
EXPFIT 2 13/15 24/22
HIMMELBB 2 14/6 25/12

HIMMELBG | 2. 6/7 9/8
$308 2 | 12/12 | 16/15
SISSER 2 15/20 17/22
SNAIL 2 9/11 - | 13/13
total 196/242 | 314/356

Table 4.4: Comparison of Standard SR1 to OSSR1 for SROSENBR

gradtol: 107° || gradtol: 10~°
dim | itn | fun itn | fun
10 [ 16/12 | 46/17 || 19/14 | 49/19
50 | 18/12 | 52/17 || 27/14 | 72/20
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discovered in the previous section.

Actually, for limited memory methods, we don’t expect any superlin-
ear convergence. Whether w; — 1 or not is not an important issue any more.
It can be quite pdssible that, what we get from the positive definiteness of
OSSR1 update can be more than what we lose in the issue of wj, — 1.

We implementea the limited memory version of OSSRI method (L-
OSSR1). The implementation uses the same trust region technique as that of
L-SR1. The only difference is in matrix representation and subsequently the
step computation. We use an n x n array to explicitly store the L-OSSR1
Hessian. So, it is a limited memory method implemented with full memory
locations. This difference shouldn’t have any impact for our test. We run the
code on a set of randomly generated strictly convex quadratic problems (See
Chapter 6 for the definition of them). The reason to use quadratic problems is
for better understanding.

Table 4.5 1s a corﬁparison of L-SR1 with L-OSSR1. The parameter m
is set to 4. For L-OSSR1 method, although we use the same scaling parameter,
its real value is actually up to Algorithm 4.1 to decide. We can see that the
fun/itn ratios are still outrageous (2.14 and 1.69 respectively for L-SR1 and L-
OSSR1). But compared to the result shown in Table 4.3, L-OSSR1 outperfdrms
L-SR1 this time.

The figures shown in Table 4.6 are of inspiration. They show the
Hessian and step patterns of the last 63 iterations of the same experiments as
in Table 4.5, where “P” ‘has the same problem numbers as in Table 4.5. We
can see that, even though an iterate is close to fhe solution and the objective

function is strictly convex, the L-SR1 matrix can be indefinite at any time. This



Table 4.5: Comparison of L-SR1 with L-OSSR1 (M3/M5)

P dim 1tn fun
1 5 7/8 20/12
2 | 5 | 8/10 16/21
3 10 27/25 46/34
4 10 39/44 79/75
5 15 38/35 63/53
6 15 67/178 145/130
7 20 36/39 - 76/52
8 | 20 | 72/70 151/123
9 50 61/63 128/98
10 50 | 190/168 440/312
total 545 /540 1164/910

M3: L-SRI with v, = [Jyg—1][*/y}_ | sp-1;
M5: L-OSSR1 with v, = ||lye—1]|*/yi_ 581;
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cziuses the trust region radius to adjust more frequently than L-OSSR1 and
therefore makes L-SR1 have more function evaluations, as shown in Table 4.5.
As is expected, L-OSSR1’s Hessians are always positive definite and produces

more Newton steps.

4.3 Positive Initial Scalar

The Newton step is an important issue for the performance of any
optimization algorithm. Without Newton steps, an algorithm can"‘be seriously
slowed down. In order to obtain a Newton step, the positive definiteness of
Hessian is imperative. For L-BEFGS method, the positive definiteness of its
Hessian is guaranteed by line searches with both a- and B-conditions. For
standard SR1 method, since its Hessian can converge to the true Hessian, the
positive definiteness is also usually out of question. But for L-SRI1 method,
we don’t have these guarantee any more. Our conclusion from the previous
section is that, the L-OSSR1 method is a direction t§ consi‘der, But not good
enough to compete with L-BIFGS method. In this section, we will talk about
another alternative. First, let’s look at the well-definedness of the standard
SR1 matrix B,gSRl).

4.3.1 Well-definedness of the SR1 Hessian It is known that
the SR1 Hessian matrix Bg?l) is well-defined only if both conditions (2.15)
and (2.16) hold. While there is no theory to guarantee the correctness, we
can construct some counter-examples against condition (2.15) or (2.16). The
following two examples are designed only for the first iteration.

e Example 1. Consider the quadratic objective function of 2n dimensions

flz) = %SCTGJJ
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Table 4.6: Hessian and Step Patterns for L-SR1 and L-OSSR1

H P [ M | Patterns (—)
3 | 1011100
1 nennnss
5 | 11111111
nennnnnn
3 1 101111100010000111000111010
3 NennNNNNsSsSINSrseeesSsSITennsrs
5 | 1141414144414 44444441414111
NennnnNNNsSnsennNNnNnNNNsnnsnn
3 1 11111100100110001110110110000101100001
H NeSNNYSITSsSesrsSerensrsrnesrrrernrsrrre
5 ¢ 1td1d1d11 1414111141444 4411414144144
nennhinnNNNNNNNsSsrnsesrensnsnesrnsrn
3 | 111111011001111100110010000101001101
7 nesnnssesssésernsressersrreess§eesse
5 | 1111414444414 14 441114444111 14111111414
nennnnnNNnNsnnsnesnennnsnennnNNNNNsSrrsn
3 [ 1111011011010001101110110100010001010100111000110010001001110
9 NrNNSesSrensesSITessesSresresrseseserrresrressrsesrresSsSresresrs
5 111111111411 114 ittt a1 41 11111111111 11111
NIrNNNNSrrnesrreseensSennNNsnNsSerSrrnrrInNsSNNNSNNINTININYSNennsrenrsrr

M3: L-SR1 with v, = ||y ﬂ|/yklsk 1
M5: L-OSSR1 with vi = |lys—1ll®/v}_ s6-1;
positive definite Hessian;

indefinite Hessian;

Newton step;

e: expanded step;

1:
0:

n:

: shrunk step;
o other steps.
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where G = diag (h1, ha, ..., hoy) is a diagonal matrix with

hy = hs = —hzﬁ—1~"r+5
hg-—h4: :th_fy~6
where v > § > 0. Denote e =[1 1 ... 1]

Let 2o = ~G e and B = 1. Then so = ~[BERY19 7 (2) =
%e and yo = G'sg. Therefore

(yg - BéSRl)SQ)TSO = Sg(G - BéSRl))SQ = 0.

¢ Example 2. Consider the quadratic objective function of 2n 41 dimensions

1
f(z) = =2TGz
2
where G = diag (h1, ha, ..., hon, hont1) is a diagonal matrix with
hi=hs=...=hyp1 =hppp1 =7+6
R
where v > ¢§ > 0. _
Given ¢ > 0, denote e(¢) = [1 1 ... 1 ¢%. Let 2o = —Ge(e)
and BéSRl) = ~vI. Then sp = —[BéSRl)]"1Vf(:co) = }76(6) and yo = Gso.
Therefore

0 — |(yo—Bc()SRl)30)T50l
cos by = ST

lyo — BS D o110

62

on + €2

As ¢ — 0, cos g — 0.

The first example shows that the denominator (y; — B,ESRDS/C)TSIC of

SR1 Hessian can be exactly zero at the very first iteration. The second example
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shows that the first cosine value, cos 8y, can be as close to zero as possible, or
cos By = o(1).

e Example 3. Consider the quadratic objective function of n dimensions

flz) = %mTGa:

where (G is a symmetric positive definite matrix.
Let B((JSRl) = 71, where h is a positive scalar. If we look at the
compact form of SR1 formula (2.20) with m = k, the kernel matrix M} can be

expressed by
My = S{(G —~I)5;.

If the initial 7 is taken to be equal to any'of the eigenvalues of &, the matrix
M, will be singular and therefore formula (2.20) will become invalid.

The three examples above explain that no matter how “good” the
initial scalar matrix looks like, the possibility for invalid SR1 matrix does exist.
Thus, the two conditions (2.15) and (2.16) are crucial to the finiteness of SR1
method. We have no idea of conditions under which which (2.15) and (2.16)
can be true. In Appendix I of this thesis, we prove, however, that if uniform
distribution of both r; and s; is assumed, then the probability of cos < p
is approximately np if p is a small number. Tzible 4.7 lists the distribution of
cosine values for some test problems. We can see that, overwhelming majority
of cosine values lie in [107°, 1] and seldomly beyond 10~7.

Although it ra.fely happens, once the cosine value becomes really
small, it can hurt the algorithm a lot. The safeguard check (2.17) is therefore
strongly recommended. We take the value of p as 10~7 for double precision

computation.



Table 4.7: SR1 Cosine Value Distribution

o7

|_problems | dim | iteration | [10~%,10% | [107°,107°] [ [10~7,10=°] [ [10~",0] |

Beale 2 14 14 0 0 0
Biggs 6 " 32 31 1 0 0
Box 3-D 3 24 23 0 0 0
Brown 2 13 1 5 7 0
Cheby 9 19 19 0 0 0
Dennis 4 15 15 0 0 0
Gaussian 3 1 1 0 0 0
- Gulf 3 29 23 5 0 0
Helical 3 32 31 1 0 0
Penalty I | 10 17 17 0 0 0
Penalty 11 | 10 27 27 0 0 0
Powell 100 78 77 1 0 0
Tridia 100 69 69 0 0 0
Trig - 100 42 42 0 0 0
Var Dim 10 10 10 0 0 0
Watson 9 35 33 2 0 0
Wood 100 37 37 0 0 0
Total 494 470 15 7 0
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4.3.2 Positive Definiteness of L-SR1 Matrix  On the other
hand side, the positive definiteness of L-SR1 matrix can be handled more el-
‘egantly. For SR1 method, the initial Hessian BéSRl) is something we don’t
know how to control at the very beginning, because of the lack of information.
But fér L-SR1 method, we have all the information pairs {y_;, sp_;}7, in
memory. With careful choice of initial 4;’s, the behavior of the algorithm can
be improved significantly.

Theorem 4.2 .
(1) ‘If the matrix W), defined by (2.22) is positive definite, there is a nulﬁber
7, >0 suéh that, if |
0 <y < Vs

then B;ﬁLSRl) defined by (2.20) is a positive definite matrix.

(2) If the matrix Wy defined by (2.24) is positive deﬁnite,vthere 1s a number
Ak > 0 such that, if
Yk > ,7167

then B,ELSRI) defined by (2.20) is a positive definite matrix.

Proof:

As we know from Section 2.4, matrix M} is defined by
My = Wy — .57 S (4.3)

Since W}, is positive definite, it is easy to conclude that there is a 7, > 0 such

that, for any v € (0,7, ), Mg is positive definite. Then by (2.20), B,gLSRl) is

positive definite.
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With the same reason, if matrix W defined by (2.24) is positive

definite, there is a 4% > 0 such that, for any vx € (3%, 00), the matrix
~ 1 T
Wy - =Y Y, (4.4)
Tk

is positive definite. Then, by (2.23), {B;&LSRI)]“I and therefore B,(CLSRI) is
positive definite.

a

This theorem does not hint any method we can use to compute the

biggest v, and smallest 7. Its proof, however, does point out a direction to

consider. We will let

ik = max {7 >0: Wy — vST Sy is positive definite } (4.5)
if Wy, is positive definite, and

_ : > Lore . . .

e = min {y > 0: W) — ;Yk Yy is positive definite } (4.6)

if Wy is positive definite. We will state the computation of 7,, and g right
after this subsection.

