
Appeared in ACM Multimedia Systems Journal, March 1999

1

A Progressively Reliable Transport Protocol For
Interactive Wireless Multimedia

Abstract: We propose a progressively reliable transport pro-
tocol for delivery of delay-sensitive multimedia over Internet
connections with wireless access links. The protocol, termed
“Leaky” ARQ, initially permits corrupt packets to be leaked
to the receiving application and then uses retransmissions to
progressively refine the quality of subsequent packet ver-
sions. A Web server would employ Leaky ARQ to quickly
deliver a possibly corrupt first version of an image over a
noisy bandlimited wireless link for immediate display by a
Web browser. Later, Leaky ARQ’s retransmissions would
enable the browser to eventually display a cleaner image.
Forwarding and displaying corrupt error-tolerant image data:
(1) lowers the perceptual delay compared to fully reliable
packet delivery, and (2) can be shown to produce images
with lower distortion than aggressively compressed images
when the delay budget only permits weak forward error cor-
rection. Leaky ARQ supports delaying of re-transmissions
so that initial packet transmissions can be expedited, and
cancelling of retransmissions associated with “out-of-date”
data. Leaky ARQ can be parameterized to partially retrans-
mit audio and video. We propose to implement Leaky ARQ
by modifying Type-II Hybrid/“code combining” ARQ.

1. Introduction1

Portable “network computers” (Berkeley’s InfoPad [1]
and Xerox PARC’s MPad [2]), Web-cognizant PDA’s [3],
and Web-aware laptops with wireless access to the Internet
demonstrate the dramatic convergence of portability, con-
nectivity, and multimedia. Figure 1 illustrates a typical sys-
tem architecture supporting wireless access to distributed
multimedia. Web-based image browsing or interactive audio/
video conferencing generates multimedia data that is

encoded by the server and then transported to the receiver by
an end-to-end protocol that provides some form of error pro-
tection over an Internet connection. The likely scenario of a
terminating wireless access link concatenated to a wired
Internet backbone is pictured.

Delay-sensitive applications like interactive video con-
ferencing that operate over a wireless access link pose a new
challenge to the networking community, namely how to pro-
vide sufficiently rapid packetized image delivery to the end
user in a manner that is also sufficiently reliable, given the
constraints of a noisy wireless bottleneck. Interactive audio/
video conferencing applications typically require delivery of
data within about 100-200 ms [4][5]. The desired goal of
point-and-click interactivity for Web-based image browsing

1. The material in this paper was presented in part at the SPIE Mul-
timedia Computing and Networking Conference, 1996. This
work is based on the first author’s Ph.D. thesis. This work was
supported by funding from DARPA.

Web or video
conferencing

server

Wired
Internet

backbone

Decoding/
Decom-
pression

Figure 1. General system architecture supporting
wireless access to multimedia on the Internet and Web.

Transport
Protocol

(Receiver)

Multimedia data flow

Wireless
access link

Web-aware
laptop or PDA

Base station

Lower
layers

Lower
layers

Coding/
Com-

pression

Transport
Protocol
(Sender)

Richard Han
IBM T.J. Watson Research Center

rhan@watson.ibm.com

David Messerschmitt
University of California at Berkeley

messer@eecs.berkeley.edu

Appeared in ACM Multimedia Systems Journal, March 1999

2

requires similarly rapid packet delivery in order to provide
the end user with truly immediate response.

In this paper, we first determine the latency costs of tra-
ditional error protection schemes like retransmission-based
protocols and forward error correction (FEC) over wired and
especially wireless links. In Section 2.1, we quantify the
delay due to retransmissions over a wireless access link by
deriving a minimum-delay bound. In Section 2.2, we con-
sider the impact of FEC on transmission delay. Given suffi-
ciently tight delay constraints, the combination of error-
tolerant compression and delivery of corrupt packets is
offered in Section 2.3 as a low-latency solution for interac-
tive applications operating over wireless access links.

In Section 3, we propose end-to-end progressively reli-
able packet delivery [6], which initially permits delivery of a
corrupt packet, and subsequently delivers increasingly reli-
able versions of that packet. In addition, several features are
proposed to enhance the performance of progressively reli-
able packet delivery. These permit the application to control
how long retransmissions are delayed, to cancel retransmis-
sions associated with “out-of-date” data, and to partition its
data into multiple flows for packet scheduling by the under-
lying transport protocol. In Section 4, we consider how to
implement the property of successive refinement within a
progressively reliable transport protocol. We call such a pro-
tocol Leaky ARQ since corrupt packets are permitted to be
“leaked” to the receiving application.

In Figure 2, we illustrate how a Web-based image
browser would make use of progressively reliable packet
delivery. The browser would receive corrupt packets con-
taining image data that has been coded by the Web server to
be error-tolerant, and would immediately display this visual
information, rather than wait for reliable packet delivery. As

Leaky ARQ successively refines the quality of subsequent
packet versions, the application is able to present versions of
the displayed image with successively fewer errors.