Recall that Wy is a symmetric matrix whose upper triangular re-
sembles that of Y,fS;; and Wk is a symmetric matrix whose lower triangular
resembles its counterpart of Y,7'.Si. If we define the positive definiteness of an
arbitrary n x n _matrix Aas 2T Az > 0 for any z € R™ with z # 0, then the
positiveness of both Wj and Wy implies the positiveness of YkTS;v But the

reverse is not true. For example, the small matrix
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1s positive definite whereas

is not.

Although it is hard to pose a general condition as to when W}, and/or
W, are positive definite, we do héve the fellowing result Whenvxk is close to the
solutio‘n. First, we define the concept of uniformly linear independence.?
Definition 4.3 Let m and n be‘two integers with 0 < m < n. Given a
sequence of n-dimensional vectors {v;}$2,. If there is a constant ¢ > 0 such
that, for any £ > 0; the smallest singular value of the matrix

Vk1 Vktl Ukl
llvrsall okl llowrall

is greater than c, then we say the sequence {v;}32; is m-uniformly linearly
independent. |
Theorem 4.4 Assume f(z) is a twice continuously differentiable function
which has a local minimizer z, where Vf(z,) = 0 and V?f(z,) is a positive
definite matrix. Given a vector sequence {57152, and an initial point zo. Let
{xj}?io be the iterate sequence generated by ;41 = z;+s;. If lim; o0 T; = T
and the sequence {s;}%2 is m-uniformly linearly independent, then there is a
constant kg, such that

(1) the matrices Wy defined by (2.22) and W; defined by (2.24) are both

positive definite for all k > k.
(2) the two variables v, and 7, defined by (4.5) and (4.6) are bounded away

from zero and ‘infinity.

*This concept here is slightly different from that used by Conn, Gould and Toint (1991),
and Ortega and Rheinboldt (1970).
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Proof:
For any ¢+ > m, let
¢ = max {||zi_; — z.|[}.

0<5<m

Let G, be the exact Hessian of f(z) at minimizer z,, G, = V*f(z.). By

Taylor’s expansion,
yi = Gusi + O([lsill) + O(lls:ll[z: = .]l), (4.7)

and therefore

yl s; = si Gusj + Oeillsilllls;l]).
Given k > m, If we let
Dy, = diag (|[sx—mll; |sk—ms1ll, - [[se-1]]),

then

Wi = Di[D;'STG.Sp Dyt + O(e)] Dy (4.8)
Since (7, is symmetric positive definite, we know that the matrix
D SEG, Sy Dt

is positive definite and its minimum eigenvalue is bounded away from zero.
Thus, as €, — 0, W will be eventually a positive definite matrix when k is
greater than some k.

Similarly, for W, we also have
Wi = DuDi ST G, D + O(ex)] Dy (4.9)

It will be eventually a positive definite matrix, too.
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We now prove the second claim. We prove the result for 7, first. Let

= min {all eigenvalues of G.},

o

@0, = max {all eigenvalues of G, }.
By (4.8), we have
Wi — 7SE S = Di[ Dy SE(Gy — y1) Sk Dt 4 O(e,)] Dy

Obviously, there is an integer k; such that the matrix Wy — vSFS, will be
negative definite if v > 20, and & > k;. Also, there is another integer k;, such
that the matrix Wy, — vS¥S, will be always positive definite if v < %L_u)k and

k > ky. Put together, by the definition of 7, for & > max{ky, ky},

DO =

~and therefore ik 1s bounded away from both zero and infinity.

At last, we prove the result for 5. By (4.7), we have
Yi = G.S + O(ex) Dy,
and therefore
V'Y, = SIGS, + S{O(ek)Dk + DkO(ek)S; + DrO(2) Dy,

Thus, by (4.9),

1

Lyry, = b, {D;ls,’f‘ (G* - ;Gi) Sy D;!

Wy, — —
/}/

+D7'ST0(er) + O(e) Sk Dy + 0()] D

The last three terms in the square brackets are negligible, compared to the first

term when e, — 0. By a similar statement when we proved the result for Yy
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we conclude that, there is an integer k3 such that for k > ks,

w, <Y < 20,

DO

~ and therefore 7k 1s bounded away from both zero and infinity.
| O
Theorem 4.4 says that, when the iterate z; getting close enough to
solution ., the two matrices W), and Wy, are guaranteed to be positive definite.
Therefore, by Theorem 4.2, we can have a positive definite I-SR1 matrix by
choosing v and thus makes Newton steps possible. |
Actually, from the proof of Theorem 4.4, we can see that

ﬁ,figlflk =w, and limsupy = @.,

k00

if {s;}is both m-uniformly linearly independent (Definition 4.3) and uniformly

linearly independent (Conn, Gould and Toint (1991), and Ortega and Rhein-
boldt (1970)).

To conclude this subsection, it is interesting to notice that, with 7

defined by (4.6) and «, > 7, matrix B,gLSRl)

can be then positive definite,
but not M. To“make thing worse, we even have no idea if M} is singular
dr nonsingular in such an ideal case. Fortunately, we can use the finiteness
assurance technique (Section 3.2) to ensure the existence of M.

4.3.3 Computation of the Positive Initial Scalars In Sec-
“tion 4.3.2, we discussed the positive definiteness of L-SR1 Hessian. matrix and

pointed out in Theorem 4.2 that if matrices W) and W} are positive definite,

there are two positive numbers v, > 0 and 4 > 0, such that if

0 <k <7, or 7% >,
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then the L-SR1 matrix is positive definite. We also stated there that 7, can
be computed by (4.5) and 7 by (4.6).

. The actual computation of 7, > 0 and 4% > 0 will incorporate the
scaling matrix Dy defined by (3.14). For v, we can do eigen-decomposition to

the matrix D' Wy D! first,
D'WiDi' = Cy N CF,

where C}, is an m X m orthonormal matrix and Ny a diagonal matrix. Then if
all diagonal entries of Ny are positive, 7, can be the reciprocal of the maximum

eigenvalue of matrix
N2 OT D ST S D LN E
Similarly, for 45, we can eigendecompose the matrix D,:lVT/kD,:l first,
D*W, Dt = G, N CT,

where C}, is an m X m orthonormal matrix and Ny a diagonal matrix. Then if
all diagonal entries of Ny are positive, 7;, can be the maximum eigenvalue of
matrix

U S -1
NZCT DI YTV DI CLN B

Algorithm 4.5 computes v, based on 4, and Algorithm 4.6 computes

7k based on 7, .

Algorithm 4.5 INIT_HESSIAN.2 (IN: vy, Dy, Wi, Wy,; OUT: k)

IF' k=0 THEN
Ye =1,

ELSE B
[Ck, Ni] := eigendecomposition (DPWiDEY;

bl
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IF min_eigenvalue (N;) > 0 THEN
_ 1 s o1
Yk := max_eigenvalue (N, 2CI D;'Y IV, D' Ciy N, ?);

Vi o= 1.1 * F;
ELSE IF y{_; sz > 0 THEN
Ve 1= [y ll® /yi_ysk-1;
ELSE
Ve 2= Te-1,
ENDIF;
END IF:;
return.
O
Algorithm 4.6 INIT_HESSIAN3 (IN: y4_y, Dy, Wi, Wy; OUT: )
IF k=0 THEN
Ve =1
ELSE
[Ck, Ni] := eigendecomposition (D' Wi Dit);
IF min_eigenvalue (N;) > 0 THEN
7, := 1/ max_eigenvalue (N;§OED,;15'ICTS;CD;10;€N,:%);
Ye 1= 0.9 Vi
ELSE IF y#_ sz > 0 THEN
Ve 1= ye-al?/Yiask-1;
ELSE
Ve = V-1
END IF;
ENDIF;
return.
0

We test Algorithm 4.5 and 4.6 on the same quadratic problems as we
did in Section 4.2. Table 4.8 lists the result for m = 4. Obviously, Positive
Initial L-SR1 with ~; computed by 4.5 is better than all the others and its
fun/itn ratio is just 1.20. |

Table 4.9 is a comparison of step patterns, where “P” has the same



Table 4.8: Comparison of L-OSSR1 and PI L-SR1 (M5/M6/MT)

P dim itn - fun
1 5 8/7/9 12/11/13
2 5 10/7/10 21/13/19
3 10 | 25/29/29 34/37/45
4 | 10 | 44/45/45 75/65/79
5 15 | 35/31/39 53/37/60
6 15 | 78/60/81 130/71/143
7 | 20 | 39/33/31 52/40/45
8 | 20 | 70/64/99 123/82/180
9 | 50 | 63/56/57 98/64/94
10 | 50 | 168/155/209 | 312/165/374
total 540/487/609 | 910/585/1052

- M5: L-OSSR1 with v, = Hyk_l}[2/ykT_13k_1;
M6: L-SRI with v, = 1.1 % ; :

M7: L-SR1 with v, = 0.9 * Vi
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problem numbers as in Table 4.8. We see that L—SRI method with ~, =
1.1 % %, has much more Newton steps than the othér two algorithms. The L-
SR1 method with v, = 0.9 * Y is interesting. Its L-SR1 matrices are positive
definite. But it does not have lots of Newton steps. The possible reason is
because of the small of v,. Since By has (n —m) eigenvalues of 7;;, Bk'l‘ can
be dominated by 1/v and therefore —Bj; gy can predict a too long descent
direction. Moreover, the acceptance condition (2.2) is hard to be satisfied
because the quadratic interpolation model ¢x(6) (see Section 3.4) is not accurate

in this case. Thus, more iterations and function evaluations are inevitable.

We decide to use 4 = 1.1 % 9, for our L-SR1 method.
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Table 4.9: Step Patterns for L-OSSRI and PI L-SR1

U l M | Patterns (—)

5 | nennnnnn
nennnnn
nennnnnnn

1

nennnnnnsnsennnnnnnsnnsnn
nennnnnnnnNNNnsSNINNnsSnnnnnnsn
nennnnsrnesernnsesernsnnnsesn

nennnnnnnnnnnnssrnsesrensnsnesrnsrn
nennnnnnnnnnnnnnnnnnnnnnnnnnn sn
nennsrnnsesesrnrnseennsnnnnsSennnnnsnes

nennnnnnnnnsnnsnesnennnsnennnnnnnnsrrsn
nennnNnNnNNNNNNNsSNNNNns SNNNNNsYnnnn
hennnnnnnsensrnnrnnnsnnnsesesrn

rnnnnsrrnesrreseensennnsnsersrrnrrrnnsnnnsnnnrnnrsnennsrenrsrr
nrnnnnnnnnnnnnnnnnsnnnnnnsnnnnnnnnnnnnnnnnsnnnsnnnnnnnsn
nnnnnnnssrnnennsrrnrsennnsrnsernsrensenrnsreesensensnsrre

(21
\10)0‘1\]@0‘\]@0‘!*\]0}01\]@

Mb5: L-OSSRI1 with , = Nye-1]12/yl_ sk
M6: L-SR1 with 4y, = 1.1 % ¥;

M7: L-SR1 with ~; = 0.9 % 7,

n: Newton step; :

e: expanded step;

s: shrunk step;

r: other steps.






CHAPTER 5
COST AND CONVERGENCE ANALYSIS

The L-SR1 algorithm we gave in Section 3.1 is a logical ‘algorithm. In
this chapter, we will talk about physical memory requirement and computing
time analysis. We assume that m < n. So, any expense with magnitude of m?
- (p > 1), is negligible. We count only those in magnitude of about n.

We also analyze in this chapter the'global and local R-linear conver-
gence of L-SR1 algorithm. The conclusion we get is actually for any general
Hessian matrix, as long as it is bounded. The L-SR1 method is’just a special

case.

5.1. M‘emory Requirement

Mafrices and vectors which reside in memory “permanently” are listed
in Table 5.1. They are updated in the beginning of each iteration and then stay
in memory unchangedly throughout the iteration. In the same table, there are
also two working vectors, s_ and z_. All other matrices and vectors appear in
Algorithm 3.1 can be derived from these matrices and vectors. Besides, there
are some “permanent” variables. We don’t count them because their number
is negligible compared to n.

Symbols in the row titled “Locations” of Table 5.1 are supposed to
mean physical representations for their corresponding matrices and .vectors.
They are purely for the convenience of description.

‘We mentioned the index table I, in Subsection 3.2.2. ‘Matrices Yi, Sk,
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Table 5.1: Memory Allocations for updating Matriceé/Vectors

Matrices Y Sy | Y2V, | SIS, [ YIS,
Locations Ly Ls Ly | Lss | Lyrs

H Size “mnlmnlmm}mm]mmj}

Vectors || Y ge | STgr | Dr | g | sk | s [ 2 | 2 1,
Locations || Ly« | Lsig | Lp | Ly | Ls | Lo | Lo | Lo, | L

Size m m m | n | n n n n | m

V1Y, SESy and YT Sy are all referenced through the index table, which itself is
an m-vector. For example, the j-th columns of ¥} and Sy are stored physically
in the L[j]-th columns of arrays Ly and Lg respectively. The (7, )-th elements
of VIV, ST Sk and Y,T'S; are stored physically in the (£;[5], £;[7])-th positions
of arrays Ly, Lgs and Lyg respectively,

The diagonal matrix Dy is stored as a vector, also through the index
table Ii. So, the i-th diagonal element of Dy is stored physically in £p[L;[i]].

To analyze, we divide Algorithm 3.1 into three stages: matrix op-
eration stage (Steps 3-4), trust region stage (Steps 5-21) and updating stage
(Steps 22-24).

o Matrix Operation Stage:

For this stage, if we have the two n X m matrices Y and S}, and
ﬂ'le scalar 7, In memory, then logically, the whole matrix B, and therefore
all its related @mputaﬁions can be retrieved through the 2mn + 1 memoryk
locations. But for fast computation, several other matrices and vectors are.
carried on from iteration to iteration. While their information is unnecessary
for the accuracy of the result, their presences can save lots of computing time.

They are m x m matrices ¥,/ Vi, STS, and YISy, m-vectors YT gy, ST gr and
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Dy.
Vector gy is special in this stage. Although it appears here, what we

all need is actually the product Q% gk, which can be computed by
rox =Y gt — % ST gr. ) (5.1)

So, for now, we don’t have to allocate any memory for gg.

All the other matrices and vectors in matrix operation stage are then
either negligible or can be retrieved through the mat’rice.s /vectors listed in Table
5.1. So totally, we need just 2rmn memory locations in matrix operation sfage,
which are for matrices ) a:nd Sk.

e Trust Region Stage:

This stage is a little bit complicated. It can be divided into two sub-
stages. In the contraction sub-stage (Steps 5-12), we need Y%, Sk, gr and s
for Algorithm 3.7 to compute the current trial step s, and then zp and z, for
the trial point zz + sj. In expa,nsion’sub-stage (Steps 13-20), we store the last
acceptable step in s_ and keep trying new steps with Y4, Sk, gx, s, 2 and z,.

All the other matrices and vectors in trust region sta,gé are either
negligible or already allocated in matrix operation stage. So totally, we need
5ﬂ addition memory locations in trust region stage, which are for vectors gy,
Sk, Tk, Ty and s_.

e Updating S‘tage:

This last stage does not need any additional memory. We can copy
gk to yr_m’s slot in Y} first and then store g4 into gr’s location.

Thus, totally, L-SR1 algorithm 3.1 requires 2mn + 5n memory loca-
tions. See Table 5.1 for the matrices/vectors and their corresponding memory

sizes. We will use the table for time cost analysis in the next section.
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5.2 Computing Time Analysis

We define the tirﬁe cost as the number of multiplications/divisions
per iteration. Also, since m < n, any expense with magnituae of mf (p > 1),
is negligible. We count only those in magnitude of about n.

Similar to the analysis of memory requirenient, we will divide an
~ iteration of Algorithm 3.1 into three stages: matrix operation stage (Steps 3-
4), t‘rust regioﬁ stage (S.teps 5-21) and updating stage ( Steps 22-24). We will
analyze the time cost stage by stage.
e Matrix Operation Stage:

At this stage, the computation of initial scaling parameter ~;, the
finiteness assurance and all the eigendecompositions can be very cheap. They
deal with m X m matrices only and therefore cost O(m?®). Matrices W), and

W), can be easily formed from V,I'Sy, and matrix QT Q) can be got from
Qv Qr =YYk + 98+ SESk — 7+ VIS + (Y7907,

which costs O(m?). The vector Qf gy can be computed by (5.1) and also
costs O(mn). Sometimes, the computation of 7 involves ||y,_]|* and Yl sp-1.
They are actually the last diagonal elements of matrices Y7V}, and YISy,
respectively. We can see thatv all the other operations in this stage cost at most
O(m?).
e Trust Regi"on Stage:

At this stage, we h.ave an inner loop (Step 8 through 11) to find an
accept,able point and someﬁimes another inner loop (Step 14 through 18) to find
a further acceptable point. Every time before we test if a point is acceptable

or not, we have to compute the step s; by Algorithm 3.7, where we can rewrite
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sy s formula as

1 . ‘
- — Yehy + Sk(vuhi)], 5.2
Sk P [gk khi + Sk(vehe)] (5.2)

which needs (2m + 1)n multiplications. The directional derivative gfs; in the
acceptance test does not need any major extra multiplication, if we note that

1
Y+ Vk

isk=— (g ll? = BE VT i + VhiSTar) .

So, if the number of function evaluations (which is equal to the number of
inner loops) at iteration k is py, then the‘ time cost for trust region stage can
be py(2m + l)n.‘ |
e Updating Stage:
The updating stage updates the matrices and vectors listed in Table

5.1. As mentioned before (Subsectibn 3.2.2 and Section 5.1), most of these
matrices/vectors are maintained through the index vector I;. So, we don’t have
any major expense in making them in order. All we concern for this stage is

the updates involving computations. Specifically, they are YT gy, S¥ gy, YIY,,
| STSy and YiF'Sy. We analyze their expense one by one as follows.

(1) Y gr and ST gr: Just computé the two vectors Y1, gey1 and ST, gr4s
and then store them in Ly, and Lg, respectively. Cost: 2mn. But
before moving the new information in, we need to preserve the old
information so that we can use it for other updatings.

(2) YIY:: The updating of Y'Y} to Y1 Yisy involves the computation of

lygl|* and the last (r — 1) components of vector ¥,T1y;. Since

yell® “||9k+11{2+‘29g9k+1 + |lgx]l?,

YkT?Jk = YkTQk’H“YkTgk’

where y7 g4 is just the last element of Y& grt1, and the last (m —1)
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elements of Y gryq is just the first (m — 1) elements of Y k41, no
extra expense is needed.
(3) STSy: The updating of SISy involves the computation of the last

(m — 1) elements of S¥si. By (5.2),

Sgsk =

p—— {(KCTSk)Thk — 5% Skhi — ST gl -

So, the expense is just O(m?).
(4) YISy The updating of Y,7'Sy involves the computation of ylsy, and

the last (m — 1) elements of both Y's; and Sgyk; Since

Yesk = Sigki - 9 st

S;Zyk = Sggkﬂ - S;fgk,
; 1 . ‘

Yls, = Y Yehi — Y Sehy — YT gl
k Y+ V2 [ k k k gk]

and the last (m—1) elements of ST gy is just the first (m—1) elements
of ST 1gkt1, only O(m?*) multiplications are needed.
Totally, we need 2mn multiplications for updating stage. All together, we need
12+ (2m + 1)pg|n multiplications for k-th iteration and 2mn - ny + (2m+1) -
n s, multiplications for solving a certain problem, where n;, is the number of |

iterations and ny, is the number of function evaluations.

5.3 Convergence Analysis
We prove the global convergence and local Q-linear convergence for
L-SR1 method in this section. Our results are actually true in general for any
method as long as the Hessian approximations By are uniformly bounded. _
We will have a lemma for the boundedness of L-SR1 matrices first.

Then in Subsection 5.3.1, we prove the global convergence of trust region -
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method (Algorithm 2.3) and in.Subsection 5.3.2 we prove the Q-linear local
convergence. A ‘
Define the level set D = {z € R"™: f(z) < f(:ng)} We assume D is
- convex and compact. Thus, if function f(z) is twice continuously differentiable
on D, its Hessian is then bounded. We may assume |[V?f(z)| < Cp for all
zeD.
Lemma 5.1 Let f(z) be twice continuously differentiable on the compact set
D and {s} be a sequence of vectors in R™. If the initial v, 1s bounded,
then the L-SR1 Hessian By built by (2.20) with finiteness assurance and index
adjustment (Algorithm 3.5) is bounded. |
Proof:
What we will prove is actually a more general result: the matrix

defined by (3.1) is bounded by

LY R —i—)jw + Kl + %) - 1} o, (5.3

We prove it by induction.

The correctness for J = 0is trivial. Now we assume (5.3) is true for
~some j > 0. By Algorithm 3.5, we then have two possibilities. If we find a
candidate index which passes the finiteness assurance, that means condition

(3.5) is made true. Then

1Bejrll < 1Buyl| + Wmrts = BrsStomas]
Pl Sk

1 1
< (1 + ~> 1Bkl + =Co
p p

1j+1 lj—H
<) e [0 e
P P _

If we fail to find such a candidate index, then Algorithm 3.5 resets m to 7+ 1

and returns.



76

Anyway, we can finally arrive at

(Bl = (14 ;)”‘yk ' [(1 s ;)”“ . } é

Since By, = Bj,m_1, we complete the proof.
| O
5.3.1 Global Convergence In this subsection, we prove that
the trust region algorithm (Algorithm: 2.3) with Hessian approximations
By uniformly bounded generates a sequence of iterates {z;} such that
lm V f(zx) = 0.
The proof of the following lemma is due to Powell. We make some
minor changes.
Lemma 5.2 Let By be any n X n symmetric matrix and sz be an optimal
solution to trust region problem (2.8) solved by Algorithm 2.5. Then for all

k >0, we have

R 1 : ]| .
i sk + 5k Brsk) 2 5 llol mm{&m HBILH }> (5.4)
and _
o st] > L) min {6k, toe] } ) 69)
Proof:

Define

1
Qr(s) = flax) +grs+ §STB;C3.

At first, we prove statement (5.4) or

04(0) ~ Qulsw) > 5 il min {5]“’ l[l]fg;v!’!‘ } |

Let

Se = —TkJk
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where
5 .
. if g7 Brgr <0
= Il gl : s
min{ g:qkll ,—k }, otherwise.
9 Brgr” ||gx]|

Since |[s.|| < 6x and sy is the optimal solution to (2.8), we must have that

Qrlsk) < Qrlse).

If g;kagk < 0, then

Qi(se) < flaw) — bkllgkll
1
< f(o0) = gladmin {5, Joel}.
e gl Ok
Otherwise if T Brge > Toell then

0ufa) = flo) = iddanl + 5 (125 ) of B
< S - 55elo]

< flay) - %Hgku min {6]“ ]1\|§3];cll|l} .

y T llgxl? O
Finally, if g; Brgr > 0 and — < then

9L Brgr gl

Ou(s) = f(wk)*;j%

Mgl

< flaw) = glod min o, J2L .