2. The case for error-tolerant compression and
delivery of corrupt packets

For delay-sensitive applications, the latency introduced
by traditional error protection techniques like retransmis-
sion-based protocols and FEC becomes intolerable when the
interactive delay bound is exceeded. In this section, we ana-
lyze the latency costs of both Acknowledgment-Repeat-
Request (ARQ) protocols and FEC in wired and wireless
environments. We conclude by offering a low-latency solu-
tion based on error-tolerant compression and delivery of cor-
rupt packets.

2.1 The latency cost of retransmission-based ARQ protocols

The latency cost of ARQ protocols arises from separate
wired and wireless loss phenomena.

2.1.1 Latency over the wired Internet

Images within Web pages are presently transferred over
the Internet using the hypertext transfer protocol HTTP [7],
which is built on top of TCP [8], the Internet’s reliable trans-
port protocol. Retransmission-based ARQ protocols such as
TCP can incur significant delay, due to large roundtrip times
and congestion-induced packet loss over the Internet.
Roundtrip times on the order of a few hundred milliseconds
have been observed over wide-area Internet connections [9].
In the same study, packet loss rates on multi-hop Internet
connections were found at times to exceed 10%. Given such

Figure 2. Progressively reliable packet delivery for Web-based image browsing over a wireless access link.
An initial version of a packetized image is delivered with corruption to lower the perceived delay. The 8 bits/
pixel colormapped image on the left is corrupted at 1% bit error rate (BER). The protocol successively
refines each noisy packet, so that the Web browser can eventually present an image with fewer errors. The
degree of refinement is parametrizable by the application.

Appeared in ACM Multimedia Systems Journal, March 1999

3

roundtrip delays and packet losses, it is questionable whether
reliable delivery over the wired Internet can be depended
upon to consistently deliver packets within the interactive
latency bound. Consequently, interactive audio/video confer-
encing applications that operate over the Internet have cho-
sen to employ unreliable packet delivery in order to achieve
real-time transport [10][11]. For these delay-sensitive appli-
cations, communicating information quickly at the cost of
unreliable delivery is subjectively preferable to communicat-
ing information reliably at the cost of delivery that is too
slow.

2.1.2 Latency over noisy wireless bottlenecks: a mini-
mum-delay bound

Latency introduced by retransmissions becomes an even
greater problem over a wireless link, which will likely be the
weakest link in the connection both in terms of limited band-
width and high bit error rate (BER). In this section, our goal
is to determine the average amount of time required to reli-
ably transmit a packetized finite-length image over a fixed-
BER fixed-bandwidth channel.

Our analysis is simplified if we develop a lower bound
on latency over all protocols, so that we don’t have to ana-
lyze each ARQ protocol individually. Standard ARQ proto-
cols include Go-Back-N (GBN), Selective Repeat (SRP)
[12], and TCP[8]. Quantifying the latency incurred by a
complex adaptive protocol like TCP can be a difficult task.
Fortunately, it has been shown that a form of SRP called
ideal SRP bounds the throughput performance of all other
repetition-based non-hybrid ARQ schemes like GBN, Stop-
and-Wait [13], and TCP (assuming constant retransmission
timeouts) [14]. Throughput in this context is a measure of
the efficiency of the protocol, i.e. what percentage of the
time the protocol spends sending new packets rather than
retransmissions. Most ARQ protocols are windowed proto-
cols that allow multiple packets or their retransmissions to be
propagating toward the receiver during any single roundtrip
time. Many windowed protocols respond to a lost packet by
retransmitting other packets besides the lost packet. This can
lead to unnecessary retransmissions, thereby lowering the
throughput. In contrast, SRP only retransmits the specified
lost packet. Therefore, no other single-copy ARQ protocol
can improve upon the efficiency of SRP. We do not consider
multi-copy strategies [15], and stutter-based enhancements
to these protocols [16] [17] in the following analysis,
because these techniques represent crude forms of FEC (i.e.
repetition coding) for which there are more efficient hybrid
FEC/ARQ protocols whose limitations are discussed in Sec-
tion 2.2.

We begin by quantifying the average number of retrans-
missions experienced by a single packet that is reliably deliv-
ered by ideal SRP. Ideal SRP assumes transmitter buffers and
receiver buffers have infinite length. Ideal SRP also assumes

that the sender’s window size is larger than the roundtrip
time, so that the transmission pipe can be continuously filled
with multiple distinct packets, assuming continuous trans-
mission at the sender.

First, we need to know the average number of retrans-
missions (including the first transmission) per packet gener-
ated by ideal SRP. Let a packet consist of a block of K bits.
Assuming independent Bernoulli trials and a fixed BER, the
probability Pg of transmitting one K-bit packet through the
wireless link without any errors is .
Assign the random variable Npacket = the number of trials
until the first good packet is delivered. For ideal SRP, the
number of retransmissions for each packet is independent of
the number for any other packet. Therefore, Npacket has a
geometric distribution, i.e.

, for i positive integers.
The expectation of Npacket, i.e. the average number of trials
until the first good packet is received, is given by

(2-1)

Our next objective is to determine the latency cost of
reliably transferring a complete image that is fragmented
into many smaller packets by ideal SRP. Suppose we frag-
ment the original image size I by a factor F, so that each
packetized fragment contains (I/F + H) bits, where H is the
number of header bits per fragment. The expected number of
retransmissions for each fragment is closely related to Equa-
tion (2-1), and is given by

(2-2)

A lower bound estimate for the time it takes to reliably
transmit a multi-fragment image is given by the product of
the number of fragments F, the average number of transmis-
sions per fragment E[Nfragment], and the packet transmission
time per fragment PTTfragment. In Figure 3, we illustrate how
this lower bound estimate is obtained. Our lower bound cor-
responds to summing all the shaded PTTfragment intervals.
Since there are F*E[Nfragment] shaded intervals, then the
product gives an estimate of
the time needed to reliably transmit a multi-fragment image.
Further, this summation of PTTfragment intervals is a lower
bound because it does not count the interstitial spaces that
appear during retransmission (e.g. after packet fragment F2
is retransmitted in the figure). These interstitial spaces
appear because, for any finite burst of packets corresponding
to a fragmented image, the tail end of the packet burst will
not have sufficient volume to keep the downstream pipe
completely full.

Pg 1 BER–()K
=

P Npacket i=[] 1 Pg–()i 1– Pg⋅=

E Npacket[] 1
Pg

1
1 BER–()K

----------------------------= =

E Nfragment[] 1

1 BER–()
I
F
--- H+ 

 
---=

F E Nfragment[] PTTfragment⋅ ⋅

Appeared in ACM Multimedia Systems Journal, March 1999

4

Therefore, if we define Timage as the time needed to reli-
ably transmit a packetized image via ideal SRP, then the
average overall time for reliable image transmission is given
by

(2-3)

Equation (2-3) is the key result of this section’s analysis.
This lower bound on the image transfer delay is found to be a
separable function of BER and BW, so that the sources of
latency due to noise and bandwidth can be easily analyzed.
This minimum-delay bound increases exponentially as the
BER increases, and decreases inverse linearly as the wireless
bandwidth BW increases.

In Figure 4, we construct a log-log plot of Equation (2-
3)’s lower bound on E[Timage] as a function of the image
fragmentation factor F. We substitute the following values: a
raw BER of 10-2 for wireless fades [18][19], header size H =
100 bits, wireless BW = 500 kbit/s (in the middle range of
wireless transmission rates [20]), and image size I = 20000
bits (about the size of many small compressed images).

The behavior exhibited in Figure 4 is explained as fol-
lows. First, partition Equation (2-3) into a “BER fac-

tor” and a “BW factor” . The

BER factor declines exponentially as a function of F, while
the BW factor increases only linearly with F. Hence, for very
small F (large packets), delay is astronomical due to the BER
factor causing many retransmissions. However, as F
increases (smaller packets), the retransmission delay due to
the BER recedes exponentially, so that smaller packets help
to decrease image transfer latency. As F becomes very large

(in the extreme, 1 bit payloads), the overhead from the
header H for each ultra-small payload begins to dominate,
causing the lower bound on latency to rise.

There is an intermediate packet size or fragmentation
factor that produces the minimum delay. In order to find the
optimal fragmentation value, we take the derivative of Equa-
tion (2-3) with respect to F, obtaining a quadratic in F which

we then set equal to zero, . Our

optimal Fopt is given by

(2-4)

where we have eliminated the second root. A different
approach to deriving the optimal packet length has been
described that is based on utilization instead of delay [12].
Substituting our chosen values into Equation (2-3), we

obtain an , which agrees with our plotted mini-

mum near F=300. Therefore, for our set of assumed parame-
ters, the optimal packet size (payload + header) is about 162
bits and the minimum delay is about 530 ms, or about half a
second.

Given a real-time delivery bound of about 200 ms, then
we are far from meeting our objective of interactivity for
multiple reasons. First, the half second delay is a lower
bound due to ideal SRP. All of the transport protocols sur-
veyed in [21], including TCP, practice either some form of
GBN, or some non-ideal form of SRP (e.g. finite receiver
and transmit buffers), and will therefore incur a higher
latency cost than ideal SRP. Second, the half second delay is
a lower bound since the interstitial intervals were ignored in
the estimate. A tighter minimum-delay bound has been
derived that shows that ignoring these interstitial intervals
can significantly underestimate the latency when the
roundtrip times are large [22]. Third, the half second delay
was obtained at the optimal packet length, which according

Fragment
F1

������������������������
������������������������

Time

Repeat F1Repeat F2F3

Figure 3. A lower bound estimate of the time it takes to reliably transmit a burst of packet
fragments (F1 through F4) is obtained by summing the shaded packet transmission times PTT. Each
time slot is counted at most once in the sum. This is a lower bound because empty slots are not
counted. Fixed PTT’s and fixed roundtrip times RTT’s are pictured. In this example, only packet
fragments F1 and F2 are retransmitted, while F3 and F4 are delivered without loss.