Thus, in all cases, we have

Qu(se) < f(zx) ~ 5 lgull min {‘*“ 111%2!11(}



78

and therefore

Qr(0) — Qx(sk)

v

Qk(0) — Qu(se)
T P
> glomin {a, o]

Now we prove (5.5). If By is semi-positive definite, gf sy, has different

sign from s Bysi. Then it is obvious that

1
gls, + 555Bk8k

= Qi(0) — Qx(sk)
LY Gy P
> glbmin{s 2}

If By has negative eigenvalues, we may assume the smallest one is

gt sl >

Wmin < 0. Then the matrix (Br + |wmin|I) is semi-positive definite and the

trust region problem (2.8) is equivalent to

minimize  f(zy) + gis + %ST(BJC + |wWiin 1) s

(5.6)
such that |[s]| < &,
if we solve both (2.8) and (5.6) by Algorithm 2.5. Thus, in this case,
' 1 . gl
Top| > = Ok, b
ot el = gloumin g, ol
Since Wi | < |[Bi]|, we then have
1 : gl }
T
9L Skl = =gkl min { 65, —— )
o] > gl min {5, 1220
The proof is finished.
]

In Algorithm 2.3, Steps 3-6 are the contraction loop. The t.rust region

~radius & is decreased in the loop until the acceptance condition (2.2) is met.
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As we can irﬁagine, if 6x and subsequently |[sx]| go to zero too fast, z; will be
stuck away from the solution. Fortunately, we can prove that §; does not go
to zero faster than ||gx]|.

Lemma 5.3 Let f(z) be an R* — R' twice continuously differentiable func-
tion on D. We solve the trust region subproblem (2.8) by Algorithm 2.3 with
step computed by Algorithm 2.5 and trust region radius reduced by back-
tracking (Algorithm 3.8). It the Hessian approximations By are symmetric
and bounded, then there is a constant a; > 0 such that the ¢, at the end of
Algorithm 2.3 satisfies

o 2> ayllgrl|

for all & > 0.
Proof:

First we prove that, there is a constant @} > 0 such that, when the

contraction phase stops,
8 = min{ay|[gxl, 6x-1}-
By Taylor’s theorem, we know that if V?f(z) is bounded by (y, then

f(zr+ se) — f(ze) — g sk Collsel®

1A

< Coé}.

On the other hand, by (5.5), if ||Bx|| < Cy, we have

1< 4C’1ggsk
T el min{Cy 6, [lgxl|}

Thus,

4CoC1 83 ) T
— - S,
lgel[min{Créy, Jlgelly ) 7%

Flan+ s1) < flan) + (1
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It is easy to see that there exists a constant af > 0 such that, for any

6: 0 < 8 <10a!]|gk||, we have

4C,C16*

U< o min 036, e} =

1 —c.

That means the contraction of trust region radius at Step 4 of Algorithm 2.3 will
stop once ¢, is reduced to be smaller than 104} ||gx|| or even earlier. Precisely,

when the contraction loop (Step 3-6 of Algorithm 2.3) stops,
6 > min{a!|lgx], Or-1}-

Then, we prove that, there is a constant af > 0 such that, if §;_; <

alllgx|| then the expanding phase will terminate after
6 2 ayllgnll
This time, we have

Flon + 5 = f(zs) — gk~ S5l Besc < (Cot O)sulf

< (Co+ )81

On the other hand, by (5.4), we get

| < mQCl(ggsk + %SZB]CS;:).
~ llgrllmin{C1éx, [k ||}

S0,

- 201 (Co + C1)82 ) .
(ae) = flan+ ) 2 (11— (~ofs— LslBus),
foa) = Jlon + o) ( gk || min{C1éx, ||gxll } TSk g Sk kS

or equivalently,

N (1 201(Co + C1)6% ) Af;imed)‘

* lgel[ min{Cy 6y, [[gx]}
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It is easy to see that there exists a constant af > 0 such that, for any

§: 0 < 6 < afllgrl|l, we have

2
2G(Cot CI8

O < T min{Cra, g} =

That means the expansion of trust region radius at Step 10 of Algorithm 2.3
will continue as long as 6y, is smaller than a{||gx||. Precisely, when the expansion

loop (Step 8-12 of Algorithm 2.3) stops,

o 2 a/1/”9kH>
or s, is a Newton step. In the case of a Newton step,
: . 1
S 2 1B gl 2 = llgwll
. 1
Let a; = min{a}, af,1/C;}, we get
b 2 arlgkll

O
The following lemma indicates that\the improvement of function val-
ues from iteration to iteration can be at least proportional to ||g|[*.
Lemma 5.4 Under the same assumption of Lemma 5.3, there is a constant
o > 0 such th'at

forer) < flzn) = aallgel® (5.7)

is true for all £ > 0.
Proof:

At the end of Algorithm 2.3, either

f(@rsn) < flax) + ngSk> : (5.8)
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or

flzrg1) < flor +s2) < f(zr) + p <g£5_ + %SZB}CS_> , (5.9)

~ where s_ is the step before the last step in the ekpansion stage (Sﬁep 8-12 of
Algorithm 2.3).

By Lemma 5.2 and 5.3, we have
gk sk < —algilf?

where af, = 2 min{a;,1/C;}. So if (5.8) holds,

4

florn) < flze) = ady|lgell*.

If (5.9) holds, by Lemma 5.2, 5.3 and the fact that 6, = 26_ at the

end of Algorithm 2.3,

IN

T 1 T 1 . Hgklf
fs+ 2Bl < ~Lal m{«s | Bk“}

< —ay]|gkl

Thus, we have
floeen) < flox) — paallgalf®.
Anyway, (5.7) is true if we let ay = min{c, p}d}.
i

Now, we can prove the global convergence of Algorithm 2.3. Usually,
global convergence means lim V f(z) = 0. Our result here is actually stronger:
SV (@) < oo,
Theorem 5.5 Let {z;} be a sequence produced by Algorithm 2.1 with the
step s, computed by trust region method (Algorithm 2.3). Under the same

conditions as Lemma 5.3, we have

ki IV £ () |? < oo,
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and therefore

lim V f(zz) = 0.

k-—co

Proof:

If we sum up (5.7) for k from 0 to some sufficient big &, we get

F(ien) < flao) + az >: e

Since f(z) is bounded below and k; can be as big as possible, we must then

have
Z Hgkl!2 < 00,
k=0

and therefore

lim Vf(zy) = 0.

koo
O
By Lemma 5.1 and Theorem 5.5, we get the following global conver-
gence for the L-SR1 method immediately.
Corollary 5.6 Let f(z) be an R" — Rl twice continuously differentiable
function on the compact set D. If the initial scaling parameters v, are uniformly

bounded, then the L-SR1 method (Algorithm 3.1) has global convergence, i.e.

k—o0

i
Note that, if we use Algorithm 2.4 for the trust region update in the
L-SR1 algorithm, Theorem 5.5 and Corollary 5.6 are still true. The proof can

be a little bit different. We omit it.
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5.3.2 Local Convergence In Subsection 5.3.1, we proved the
convergence of g; to zero. It is then reasonable to assume that the iterates zj
are convergent to some local minimizer z,. In this subsection, we prove that
if zg does converge to z,, the rate of convergence can be Q-linear. First, we
have the following lemma. |
Lemma 5.7 Let z, be a local minimizer of function f(z) and the Hessian
V2 f(z) be Lipschitz continuous and positive definite in a neighborhood of :c*
If the sequence {z} converges to z., then

(1) there are two constants a4, as > 0, such that
f(@) < flo) + el VA@)P (5.10)

for all z : ||z — z.|| < ag;

(2) there exists a norm || ||¢ such that, for any e € (0,1) there is an a, > 0
such that
(L= lle =2z < flz) = flz.) < L+ o)z — =5 (5.11)

for all z: ||z — z.]| < a..
Proof:
We prove (5.10) first. Let G, = V? f(z.). Since V2f(z) is continuous,

we may expanfi Vf(z) at z. by
V() = Gl — 2)+ o2~ 2.])).

The Hessian G is positive definite. There is a constant af > 0 such that

o = .|

IV = St

for all z : ||z — z.]| < af.
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- On the other hand, if we expand f(z) at z, to its second order, we

have

@) = fe) + 50 =27 Gule =2 +ollle — o). (512

Obviously, there is a constant aj > 0 such that,

f(z) < fz) + [|Gullllz = 2.7

for all z : ||z — z.|| < af.
Let ag = min{ag, ag} and a5 = 4/|G.[[]|G|[>. We then have (5.10).
Next, we prove (5.11). By assumption, G, is positive definite. We

can define the vector norm || - || in R™ by
lolle = 307G
Vilg = 2’() «U.
Thus, (5.12) can be equivalent to

f(@) = f(za) + 2 = 2.6 + ollle — z.][%).

It is easy to see that, given ¢ € (0, 1), there is a constant a, > 0 dependent on
¢ such that (5.11) is true for all z : ||z — z.|| < a..
‘ ‘ .

Now we can pfove the Q-linear convergence of the trust region algo-
rithm (Algorithm 2.3).
Theorem 5.8 Let . be a local minimizer of f(z), at which assumptions of
Lemma 5.7 hold. Let {z} be a sequence produced by Algorithm 2.1 with the
step s, computed by trust region method (Algorithm 2.3). If {z;} converges
to z, and the conditions of Lemma 5.3 are true, then the rate of convergence
is Q-linear, that is, there is a constant ¢ € [0,1) and a norm Il - llg such that

251 — zella _ .

e = zlle ~
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for all k£ sufficiently large.
Proof: |

Since the convergence of {z;} to z, is assumed, there is a constant 4’
such that ||z — z.]| < ag for all k > k', where ag > 0 is the constant defined
by Lemma 5.7.

Then by Lemma 5.4 and 5.7, we have

iU@Q—ﬂ%DSWMVSéUMQ—ﬂuHD

as
for all £ > k’. That is,

g

faw) = o) = (1= 2) [f(@) - Fl.)] (5.13)

433

Note, since { f(zx)} is a monotonously decreasing sequence converging to f(z,),

we must have

dg )
0<—< 1.
(433

Therefore there exists an ¢ € (0, 1) such that

o§1+6<1*@><1.

1 —c¢ Qs

We let

¢1+e< ag
c= 1 —-—=1.
l—'E as

By the second claim of Lemma 5.7, there is a constant a. > 0 such
that (5.11) holds for all @ : ||z — .|| < a.. By the convergence of {a}}, there is
a constant ky > k' such that ||z —2.]| < a. for all k> k. Thus, if we combine

(5.11) and (5.13) together for k > ko, we will get

1 +e¢ a
fones = oully < 10 (1= 2) o — a3,
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|zr41 — 2ulle
lzx —zele =

0O
By Lemma 5.1 and Theorem 5.8, we get the following local conver-

gence for the L-SR1 method immediately.
Corollary 5.9 Let z, be a local minimizer of f(z), at which 4assumptions of
- Lemma 5.7 hold. Let {z:} be a sequence produced by the L-SR1 method
(Algorithm 3.1). If {z} converges to z, and the initial scaling parameters
v are uniformly bounded, then {z;} converges Q-linearly, that is, there is a

constant ¢ € [0,1) and a norm || - || such that

HfEkH - fE*HG c
foe—arlle

for all & sufﬁcienﬂy large.



CHAPTER 6
NUMERICAL EXPERIMENT

We implemented the L-SR1 algorithm on SUN/SPARK workstation
with FORTRAN 77 programming language. Mathematics library BLAS is used
for basic matrix/vector operations and LAPACK routines are used for basic

algebraic computations.

6.1 Test Problems

Most of our test problems are selected from CUTE library. CUTE is a
testing environment developed by Conn, Gould and Toint (1994) for numerical
optimization algorithms. It consists of two parts: problems set and utility
tools. The current version collects 794 test problems. All problems are written
in the standard input format (SIF). CUTE supplies utilities to build interfaces
between this input format and other software packages. Usually, a user does
not have to know much'about the encoding technique used in writing SIF.

AllCUTE problems are well classified. We can select the desired prob-
léms from CUTE database by using a tool called select, which allows users
to choose unconstrained problems with different sizes. There are two kinds
of CUTE problems: fixed-size and variable-size. For a variable-size problem,
there is a corresponding SIF file, where all its candidate sizes are listed. We
can set the size manually by editing this file.

We have three sets of problems selected from CUTE.

e Set It These are problems we used to compare standard SR1 method
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with Osborne and Sun’s scaled SR1 method. Their sizes are all small
(about 2-4), except for Problem SROSENBR (10,50). The results listed
in Table 4.3 and 4.4 were run on these problems.

e Set II: These are problems we used for our preliminary test and study
of L-SR1 method. They consist of all CUTE unconstrained problems
which can have size 100. The results listed in Table 4.1 were run on
these problems.

e Set III: These are problems we used for our final comparisons between
L-SR1 method and L-BFGS method. They consist of all CUTE un-
constrained problems which can have size between 1000 and 5000. The
only exception is JIMACK, which takes too long to make function e;nd
gradient evaluations and therefore is excluded. For problems which
have more than one candidate dimensions between 1000 and 5000, we
choose the one closer 5000. There‘are totally 55 problems in Set I1I.
The results listed in Table 6.2 through 6.14 are based on Set 1II prob-
lems. '

In addition to CUTE problems, we also construct some strictly convex
quadratic problems with their eigenvalues generated randomly. The purpose
of these problems is to find thé behavior of a given algorithm, and therefore
assist our analysis and design. We never use them to formally compare any

two algorithms. For that goal, problems in this have the simplest structure,
f(z) = 2"Gz

where G is a diagonal matrix whose diagonal entries are generated ran-

domly. Let random be a random number from [0,1]. For each dimension
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n =5,10,15,20 and 50, we have two problems with their diagonal entries gen-
erated by 107 + random® and 10™® + randon®, respectively. Therefore there

are totally 10 problems in this set. We may denote this set as Set IV.

6.2 Comparison of L-SR1 Method with L-BFGS Method
We finally tried the L-SR1 with 7, computed by Algorithm 4.5 and -
compared it with the result by L-BFGS method. The stopping criterion in

Step 2 of Algorithm 3.1 is

Bax Ig,(:) max {]mg)i, l}l < gradtol * max{ f(zx), 1}

where we set gradtol = 107°. We also changed the L-BFGS code so that it has
the same stopping criterion.

We set the maximum number of iterations‘to 2000. Any problem
which does not converge within 2000 iterations is considered a failure. We test
Set 11T problems with m = 4,5,7 and 10. The results are listed in Table 6.3
and 6.4 for m = 4, Table 6.5 and 6.6 for rn = 5, Table 6.9 and 6.10 for m = 7,

and Table 6.13 and 6.14 for m = 10, where the meaning of the field “cod” is

the two methods converge to the same solution;

the two methods converge to different solutions;

maximum number of iterations reached (failure);
the algorithm can not proceed (failure).

Lo

A summary of the results is listed in Table 6.1, where the fields
“tot_itn”, “tot_fun” and “tot_grd” are counted over those problems for which
both L-SRI and L-BFGS are successful (cod=0) and converge to the same solu-

tion; “twin” means the number of problems for which both L-SR1 and L-BFGS



Table 6.1: L-SR1/L-BFGS for Large Problems (Summary)
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m tot_itn tot _fun tot_grd twin | tie | win fail
4 | 5317/5748 8011/6345 5358/6345 2 8 |26/19 | 10/10
5 | 8578/9179 | 11827/9814 | 8622/9814 1 10 | 27/17 | 8/10
6 | 10561/10699 | 14079/11362 | 10605/11362 | 2 7 126/20 | 7/9
7 | 9587/10006 .| 12398/10546 | 9631/10546 3 9 |23/20| 7/8
8 | 11247/11507 | 17679/12380 | 11293/12380 | 2 | 10 | 24/20 | 7/8
10 | 6881/6808 | 9887/7330 6924/7330 2 8 | 18/27 | 9/8

are successful but converges to different solutions (cod=1); “tie” is the num-
ber of problems for which L-SR1 and L-BFGS converge to the same solution
with exactly the same number of iterations, or both of the two methods fail;
“win” counts the ﬁumber of problems for which both methods have the same
solution (cod=0) and the current method has few iterations than the other, or
the current method is successful (cod=0) and the other fails (cod=2,3); “fail”
is the number of problems Which fail the test (cod=2,3).

It looks like that both methods are competitive with each other. The
L-SR1 needs a little fewer iterations than the L-BI'GS method for m = 4
through 8. But in all cases, L-SR1 method needs more function evaluations.
As with the number of gradient evaluations, the comparison can be unfair for
the L-BFGS method. The L-BFGS code evaluates the gradient every time when
the objective function is evaluated, even tho‘ugh it is not necessary sometimes.
However, the L—BFGS method needs at least the same number of gradient
evaluations as that of iterations. So, talking about the number of gradient
evaluations, the L-SR1 method wins. |

Table 6.2 is a comparison of the L-SR1 method to itself with different
values of m, where the fields of “tot_itn”, “tot_fun”, “1;()‘c~grd”7 é‘twin”, “tie”,

“win” and “fail” have almost the same meanings as those of Table 6.1 except



Table 6.2: L-SR1/L-SR1 for Different m’s (Summary)

m/m tot_itn tot _fun twin | tie | win fail
4/5 5736/5692 8595/8809 1 21 | 13/20 10/8
5/6 8949/9079 12345/12754 1 24 | 17/13 | 8/7
6/7 | 11135/10594 | 14988/14179 | 0 17 1 19/19 /7
7/8 | 10594/10027 | 14179/13903 0 22 | 18/15 7/7
8/10 | 7177/7475 | 10686/10858 | 0 |21 | 24/10 | 7/9

for that the comparison in Table 6.2 is between two different runs of the same

L-SR1 algorithm.

We can see that, as the value of m grows, the performance of the

- algorithm-is not always improved. In the “win” column, it appears that smaller

92

m wins more problems than bigger m. We do not know if it is just an accident

or reflects some pattern of the L-SR1 method.



Table 6.3: L-SR1/L-BFGS for Large Problems (m = 4)

Pname dim itn fun grd cod
ARWHEAD | 5000 | 8/ 14/ 9/ |0/3
BDQRTIC | 1000 | 163/73 280/92 164/92 | 0/0
BROYDNTD | 1000 | 29/351 44/359 30/359 | 1/1
BRYBND 5000 98/29 127/33 99/33 0/0
CHAINWOO | 1000 | 382/ 526/ 383/ | 0/2

COSINE 1000 7/6 9/16 8/16 0/0
CRAGGLVY | 5000 51/55 62/65 52/65 0/0
DIXMAANA | 3000 7/10 11/12 8/12 0/0
DIXMAANB | 3000 10/11 12/13 11/13 0/0
DIXMAANC | 3000 13/12 16/14 14/14 0/0
DIXMAAND | 3000 12/13 15/15 - 13/15 0/0
DIXMAANE | 3000 | 262/223 312/241 263/241 | 0/0
DIXMAANF | 3000 | 167/203 181/211 168/211 [ 0/0
DIXMAANG | 3000 | 175/208 200/222 176/222 | 0/0
DIXMAANH | 3000 | 167/168 200/177 168/177 | 0/0
DIXMAANI | 3000 | 919/1085 | 1157/1129 | 920/1129 | 0/0
DIXMAANJ | 3000 | 150/159 169/169 151/169 | 0/0
DIXMAANK | 3000 | 134/150 153/160 135/160 | 0/0
DIXMAANL | 3000 | 122/137 | 139/144 123/144 1 0/0
DQDRTIC | 5000 6/13 10/21 7/21 0/0

DQRTIC | 5000 65/56 74/64 66/64 0/0
EDENSCH | 2000 | 18/20 31/24 19/24 0/0

EG2 1000 | 7/4 19/5 8/5  |0/0
ENGVAL1 | 5000 12/13 15/15 13/15 0/0
FLETCBV2 | 1000 1/479 2/498 2/498 0/0
FLETCBV3 | 1000 / / / 2/2
FMINSURE | 1024 | 244/194 | 347/200 | 245/200 | 0/0
FREUROTH | 5000 | 15/14 39/20 16/20 |1 0/0
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Table 6.4: L-SR1/L-BFGS for Large Problems (m = 4), continue

Pname dim itn fun grd cod
INDEF 1000 |- / / / 3/3
LIARWHD | 5000 | - 21/23 38/28 22/28 0/0
MOREBV | 5000 31/26 - 35/28 32/28 0/0
MSQRTALS | 1024 / / / 2/2
MSQRTBLS | 1024 /1919 /2013 /2013 2/0
"NCB20 1010 | 570/366 991/429 571/429 [ 0/0
NONCVXU2 | 1000 | /1426 /1498 /1498 | 2/0
NONCVXUN | 1000 / / / 2/2
NONDIA 5000 9/20 16/24 10/24 0/0
NONDQUAR | 5000 | 1008/1123 | 1797/1241 | 1009/1241 | 0/0
NONMSQRT | 1024 / / / 2/2
PENALTY1 | 1000 92/54 241/66 93/66 0/0
POWELLSG | 5000 37/49 61/53 38/53 0/0
POWER 1000 | 146/135 243/146 147/146 | 0/0
QUARTC | 5000 65/56 74/64 66/64 0/0
SCHMVETT | 5000 11/13 18/15 12/15 0/0
SINQUAD | 5000 | 123/265 445/379 124/379 | 0/0
SPARSINE | 1000 / / / 2/2
SPARSQUR | 1000 29/24 34/25 30/25 0/0
SPMSRTLS | 4999 | 219/194 237/206 220/206 | 0/0
SROSENBR | 5000 12/16 17/17 13/17 0/0
TESTQUAD | 1000 / / / 2/2
TOINTGSS | 5000 4/14 12/19 5/19 0/0
TQUARTIC | 5000 | 16/19 52/25 17/25 | 0/0
TRIDIA 5000 / / / 2/2
VAREIGVL | 5000 99/16 120/20 100/20 | 0/0
WOODS 1000 | 105/16 242/20 106/20 | 1/1
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Table 6.5: L-SR1/L-BFGS for Large Problems (m =5)

Pname dim itn fun grd cod
ARWHEAD | 5000 8/ 14/ 9/ 0/3
BDQRTIC | 1000 | 111/94 | 188/113 | 112/113 | 0/0
BROYDNT7D | 1000 | 35/344 46/355 36/355 | 1/1
BRYBND | 5000 | 98/27 130/30 99/30 | 0/0
CHAINWOO | 1000 | 346/ 494/ 347/ 0/2