�������������������������
�������������������������

������������������������
������������������������

Repeat F1F2 F4������������������������
������������������������

F1 first attempt

F2 first attempt

F1 second attempt

PTT RTT

F2 second attempt

E T eimag[] F E Nfragment[] PTTfragment⋅ ⋅

F

1 BER–()
I
F
--- H+ 

 

I
F
--- H+

BW
--------------⋅ 1

1 BER–()
I
F
--- H+ 

 

I F H⋅+
BW

--------------------⋅= =

≥

1 BER–()
I
F
--- H+ 

 – I F H⋅+
BW

F∂
∂

equation 2 4–()() 0=

Fopt
I
2
--- 1 BER–()ln 1– 1

4
H 1 BER–()ln⋅
--–– 

 ⋅ ⋅=

Fopt 324=

Appeared in ACM Multimedia Systems Journal, March 1999

5

to Equation (2-4) requires knowledge of the BER and BW at
the sender. In a real-world implementation, knowledge of the
wireless bandwidth, and especially of the current BER of the
wireless link, may not be available, so that chosen packet
length will operate at a suboptimal point on the curve that
will suffer a much higher penalty in latency.

2.1.3 Improvements to TCP for wireless links

Several proposals to improve TCP’s wireless perfor-
mance have been described [23]. One well-known problem
with TCP is that, in a wireless environment, it mistakes
packet losses caused by bit corruption for packet losses
caused by network congestion, unnecessarily initiating con-
gestion-avoidance mechanisms like window throttling and
“slow start”. While the various approaches improve the per-
formance of TCP, ultimately their performance is still
bounded by the ideal SRP analysis of the previous section.
Even though it is possible to lower the delay incurred by
TCP using Indirect-TCP and “snoop” TCP, the latency will
still not be low enough to achieve the real-time objective of
interactivity during wireless fades.

2.2 The latency cost of forward error correction

The latency introduced by open-loop FEC via overhead
and interleaving delay can also violate interactive delay
bounds. FEC is typically implemented as a block code and/
or convolutional code, and is often used in link-layer proto-

cols to improve reliability [19]. Error protection is achieved
by adding redundancy to the source’s data. For delay-sensi-
tive image data, the delay budget can limit the amount of
FEC overhead that can be applied.

Consider the example of Web-based image browsing or
interactive video conferencing over wireless links. These
applications require roundtrip response times of about 200
ms between user input (e.g. mouse action for Web browsing,
or voice input for interactive video conferencing), and visual
feedback. Roundtrip times RTT over just the wired portion of
the Internet were earlier observed to exceed 100 ms for
wide-area connections. In this case, the delay budget remain-
ing for wireless image transmission would only be about 100
ms. Digital cellular standards like GSM and IS-95 use con-
volutional FEC coding and have determined that FEC over-
head factors ranging from two to three are needed to
adequately protect against cellular fading [24]. Assuming a
minimum factor of two is required to adequately protect
image data, then the largest amount of image data Imax that
could be transmitted within the delay bound D is given by

. Given D=200ms, and
RTT=100ms, then Imax=0.05*BW.

However, we must also include the interleaving delay
introduced by FEC encoding and decoding over a wireless
link. Interleaving is a key component of conventional digital
cellular standards like IS-95 and GSM, where it is used to
spread error bursts to lower the probability that the FEC code
is overwhelmed by a concentration of errors. The one-way

Figure 4. Log-log plot of the lower bound on the average delay experienced by reliable delivery of a
packetized image over a bandlimited and noisy channel. E[Timage] from Equation (2-3) is plotted as a
function of the image fragmentation factor F (image size = 20 kbits, BER = 10-2, BW = 500 kbit/s, and
header size H = 100 bits). For very large packets (region (a)), delay is exponentially dominated by bit
corruption. For very small packets (region (b)), delay is dominated by header overhead. In between, the
optimal packet size causes a minimum delay of about half a second, which exceeds the interactive latency
bound. ARQ protocols less efficient than ideal SRP will incur more delay (shaded region).