COSINE 1000 7/6 9/16 8/16 0/0
CRAGGLVY | 5000 | 42/49 64/59 43/59 | 0/0
DIXMAANA | 3000 7/10 11/12 8/12 0/0
DIXMAANB | 3000 | 10/11 12/13 11/13 |1 0/0
DIXMAANC | 3000 | 13/12 16/14 14/14 1 0/0
DIXMAAND | 3000 | 13/13 16/15 14/15 | 0/0
DIXMAANE | 3000 | 236/224 | 245/231 | 237/231 | 0/0
DIXMAANEF | 3000 | 171/200 | 173/205 | 172/205 | 0/0
DIXMAANG | 3000 | 145/176 | 148/184 | 146/184 | 0/0
DIXMAANH | 3000 | 154/199 | 184/205 | 155/205 | 0/0
DIXMAANI | 3000 | 851/1109 | 883/1144 | 852/1144 | 0/0
DIXMAANJ |'3000 | 135/140 | 137/144 | 136/144 | 0/0
DIXMAANK | 3000 | 119/124 | .127/130 | 120/130 | 0/0
DIXMAANL | 3000 | 98/124 | 101/129 | 99/129 | 0/0
DQDRTIC | 5000 6/13 10/20 7/20 0/0
- DQRTIC 5000 | 90/56 125/64 91/64 | 0/0
EDENSCH | 2000 | 19/21 | 35/25 20/25 1 0/0

EG2 1000 7/4 19/5 8/5 0/0
ENGVALL | 5000 | 11/13 14/15 12/15 1 0/0
FLETCBV2 | 1000 | 1/504 2/521 S2/521 |1 0/0
FLETCBV3 | 1000 / / -/ 2/2
FMINSURF | 1024 | 266/198 | 363/207 | 267/207 | 0/0
FREUROTH | 5000 | 13/14 25/21 14/21 10/0

95



Table 6.6: L-SR1/L-BFGS for Large Problems (m = 5), continue

Pname dim itn fun grd | cod
INDEF 1000 / / / 3/3
LIARWHD | 5000 20/24 43/27 21/27 0/0
MOREBV | 5000.| 27/27 31/29 28/29 0/0
MSQRTALS | 1024 / / / 2/2
MSQRTBLS | 1024 / / /[ 12/2
NCB20 1010 | 484/360 900/416 | 485/416 | 0/0
NONCVXU2 | 1000 | 1570/1957 | 1771/2022 | 1571/2022 | 0/0
NONCVXUN | 1000 / / / 2/2
NONDIA 5000 9/18 16/23 10/23 0/0
NONDQUAR | 5000 | 1223/963 | 2588/1088 | 1224/1088 | 0/0
NONMSQRT | 1024 / / / 2/2
PENALTY1 | 1000 | 101/50 265/60 102/60 | 0/0
POWELLSG | 5000 30/39 65/46 31/46 0/0
POWER | 1000 | 155/131 245/136 | 156/136 | 0/0
QUARTC | 5000 90/56 125/64 91/64 0/0
SCHMVETT | 5000 12/13 19/15 13/15 0/0
SINQUAD | 5000 | 158/176 472/234 159/234 | 0/0
SPARSINE | 1000 / / / 2/2
SPARSQUR | 1000 34/24 39/25 35/25 0/0
SPMSRTLS | 4999 | 210/190 226/205 211/205 | 0/0
SROSENBR | 5000 12/18 17/20 13/20 [ 0/0
TESTQUAD | 1000 / / / 2/2
TOINTGSS | 5000 4/14 12/18 5/18 0/0
TQUARTIC | 5000 16/18 49/26 17/26 0/0
TRIDIA 5000 | 1687/1727 | 1765/1797 | 1688/1797 | 0/0
VAREIGVL | 5000 95/16 106/20 96/20 0/0
WOODS 1000 18/17 36/21 19/21 0/0




Table 6.7: L-SR1/L-BFGS for Large Problems (m = 6)

Pname dim itn fun grd cod
ARWHEAD | 5000 | 8/14 14/35 9/35 10/3
'BDQRTIC | 1000 | 113/91 | 182/103 | 114/103 | 0/0
BROYDNT7D | 1000 | 32/347 | 43/356 | 33/356 | 1/1
BRYBND | 5000 | 99/27 126/30 | 100/30 | 0/0
CHAINWOO | 1000 | 435/ 594/ 436/ | 0/2
COSINE | 1000|  7/6 9/16 8/16 | 0/0
CRAGGLVY | 5000 | 39/50 58/59 40/59 | 0/0
DIXMAANA | 3000 | 7/11 11/13 8/13 | 0/0
DIXMAANB | 3000 | 10/11 12/13 11/13 | 0/0
DIXMAANC | 3000 | 13/12 16/14 14/14 | 0/0
DIXMAAND | 3000 | 13/14 16/16 14/16 | 0/0
DIXMAANE | 3000 | 232/227 | 234/234 | 233/234 | 0/0
DIXMAANF | 3000 | 172/208 | 174/215 | 173/215 | 0/0
DIXMAANG | 3000 | 155/168 | 158/175 | 156/175 | 0/0
DIXMAANH | 3000 | 158/193 | 203/204 | 159/204 | 0/0
DIXMAANI | 3000 | 571/1163 | 573/1201 | 572/1201 | 0/0
DIXMAANJ | 3000 | 138/139 | 140/144 | 139/144 | 0/0
DIXMAANK | 3000 | 123/127 | 126/132 | 124/132 | 0/0
DIXMAANL | 3000 | 61/139 | 64/146 | 62/146 | 0/0
DQDRTIC | 5000 | 6/13 10/20 7/20 | 0/0
DQRTIC | 5000 | 88/56 97/64 89/64 | 0/0
EDENSCH | 2000 | 25/20 42/25 26/25 | 0/0

EG2 1000 | 7/4 19/5 8/5 0/0
ENGVALL | 5000 | 11/13 14/15 12/15 | 0/0
FLETCBV2 | 1000 | 1/721 2/749 2/749 | 0/0
FLETCBV3 | 1000 / / / 2/3
FMINSURE | 1024 | 251/209 | 411/215 | 252/215 | 0/0
FREUROTH | 5000 | 13/15 28/22 14/22 | 0/0
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Table 6.8: L-SRl/L-BFGS for Large Problems (m = 6), continue

Pname dim itn fun grd cod

INDEF 1000 / / / 3/3
LIARWHD | 5000 | 21/25 47/29 22/29 | 0/0
MOREBV | 5000 | 26/28 30/30 27/30 | 0/0
MSQRTALS | 1024 / / / 2/2
MSQRTBLS | 1024 | 1957/1928 | 1976/1986 | 1958/1986 | 0/0

NCB20 1010 | 566/325 | 1087/375 | 567/375 |0/0
NONCVXU2 | 1000 | 1725/1431 | 1986/1479 | 1726/1479 | 0/0
NONCVXUN | 1000 / / / 2/2
NONDIA [ 5000 | 9/20 16/24 10/24 | 0/0
NONDQUAR | 5000 | 1356/1141 | 2959/1270 | 1357/1270 | 0/0
NONMSQRT | 1024 / / /] 2/2
PENALTY1 | 1000 | 116/50 288/60 117/60 | 0/0
POWELLSG [ 5000 | 30/42 60,49 31/49 | 0/0
"POWER | 1000 | 165/124 | 241/127 | 166/127 | 0/0
QUARTC | 5000 | 88/56 97/64 89/64 | 0/0
SCHMVETT | 5000 | 12/13 20/15 13/15 | 0/0
SINQUAD | 5000 | 149/222 | 436/296 | 150/296 | 0/0
SPARSINE | 1000 / / / 2/2
SPARSQUR. | 1000 | 36/24 41/25 37/25 1 0/0
SPMSRTLS | 4999 | 201/188 | 213/197 | 202/197 |0/0
SROSENBR | 5000 | 12/15 17/16 13/16 1 0/0
'TESTQUAD | 1000 / / / 2/2
TOINTGSS | 5000 |  4/13 12/17 5/17 10/0
TQUARTIC | 5000 | 16/19 52/27 | 17/27 ] 0/0
TRIDIA | 5000 | 1663/1382 | 1675/1426 | 1664/1426 | 0/0
VAREIGVL | 5000 | 96/16 101/20 97/20 | 0/0
WOODS | 1000 | 99/17 258/21 100/21 | 1/1




Table 6.9: L-SR1/L-BFGS for Large Problems (m = 7)

Pname dim itn fun grd | cod
ARWHEAD [ 5000 | 8/14 14/17 9/17 1 0/0
BDQRTIC | 1000 | 56/48 101/56 57/56 | 0/0
BROYDN7D | 1000 | 31/351 | 53/360 | 32/360 | 1/1
BRYBND | 5000 | 90/27 114/30 91/30 | 0/0
CHAINWOO | 1000 | 398/3670 | 575/3957 | 399/3957 | 1/1
COSINE | 1000 | 7/6 9/16 | 8/16 | 0/0
CRAGGLVY | 5000 | 42/52 77/61 43/61 | 0/0
DIXMAANA | 3000 | 7/11 11/13 8/13 1 0/0
DIXMAANB | 3000 | 11/11 13/13 12/13 | 0/0 |
DIXMAANC | 3000 | 14/12 17/14 15/14 | 0/0
DIXMAAND | 3000 | 13/14 16/16 14/16 | 0/0
DIXMAANE | 3000 | 211/223 | 213/231 | 212/231 | 0/0
DIXMAANF | 3000 | 186/162 | 188/170 | 187/170 | 0/0
DIXMAANG | 3000 | 162/190 | 165/197 | 163/197 | 0/0
DIXMAANH | 3000 | 170/158 | 227/163 | 171/163 | 0/0
DIXMAANI | 3000 | 785/1127 | 787/1160 | 786/1160 | 0/0
DIXMAANJ | 3000 | 132/139 | 134/142 | 133/142 | 0/0
DIXMAANK | 3000 | 138/112 | 141/119 | 139/119 | 0/0
DIXMAANL | 3000 | 55/111 | 58/116 | 56/116 | 0/0
DQDRTIC | 5000 | 6/12 10/20 7/20 | 0/0
DQRTIC | 5000 | 96/56 114/64 97/64 | 0/0
EDENSCH | 2000 | 23/21 40/25 24/25 | 0/0

EG2 1000 7/4 19/5 8/5 0/0
ENGVALL | 5000 | 12/13 15/15 13/15 | 0/0
FLETCBV2 | 1000 | 1/526 2/537 2/537 | 0/0
FLETCBV3 | 1000 / / / 2/2
FMINSURF | 1024 | 274/210 | 433/219 | 275/219 | 0/0
FREUROTH | 5000 | 14/14 29/21 15/21 | 0/0
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Table 6.10: L-SR1/L-BFGS for Large Problems (m = 7), continue

Pname dim itn fun grd cod
INDEF 1000 / / / 3/3
LIARWHD | 5000 22/23 40/27 - 23/27 0/0
MOREBV | 5000 28/26 32/28 29/28 0/0
MSQRTALS | 1024 / / / 2/2

MSQRTBLS | 1024 | 1779/1813 | 1801/1853 | 1780/1853 | 0/0
NCB20 1010 | 482/305 931/358 483/358 | 1/1
NONCVXU2 | 1000 | 1487/1627 | 1782/1671 | 1488/1671 | 0/0