Average image

transfer delay (sec)

Fragmentation factor F

100

101

102

103

104

105

106

107

108

101 3x101 102 3x102 103 3x103 104

region (b)

region (a)

Delay due to less
efficient protocols

Ideal SRP
minimum

delay bound

Imax BW 2⁄() D RTT–()×=

Appeared in ACM Multimedia Systems Journal, March 1999

6

delay due to interleaving is at least an extra 20 ms in IS-95
[25] and 37.5 ms in GSM [26]. The total interleaving delay
consists of four components: interleaving and deinterleaving
delays in the forward direction, and their counterparts in the
reverse direction. All four components will contribute to the
roundtrip time RTT. For example, if we assume 20 ms of
interleaving delay in each direction and 2x FEC, then
Imax=0.03*BW. Even at 1 Mbit/s, only relatively small ~3.8
KByte images could be transmitted within the interactive
latency bound. In contrast, if no FEC is applied, then both
overhead and interleaving terms can be eliminated, and
Imax=0.1*BW. At 1 Mbit/s, Web-based images of size up to
~12 KByte can be communicated interactively.

There is also the potential that end-to-end FEC overhead
will be suffered on the wireless link as well. Burst erasure
correcting codes have been suggested as an end-to-end solu-
tion for mitigating packet losses due to congestion on the
wired backbone [19][27][28]. In the event that erasure codes
are implemented end-to-end, then erasure-based FEC over-
head will be suffered over the wireless link, and conse-
quently must be factored into the overall calculation of the
delay budget along with the wireless FEC overhead. Even
worse, the error correction provided by erasure codes is on
the scale of packets, and is likely to be relatively ineffective
against wireless bit errors. Consequently, erasure-based FEC
overhead will be suffered over the wireless link without
improving error-correcting performance.

Hybrid ARQ protocols that use FEC to lower the num-
ber of retransmissions have been shown to achieve a higher
throughput than ideal SRP [13]. Consequently, FEC can
improve the delay performance of reliable protocols over
noisy links [22]. However, hybrid ARQ protocols that wish
to adequately protect the first transmission of a packet must
still suffer the FEC overhead and interleaving delay calcu-
lated above. The ARQ retransmissions will merely add delay
beyond what has already been observed for open-loop FEC.

2.3 Low-latency solution: error-tolerant compression and
delivery of corrupt packets

Rather than devote the few bits in a tight delay budget to
aggressive FEC to protect heavily compressed images, we
offer the alternative of error-tolerant image compression as a
means to achieve lower distortion image delivery as well as
low-latency delivery. We first address the claim of lower dis-
tortion, and then address the claim of low-latency delivery.

For wireless links with sufficiently low bit rates, even
heavily compressed images may be of high enough volume
that it is not possible to apply adequate FEC without violat-
ing the interactivity bound. For example, if the wireless bit
rate is 1 Mbit/s and the delay budget for image transmission
and FEC is 100 ms, then a heavily compressed 10 KByte
image will take 80 ms to transmit. Our delay budget would
prohibit the application of 2x FEC on such an image.

In these circumstances, when there are sufficiently tight
constraints on how much FEC can be applied, and when
wireless fading is sufficiently severe, then it has been shown
quantitatively and qualitatively that error-tolerant compres-
sion and decoding of images results in lower end-to-end dis-
tortion than aggressive compression [29]. In that study, the
overall sum of the source and channel coding rates was con-
strained to be constant in a very noisy environment, while
the proportion of bits devoted to source coding (e.g. image
compression) and channel coding (e.g. FEC) was varied. At
low SNR’s/high BER’s, the combination of aggressive com-
pression and aggressive FEC produced images with worse
objective and subjective quality than the approach of error-
tolerant compression. The intuition is that the constraint on
the overall coding rate prohibited the application of suffi-
ciently strong FEC, thereby rendering aggressively com-
pressed data useless during severe fading. The constraint on
the overall coding rate effectively acted as an interactive
delay constraint and/or complexity limitation on FEC.
Therefore, when interactive bounds prevent the application
of sufficiently strong FEC over a wireless link, then it is bet-
ter (i.e. lower distortion) to leave redundancy in the image
via error-tolerant compression than to strip out this image
redundancy via aggressive compression, only to add back
FEC redundancy because aggressive FEC is required.

These observations are part of a larger body of literature
known as joint source/channel coding (JSCC). This theory
advocates error-tolerant compression, unequal error protec-
tion (UEP), source-cognizant FEC decoding and application-
level error concealment, when complexity and delay con-
straints are sufficiently tight, and when channels are severely
fading and non-stationary (e.g. wireless) [22].

Several authors have established that error-resilient cod-
ing of images can achieve compression down to the range of
0.5-1.0 bpp using DCT [30][22], subband [31][32], and VQ
[33] source coding techniques, and yet still tolerate
BER despite the lack of any FEC error protection on the
coded image bits. Robust compression reduces bandwidth
while tolerating errors by employing fixed-length lossy
quantization of images or their transforms. Robust compres-
sion excludes lossless statistical compression techniques like
variable-length Huffman and arithmetic coding that intro-
duce extreme error sensitivity and consequently require pow-
erful FEC.