NONCVXUN | 1000 / / / 2/2
NONDIA | 5000 | 9/21 16/25 10/25 | 0/0
NONDQUAR | 5000 | 966/914 | 2297/1015 | 967/1015 | 0/0
NONMSQRT | 1024 -/ / / 2/2
PENALTY1 |1000 | 112/50 280/60 113/60 - | 0/0
POWELLSG | 5000 = 29/32 60/38 30/38 1 0/0
POWER | 1000 | 168/125 | 233/130 | 169/130 |0/0
QUARTC | 5000 | 96/56 114/64 97/64 | 0/0
SCHMVETT | 5000 | 11/13 19/15 12/15 [ 0/0
SINQUAD | 5000 | 226/234 | 557/313 | 227/313 |0/0
SPARSINE | 1000 / -/ / 2/2
SPARSQUR | 1000 | 39/24 44/25 . 40/25 |1 0/0
SPMSRTLS | 4999 | 193/190 | 212/200 | 194/200 |0/0
SROSENBR | 5000 | 12/17 17/18 13/18 1 0/0
TESTQUAD | 1000 / / / 2/2
TOINTGSS | 5000 4/14 12/18 5/18 0/0
TQUARTIC | 5000 | 14/19 46 /27 15/27 1 0/0
TRIDIA | 5000 | 1777/1519 | 1789/1559 | 1778/1559 | 0/0
VAREIGVL | 5000 | 95/16 100/20 96/20 | 0/0

WOODS 1000 96/17 222/21 97/21 - | 1/1




~ Table 6.11: L-SR1/L-BFGS for Large Problems (m = 8)

Pname dim itn fun grd cod
ARWHEAD | 5000 8/15 14/18 9/18 0/0
BDQRTIC | 1000 | 98/55 | 153/63 | 99/63 | 0/0
BROYDNT7D | 1000 | 34/351 | 55/367 35/367 | 1/1
BRYBND 5000 97/28 123/32 98/32 0/0
CHAINWOO | 1000 | 474/ 730/ 475/ | 0/2

COSINE 1000 7/6 9/16 8/16 0/0
CRAGGLVY | 5000 | 44/46 80/54 45/54 1 0/0
DIXMAANA | 3000 7/11 11/13 8/13 0/0
DIXMAANB | 3000 11/11 13/13 12/13 0/0
DIXMAANC | 3000 14/12 17/14 15/14 0/0
DIXMAAND | 3000 14/14 17/16 15/16 0/0
DIXMAANE | 3000 | 211/222 | 213/232 | 212/232 | 0/0
DIXMAANF | 3000 | 172/158 | 174/168 | 173/168 | 0/0
DIXMAANG | 3000 | 141/160 | 144/164 | 142/164 | 0/0
DIXMAANH | 3000 | 176/161 | 236/168 | 177/168 | 0/0

-DIXMAANI | 3000 | 754/1105 | 756/1133 | 755/1133 | 0/0
DIXMAANJ | 3000 | 159/148 161/155 | 160/155 | 0/0
DIXMAANK | 3000 | 134/115 | 144/121 | 135/121 | 0/0
DIXMAANL | 3000 | 62/121 65/127 63/127 | 0/0
DQDRTIC | 5000 | 6/12 10/19 7/19 | 0/0
DQRTIC | 5000 | 122/56 | 247/64 | 123/64 | 0/0
EDENSCH | 2000 23/20 44/25 24/25 0/0

EG2 1000 | 7/4 19/5 8/5 | 0/0
ENGVALL | 5000 | 12/13 | 24/15 | 13/15 | 0/0
FLETCBV2 | 1000 1/505 2/518 2/518 0/0
FLETCBV3 | 1000 / / / 2/2
FMINSURF | 1024 | 258/200 | 441/208 | 259/208 | 0/0
FREUROTH | 5000 13/14 28/21 14/21 0/0
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Table 6.12: L-SR1/L-BFGS for Large Problems (m = 8), continue

Pname dim itn fun grd cod
INDEF 1000 / / / 3/3
LIARWHD | 5000 22/24 39/28 23/28 0/0
MOREBV | 5000 | 27/27 31/29 28/29 | 0/0
MSQRTALS | 1024 / / / 2/2
MSQRTBLS | 1024 | 1747/1858 | 1770/1904 | 1748/1904 | 0/0
NCB20 1010 | 341/359 713/409 342/409 | 0/0
NONCVXU2 | 1000 | 1103/1536 | 1447/1570 | 1104/1570 | 0/0
NONCVXUN | 1000 / / / 2/2
NONDIA | 5000 | 9/21 16/25 10/25 | 0/0
NONDQUAR | 5000 | 836/1237 | 2233/1385 | 837/1385 | 0/0
NONMSQRT | 1024 / / / 2/2
PENALTY1 | 1000 110/50 272/60 111/60 0/0
POWELLSG | 5000 30/39 57/44 31/44 1 0/0
POWER 1000 | 164/130 205/133 165/133 | 0/0
QUARTC | 5000 | 122/56 | 247/64 | 123/64 | 0/0
SCHMVETT | 5000 12/13 20/15 13/15 0/0
SINQUAD | 5000 | 186/240 | 455/330 | 187/330 | 0/0
SPARSINE | 1000 / / / 2/2
SPARSQUR. | 1000 42/24 47/25 43/25 0/0
SPMSRTLS | 4999 | 205/184 220/192 206/192 | 0/0
SROSENBR | 5000 | 12/17 17/18 13/18 | 0/0
TESTQUAD | 1000 / / / 2/2
TOINTGSS | 5000 |  4/14 12/18 5/18 | 0/0
TQUARTIC | 5000 | 16/19 51/27 17/27 | 0/0
TRIDIA 5000 | 1795/1336 | 1807/1383 | 1796/1383 | 0/0
VAREIGVL | 5000 |  87/16 92/20 88/20 | 0/0
WOODS | 1000 | 98/16 999/91 99/21 | 1/1




Table 6.13: L-SR1/L-BFGS for Large Problems (m = 10)

Pname dim itn fun grd cod
ARWHEAD | 5000 8/15 14/17 9/17 0/0
BDQRTIC | 1000 | 57/72 85/82 58/82 | 0/0
BROYDN7D | 1000 | 32/353 59/366 33/366 | 1/1
BRYBND | 5000 | 98/28 126/31 99/31 | 0/0
CHAINWOO | 1000 475/ 720/ 476/ 1 0/2

COSINE 1000 7/6 9/16 8/16 0/0
CRAGGLVY | 5000 | 55/51 113/63 56/63 | 0/0
DIXMAANA | 3000 /11 11/13 8/13 0/0
DIXMAANB | 3000 | 11/11 13/13 12/13 1 0/0
DIXMAANC | 3000 | 15/12 18/14 16/14 - 1 0/0
DIXMAAND | 3000 | 15/14 18/16 16/16 | 0/0
DIXMAANE | 3000 | 261/216 | 263/225 | 262/225 | 0/0
DIXMAANF | 3000 | 190/162 | 192/169 | 191/169 | 0/0
DIXMAANG | 3000 | 221/162 | 231/167 | 222/167 | 0/0
DIXMAANH | 3000 | 194/157 | 290/162 | 195/162 | 0/0
DIXMAANI | 3000 | 778/1047 | 780/1072 | 779/1072 | 0/0
DIXMAANJ | 3000 | 174/136 | 176/142 | 175/142 | 0/0
DIXMAANK | 3000 | 139/133 | 154/140 | 140/140 | 0/0
DIXMAANL | 3000 | 62/120 65/126 63/126 | 0/0
DQDRTIC | 5000 6/12 10/19 7/19 0/0

DQRTIC 5000 | 123/56 211/64 124/64 | 0/0
EDENSCH | 2000 | 22/21 44/26 23/26 | 0/0

EG2 1000 7/4 19/5 8/5 0/0
ENGVAL1 | 5000 | 15/13 18/15 16/15 | 0/0
FLETCBV2 | 1000 | 1/509 2/520 2/520 1 0/0
FLETCBV3 | 1000 / / / 2/2
FMINSURE | 1024 | 268/198 | 526/210 | 269/210 | 0/0
FREUROTH | 5000 | 13/14 28/21 14/21 | 0/0
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Table 6.14: L-SR1/L-BFGS for Large Problems (m = 10), continue

Pname dim itn fun grd cod
INDEF 1000 / / / 3/3
LIARWHD | 5000 | 22/23 39/27 23/27 1 0/0
MOREBV | 5000 | 27/26 31/28 28/28 | 0/0
MSQRTALS | 1024 / / / 2/2
MSQRTBLS | 1024 | /1766 /1830 /1830 | 2/0
NCB20 1010 | 423/296 | 950/328 | 424/328 | 0/0
NONCVXU2 | 1000 | /1502 /1542 /1542 | 2/0
NONCVXUN | 1000 / / / 2/2
NONDIA | 5000 | 9/21 16/25 10/25 | 0/0
NONDQUAR. | 5000 | 583/1102 | 1659/1241 | 584/1241 | 0/0
NONMSQRT | 1024 / / / 2/2
PENALTY1 |1000 | 114/50 290/60 115/60 | 0/0
POWELLSG | 5000 | 28/42 48/45 29/45 | 0/0
POWER | 1000 | 168/123 | 212/126 | 169/126 | 0/0
QUARTC | 5000 | 123/56 211/64 124/64 | 0/0
SCHMVETT | 5000 | 11/13 18/15 12/15 | 0/0
SINQUAD | 5000 | 174/236 | 437/317 | 175/317 | 0/0
SPARSINE | 1000 / / / 2/2
SPARSQUR | 1000 | 47/24 71/25 48/25 1 0/0
SPMSRTLS | 4999 | 390/186 | 409/198 | 391/198 | 0/0
SROSENBR. | 5000 | 12/17 17/18 13/18 1 0/0
TESTQUAD | 1000 / / / 2/2
CTOINTGSS | 5000 | 4/14 12/18 5/18 0/0 ||
TQUARTIC | 5000 | 15/19 50/27 16/27 | 0/0
TRIDIA | 5000 | 1898/1364 | 1910/1400 | 1899/1400 | 0/0
VAREIGVL | 5000 | 86/16 91/20 87/20 | 0/0
WOODS | 1000 | 87/16 192/21 88/21 | 1/1

104



CHAPTER 7
SUMMARY

In the past twenty years, limited merﬁory methods have been becom-
ing very popular. At first, only the BFGS method can be efficiently imple-
mented with the limited memory idea. Then the work by Byrd, Nocedal and
Schnabel (1992) sparked another surge of interest in limited memory meth-
ods. With the compact representation of quasi-Newton matrices, we can now
virtually implement a limited memory version of any methods in the Broyden
family. Not vonly the line search method we can use as global convergence
strategy, but also the trust region method.

The behavior of the L-BFGS method has been studied intensively in
the past twenty years. It is stable and fast for most of test problems, as we
h(;xve noted in this study. As to the L-SR1 method, we can now say it is at
least a prospective method worth further studying. For small m (4 fm <8),
it can be‘as good as the L-BFFGS method, although it usually requires more
function evaluations. »

vLike ‘all other methods, the perférmance of the L-SR1 method can be
affected by many factors. Whilé we don’t know much about all these factors,
one thing is for sure, the initial scaling parameter 4;. It has the tendency
that a bigger 7y is usually better than a small one. Among the five choices,
Yi-ask—1/lsk-a % lyealllse-alls lyn—ill®/yE_ysk-1, 0.9y, and L1y, 1153,

tends to be the best. It generates more Newton steps, requires fewer function
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evaluations and converges faster than the other four choices.

The choice of 4, = 1.1 * ¥, is worth pondering, as 1.1 * 7 tends to
be bigger than the biggest eigenvalue of the Hessian V2 f(z;). When we start
with v,/ with such a choice of 7, every eigenvalue of ~,7 is “bigger” than
all eigenvalues of the true Hessian V?f(z;). After we apply SR1 update m
times, ﬁz_of these eigenvalues are adjusted “down” to where they are supposed
to be in the subspace spanned by {sp_;}7;. Now the scenario is that, “big-
ger” eigenvalues reflect the unknown subspace and “smaller” eigenvalues reflect
the subspace which has been well represented in the Hessian approximation.
Since the direction —(By, 4 v&) "' gx tends to go along in the subspace of small
eigenvalues, we can imagine that the predicted function reduction along this
- direction “matches” well the real function reduction. Thus, a Newton step 1s

more likely accepted as an acceptable step.
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APPENDIX A
PROBABILITY OF SR1 COSINE VALUE

Theorem A.1 Given 6 € (0,7/2] and e € R™. If we denote the angle between

e and vector z € R™ by ¢, and define the cosine value of ¢, by

cos iy = a'e/(||z[le]]),

then the probability that | cos .| < cosf can be estimated by

% Coon—-2 4 7,
tdt
_ Josin"tdt

Pé’ T =
S sin™ 2t dt

(n—1)cosé,

if the uniform distribution of z in R" is assumed.
Proof:
~ Without generality, we can assume that e € R™ is the unit vector

with its last element being one and all the others zero, i.e.

0

0

1

Let S5 C R™ be the intersection of the unit sphere with the cone of

central angle 6, i.e.
Sp={zeR": ||z =1,zTe > cosf}.

Obviously, S, is the unit sphere.
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We use the notation Pg(B) to denote the probability of events in B

over the events space G. As we know from the theory of probability,

Py(5) = %—%

where M is the measure defined over the space G. If G is an (n—1)-dimensional
surface in R™, then M(B) denotes the area of 5.

Thus,

Py = Prr({z:]cosp,| <cosl}).

= Ps.({z: 27| < cosh, |[a]| = 1})

= 1-2-Ps.(S))
_ 2 M(S)
OM(S,)

Consider the mapping z = m(¢) : R"™1 — R™:

SIN ¢y 51N g « - - 51N Py - .
¢
COS ¢y SIn ¢y -+ - 81N Py
b2
m(qﬁ) = NNES 5
COS (g SIN Pp_y
. ¢n—1
COS Pp_1 - -

and the domain Dy, C R™1:
Dy = (0,27] x (0,7] - (0,7] x (0, 0].

From Mathematical Analysis we know that m is a one-to-one mapping between -
Dy and Sp. We now try to compute M(Sg) through the transformation m.

Be definition (see Edwards (1973) for reference),

M(Ss) = /D det(Goydg
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where G is an (n — 1) x (n — 1) matrix whose 7j-th element is

o ?EQE
gi]'— 8¢¢)8¢J .

It 1s not hard to verify that

cos dysingy---sing,_; | «— 1-th

om . . .
B—g— = | —sin ¢ysin gy - - sin Pn_q — 2-th
1
0 | « all the rest,
singysingy---sing,_y | « 1-th
COS ¢y SIN ¢y - + - SIn Pp_q «— 2-th
om- COS Pp_1 ,

Obp—1  sin Pr-1

COS Prg SIN P — (n—1)-th

- 1
o8 ¢n—1

sin® ¢y — n-th,

and for 2 =2,3,...,n — 2,

SIn ¢y SIN @y« + - SIn Py «— 1-th

COS @1 SN ¢y - + - sin ¢y — 2-th

Jdm  cos ¢;

9¢i  sindi | o $icrsing;-singn,_y | « i-th

——L sin? ;- sin ¢,y — (¢4 1)-th

cos ¢;

0 « all the rest.

So, Gy is a diagonal matrix whose :-th diagonal entry can be expressed as
Gin = SiHQ ¢i+l T Sin2 ?én—la
forve=1,2,...,n —2 and the last entry g,—1,-; = 1. Thus

. 2
det(Gy) = (sin' dr -+ 5in" ™ Gy sin™ 2 g, ) .



BIBLIOGRAPHY 113

Therefore,

M(S;) = /D ew/det(Gg)c&é |
2m ks T ]
= /0 /0 /O ./o sin' By - -sin™> g sin™ 2 Gre1 dPp_1 dppy_g - - - déy dey
s T 9
- i depy - - in"~° n— d n— in"~? n— d n—1,
27r/0 smgﬁz'% /Osm Gy do 2/0 sin™2 g1 ddn_y

fog sin”™~? Gn1dy_y
5 s g dy
[7 sin™2 ¢ dt
i di
(2" a

= (n——l)(l—%@)
(n—1)cos.

P, = 1-2

VAN

IA



APPENDIX B
AN ALTERNATIVE EIGENDECOMPOSITION OF L-SR1 MATRIX

Given the L-SR1 Hessian (2.20), we talked about its eigendecompo-
sition in Section 3.3. There is, however, another way to eigendecompose the
L-SR1 Hessian. Although both methods give the same decomposition, they
have different numerical stability.

Let Dy be an m x m diagonal scaling matrix,

Dy = diag(|[se-mll; - -, llsr—2ll; [[se=1]])-

If ¢ is the rank of the n x m matrix Qy, then we can do eigendecomposition to

the m X m matrix (we may call it the scaled QTQy ).
D' QrQnDit = UpSjUy

to get Y and U, where ¥y, is an ¢ x ¢ diagonal matrix with all diagonal entries
positive, and Uy is an m X ¢ full rank orthogonal matrix.
The next step is to do eigendecomposition again to the compacted

1 % t matrix

SeUL DM DR UGS = VAR VT,

where Ay is t x ¢ diagonal and Vj, is ¢ x ¢ orthogonal.
Now we have all the information required by trust region method to

compute the step sp. Let

Pr = QiD UR S Vi,
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and Z; be an ort‘hogonal‘ base in the nukll space of Qr, @1Z, = 0. Then we

assert that the n x n matrix
[{k = [Pk Zk],

is orthogonal, and that By has the eigendecomposition:

’)/kf+ A, 0 ‘
By, = w1 + QM QT = K, KT
0 ’)/kI



APPENDIX C
PSEUDO—CODE OF THE L-SR1 ALGORITHM

’main program:

CALL read._in;

CALL set_ready;

DO WHILE ( done < 0)
CALL pre_iterate;
CALL new_iterate;
CALL stop_check;

END DO

CALL report.

subroutine pre_iterate:

itn = utn -+ 1;

m=m-+1;

IF (m = 0) RETURN;

m=m — 1;

update m and IND,.y;

IND = IND gy,

Ye = G+ — Ge:

Y=yl ye/yl sei

update D, S,Y, STS,YTY and YT'S;

Te = Ty,
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fe= [
ge = g4
CALL eigen_decomp;
Q=~vI+A;
PG = VT*E‘I*UT*D‘l * QT g
726G = |lgel® = PG
subroutine new_iterate:
/* find an acceptable point first */
dorig = 6;
control = 1;
DO WHILE (control < 10)
CALL new_sc(§, s, v, newton);
Ty =T+ 8
fv = f(z4);
Af=fr—fa
IF (Af < a*g? *s.) THEN
IF (newton) THEN
control = 13;
6 = |lscll;
ELSE
control = 10 + control;
END IF
ELSE
- CALL redc_delta(é);
IF (6 < steptol) THEN

117
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control = 100; /* terminate the program */
ELSE
control = 2;
END IF
END-IF
END DO
6 = max(0,0.1 % byri);

/* try to make a larger stride */

IF (control = 11) THEN
Af,=05% (g5 * s, —v*s! *s.);
IF (|Af, — Af| < BIAf]) control = 51;
DO WHILE (control > 50)

0y = 0;
Ty = Ty,
St2567
ro_r.
t — + 1
Vy = UV

b=12%6;

CALL neV\)_sc(é‘, Se, vy mewton);

Ty = Tt Se;

fe = flzy);

Af = fo— [

Afy=05% (g7 50— vv st v s,

IF (newton .OR. fy > fi OR.Af > a* g7 s, .OR.
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(IAf, — Af| > BIAS] AND. Af > g7 +5.)) THEN
control = control — 10;

IF (f+ > f,) THEN

v =y
ELSE IF (newton) THEN
6= |lsell;
END IF
ELSE
control = 52;
END IF
END DO
END IF
9+ = vf(‘r‘}');
subroutine redc_delta:
Af=fy—fe—glse;
IF (Af #0) THEN
bnew = —0.5% gls.  [|sc|l /A S
IF (6pew > 0) THEN
IF (8pew < 0.1 %8) THEN
§=0.1%6;
ELSE IF (8w > 0.5 % §) THEN

119
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6 =0.54%;
ELSE
6= 5%1;';
END IF
END IF

END IF

subroutine eigen_decomp:.

call effect(~, IND, D, YTY,YTS,STS, DL, H,QTQ);

U ¥ UT = eigendecomposition(QTQ);

r = number_of_positive(¥); |

)y : square_root_of_positive(X);

DM =S+ UT % DL« H™' s« DL+ U % %

V + A+ VT = eigendecomposition( DM );

subroutine effect:

/* QTQ is for D' QLQeD;" ™/

/* DM is for D' MD;' */

H,DL,DM,QTQ = 0;

k. last = 1;

DO WHILE (k <m) ’
v= DR [YTY 442 STS — v (YTS + Y TS et i) D
a=[YTY + 4%« STS — v+ (YTS + YTS")]i/ D3
oro-| 9T¢ V. /¥ scaled QTQ */

vl o«
v=D"1 s [W—~vxSTSlig14/Drp;:
Ca=[W =% STS)i/Dj
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DM v
DM = ' ; /¥ scaled DM */

'UT «

I=—DLT« H « DL * DMy.4_1;
h =DMy + 17 DMy ;

H = diag(H, h); /¥ scaled H */
DL 0

DL = : /* scaled DL */
o1

l
cos = 2/ | [IT 1)[QTQ1:k1: ;
‘ 1

IF (|cos | > €) THEN
k,last =k +1;
'ELSE
last = last + 1;
switch IND(k) with TN D(last);
END IF
END DO
subroutine new_sc:

define |[s(v)|12 = |[(Q 4 v )"« PG|* + ZG /(7 + v)%;

IF (r = 0) THEN
v=VZG[6—n;

IF(v<0)THEN
v =0;
newton = 1;

ELSE

newton = (;
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END IF
ELSE IF (all © >0 ) THEN
VO;O;

IF (||s(v0)]|* > 6% ) THEN

vo =V PGT % PG+ ZG/§ — (v + min(2))/2;
IF (vo <0) v =0;
solve |[s(v)||? = 62 for v with v, given;
newton = 0;

ELSE
v =20
newton = 1;

END IF

ELSE

1o =V PGTx« PG+ ZG/6 — min(Q);
solve ||s(v)||* = &* for v with vy given;
newton = 0;

END IF

se = s(v);

"~ subroutine stop_check:

F (lgs o < gradol )
done = 0;

ELSE IF (|lsc]loo < steptol )
done = 1;

ELSE IF ( ¢tn > mazitn )

done = 2;
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ELSE IF ( 6 < steptol )
done = 3,
ELSE
done = —1;
END IF
subroutine read_in:
read in n,m_max;
read in initial point zg;
read in controling parameters steptol, gradtol, mazitn;

subroutine set_ready:

a=10"%

B =10;

v=1

itn = 0;

m = —1;

Te = To,

fe = f(ze);

9e = V f(z.);

6 =0.01* ||g.||;

establish D, Y, S, YTY, STS, YTS and IND;
IF (Nlgellw < gradiol )

done = 0;
ELSE

done = —1;

END IF