A protocol that delivers corrupt packets bearing error-
tolerant image data gives an interactive multimedia applica-
tion a reasonable chance of meeting its real-time delivery
bound during wireless fades. Only the header of each packet
needs to be communicated error-free, not the entire packet
payload. In most cases, headers are relatively small com-
pared to payloads. Consequently, the expected number of
retransmissions E[Npacket] from Equation (2-2) becomes
only a function of the header length H, and Equation (2-3)

10
2–

Appeared in ACM Multimedia Systems Journal, March 1999

7

can be rewritten to obtain a new lower bound on the image
transfer delay:

(2-5)

Assume the same parameters as Section 2.1: H=100
bits, BER=1%, BW=500 kbit/s, I=20 kbits. The optimal frag-
mentation value that minimizes latency is Fopt=1, i.e. it is
faster to send the image as one large packet than as many
smaller fragments. This is because more fragments imply
more header overhead. Substituting these values in Equation
(2-5), we find that the lower bound on delay at F=1 is 110
ms, about five times faster than the half-second latency cal-
culated for reliable ideal SRP in Section 2.1. At F=20 (1000
payload bits/packet), the lower bound on delay is 120 ms.
This reduction in the minimum-delay bound to the 100 ms
range suggests that header-only reliability could achieve
delivery that is reasonably close to the interactive latency
bound.

Because the header is a relatively small proportion of
the overall packet, then it is possible to apply a high-redun-
dancy FEC code on the header alone without inflicting a
large overhead penalty. For example, applying a powerful
block code with 4x overhead factor to the header alone will
essentially reduce E[Npacket] to 1 at 1% BER. Therefore,
Equation (2-5) evaluated at F=20 predicts a minimum delay
of ~56 ms. Judicious application of high-redundancy FEC on
the header only, combined with tolerance of corrupt packet
payloads, enables packets to be delivered by the interactive
latency bound.

In order to fully realize the benefits of end-to-end error-
tolerant compression and decoding, the components of the
underlying network will need to forward certain corrupt
packets to the destination. Intermediate wired backbone rout-
ers and intermediate wireless data-link protocols should not
discard delay-sensitive packets with corrupt payloads when
those packets are marked as containing error-tolerant data. In
the case of single-hop wireless access to the Internet pictured
in Figure 1, the data-link protocol should forward corrupt
packets to higher layers at the receiver rather than discard all
such packets on the mistaken assumption that they cannot be
used.

The choice between error-tolerant compression or
aggressive compression will depend on several factors that
influence the delay budget analysis. These factors include
the limit of compression (rate-distortion or subjective) for a
specific media, the available wireless bandwidth, the delay-
sensitivity of the media, and the severity of channel errors.
For example, the delay budget for interactive audio over dig-
ital cellular links may in certain cases suggest that aggressive
compression should be practiced, since the audio is relatively
low-volume even before compression and the wireless band-

width may be sufficiently high to permit aggressive FEC.
The approach taken by IS-95 is to aggressively compress
speech and aggressively apply FEC [25]. However, the IS-54
digital cellular TDMA standard takes a different approach,
and practices error-tolerant compression of audio combined
with UEP, and also permits certain speech bits to be corrupt
(“class-two” bits) [34]. For interactive video and Web-based
image browsing, this section’s delay budget analysis favors
error-tolerant coding and forwarding of corrupt packets for
certain wireless links.

3. Defining the application-transport interface for
progressively reliable packet delivery

In this section, we identify the basic features of a pro-
gressively reliable transport service, i.e. the properties that
define the socket interface between the application and trans-
port layers, which we call the application-transport interface
(ATI). Progressively reliable packet delivery:

• allows corrupt packets to be delivered to the receiving
application in increasingly reliable fashion

• allows the application to parameterize how long retrans-
missions should be delayed, thereby achieving a gain in
capacity by traffic smoothing;

• permits the application to cancel “out-of-date” retrans-
missions

• allows the application to specify multiple flows, that are
serviced by the underlying protocol’s packet scheduler
according to per-flow delay and loss parameters

3.1 Basic properties

The bursty nature of Web-based image browsing sug-
gests that forwarding of corrupt packets will generate image
artifacts that persist indefinitely, or persist at least until some
new user action causes the noisy still image to be overwrit-
ten. Delivery of multiple versions of a corrupt packet without
ensuring improving reliability can also lead to a screen pre-
sentation whose quality degrades or fluctuates with channel
conditions. Consequently, we require that a progressively
reliable transport service ensure that the multiple versions of
a corrupt packet delivered to the receiving application
improve in reliability. Figure 2 demonstrated the effect of
Web-based image browsing using progressively reliable
packet delivery.

Forwarding of noisy application data can cause the
receiving application to lose synchronization unless the
sending application frames its data into application data units
(ADU’s) and the underlying transport service preserves
ADU message boundaries end-to-end. Consider a system in
which the sending application partitions its data into ADU’s,
also called application-level framing [35], and embeds a
length field within each ADU written to the sender’s socket

E T eimag[] 1
1 BER–()H

I F H⋅+

BW
--------------------⋅≥

Appeared in ACM Multimedia Systems Journal, March 1999

8

buffer. The receiving application extracts ADU boundaries
from the receiver’s socket buffer by reading the length field
in each ADU. However, delivery of noisy ADU’s can cause
an ADU’s length field to be corrupted. In this case, the
receiving application will lose track of where an ADU ends
and the next ADU begins. Thus, application-level framing
alone is insufficient to keep the receiving application syn-
chronized. Additional framing assistance is required from
the transport service in the form of read/write messaging
primitives. A ReadMessage() primitive that returns data in
discrete ADU units means that the receiving application will
never lose track of the boundaries of variable-length corrupt
ADU’s. Also, a WriteMessage() primitive will enable the
sending application to specify ADU boundaries to the trans-
port service without having to embed application-level
length fields in each ADU.

Given an ADU framework, the four core properties of a
progressively reliable transport service are illustrated in Fig-
ure 5. For each ADU transferred across the source ATI, mul-
tiple noisy versions of each ADU may be delivered across
the receiver ATI. In the simplest case, only one error-free
ADU is forwarded to the receiving application, due to a lack
of bit corruption. In the most general case, multiple retrans-
missions by the underlying progressively reliable transport
protocol may be triggered, leading to multiple noisy ADU
versions being delivered to the receiving application.

The multiple retransmissions undertaken by the underly-
ing progressively reliable transport protocol do not constitute
a traffic penalty when compared to a reliable protocol. This
is because these retransmissions would have to be attempted
anyway by a conventional ARQ protocol under the same
channel conditions. In fact, progressively reliable packet

delivery offers a means to more effectively utilize traffic
capacity by allowing retransmissions to be delayed accord-
ing to the user’s subjective tolerances, thereby smoothing the
traffic presented to the network as described in the next sec-
tion.

A multiple-delivery transport service can be seen as a
superset of both single-copy unreliable service and single-
copy reliable service. For these special cases, the number of
deliveries is configured to one, and the quality of that one
delivery is set appropriately. We propose that the progres-
sively reliable transport service be parametrizable so that the
application endpoints can specify the number of ADU ver-
sions to be forwarded.

The requirement that these multiple noisy ADU versions
improve in reliability means that each succeeding ADU ver-
sion should be guaranteed to be delivered with statistically
fewer errors than preceding ADU versions. The property of
statistically improving reliability reduces, but does not elimi-
nate, the number of occurrences in which ADU version n+1
has more errors than the previously forwarded ADU version
n. Statistically improving reliability ensures that on average
each new ADU version will have fewer errors than its prede-
cessors. Section 4 describes how this property is achieved via
successive refinement of noisy packets. Probabilistic guaran-
tees do not preclude the isolated instance in which a newer
ADU version may have more errors than a predecessor. We
propose that the application endpoints be able to parametrize
not only the number of ADU versions, but also the accept-
able quality or noise level in each of the forwarded ADU ver-
sions, especially of the final version.

The final property defining this transport service is that
separate ADU’s may arrive “out of order”, though the con-

Original
ADU

Sending
Application

Progressively
Reliable

Protocol: Sender

Internet:

Wired and Wireless Links

Multiple noisy yet increasingly
reliable versions of original ADU

Receiving Application

Figure 5. End-to-end progressively reliable packet delivery exhibits four basic properties as seen through the
socket interface. The sending application frames its data into application data units (ADU’s). At the destination,
the receiving application observes that 1) corrupt ADU’s are forwarded, 2) multiple noisy versions of each ADU
may be forwarded, 3) these multiple versions of the same ADU will improve in reliability over time (statistically
fewer errors with each successive version), and 4) different ADU’s may arrive out of order (not shown).

Progressively
Reliable
Protocol:
Receiver

ATI

Appeared in ACM Multimedia Systems Journal, March 1999

9

cept of order must be redefined for a multi-copy context. In
the absence of noise, ADU’s will be reordered by the net-
work. Given a noisy channel, the ADU delivery stream pre-
sented to the receiving application will consist of a mixture
of multiple noisy versions of different ADU’s, so that the tra-
ditional definition of “order” for single-copy delivery ser-
vices must be modified. Suppose we define that order is
preserved in a multi-copy sense when the original sequence
of ADU’s presented to the source ATI matches the order in
which final ADU versions were delivered across the destina-
tion ATI. Given this definition, it is still the case that order
will not be preserved, since the final version of ADU X may
arrive after the final version of ADU Y, even though ADU X
was initially transmitted before ADU Y. The application
should be built to tolerate such out-of-order ADU delivery.

3.2 Delaying retransmissions

A key method for improving the performance of pro-
gressively reliable packet delivery is to allow the application
to control when retransmissions are sent, so that traffic can
be smoothed and network capacity can be used more effec-
tively. For bursty Web-based image browsing, our subjective
experimentation has determined that it is subjectively tolera-
ble to delay sending the retransmission-based redundancy
needed to clean up a noisy image, provided that the end user
already has available an initially noisy version of that image
for immediate interaction. A progressively reliable transport
protocol can exploit this subjective phenomenon to quickly
transmit delay-sensitive traffic, and to gradually send delay-
tolerant retransmissions later whenever the volume of delay-
sensitive traffic is sufficiently low.

The conventional assumption of reliable transport proto-
cols is to retransmit data as soon as congestion conditions
warrant. However, Figure 6(b) shows that retransmissions for
a leading image burst can lead to slower delivery of a trailing
image burst. In contrast, we observe that certain applications
may prefer to make use of an initially noisy version of an
image and consequently can tolerate relaxed delivery of
retransmission-based redundancy. Figure 6(c) and (d) show
how delaying retransmissions can facilitate rapid initial
delivery of possibly noisy image bursts. Retransmissions are
translated in time to minimize interference with delay-sensi-
tive transmission of the initial version of each packet.

In order to determine subjectively how long retransmis-
sions could be delayed for Web-based image browsing, we
implemented a simple emulation of progressive reliability
within a modified X windows server. An initially noisy ver-
sion of all screen activity was written to the frame buffer and
displayed immediately. After a minimum fixed delay, the
final error-free version of the screen would be written to the
frame buffer for display. This adjustable minimum wait time
emulated the effect of delaying retransmissions.

Our experiments revealed that it is perceptually accept-
able either to send the retransmission redundancy many sec-
onds after the initial delivery, or within about 100 ms of the
initial version, but that any delivery of the reliable version in
the 100 ms to 1-2 seconds range produced subjectively
annoying side-effects.

The first option is to retransmit within 100 ms, but Sec-
tion 2 indicated the difficulty of fully reliable delivery within
such a tight bound.

The second option is to start retransmitting refresh
redundancy at the first opportunity possible, whenever there
is no delay-sensitive data in the transmit buffer, as shown in
Figure 6(c). This opportunity will likely occur within a few
seconds after the initial delivery. However, when retransmis-
sions were delayed in the 100 ms to 1-2 seconds range, the
act of cleaning up the noisy first version of an image dis-
rupted the user’s reading of text. This subjective “flicker”
effect forced the reader to stop and then start reading again,
thereby losing the reduction in perceived latency offered by
fast delivery of a noisy image. To a lesser degree, the
“flicker” effect also interrupted viewing of natural images.
Second, as our mouse cursor was moved around the screen, a
“noise trail” was left in its wake. By sending the refresh
redundancy within 1-2 seconds after the initial noisy version,
the noise trail would chase the mouse cursor across the
screen like a “snake” in a video arcade game. This “snake”
effect proved to be subjectively distracting.

Figure 6. Traffic shaping of retransmissions: (a)
original image arrivals (b) retransmissions of image 1
prevent immediate transmission of image 2 (c) delayed
retransmissions of image 1 expedite transmission of
image 2 (d) retransmissions of image 1 are delayed
due to subjective user tolerances.

Traffic

time

Traffic

time

������
������
������

������
������
������

�����
�����
�����

������
������
������

Traffic

time

(a)

(c)

(b)

���������������
��������������� Retransmit image 1

delayed
retransmissions

������
������
������

�����
�����
�����

������
������
������

������
������
������

delayed initial
transmission

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

Image 1

Image 2

������
������
������

������
������
������

Traffic

time

(d)

delayed
retransmissions

������
������
������

������
������
������

�����
�����
�����

������
������
������

Appeared in ACM Multimedia Systems Journal, March 1999

10

Our experimentation suggested that the third option,
shown in Figure 6(d), best suited the end user’s subjective
tolerances. We found that delivery latencies on the order of 5
seconds were tolerable provided that the user had an initial
version of an image with which to interact. Such delays were
found to be short enough to “quickly” clean the screen yet
long enough to avoid “snake” and “flicker” effects. We pro-
pose that the transport service provide hooks into the pro-
gressively reliable protocol so that the application can
parameterize how long the protocol should wait before initi-
ating retransmissions.

In past work, retransmissions have been delayed for net-
work-related factors such as congestion and wireless fading
rather than for the application’s subjective latency and distor-
tion tolerances. For example, TCP’s retransmission timeouts
are increased as congestion over the network connection
increases queueing delays [8]. The effect is to delay TCP’s
retransmissions in response to network congestion. In addi-
tion, it has been proposed that data-link retransmissions be
delayed for users who are experiencing wireless fades [36].
Over a time-multiplexed broadcast wireless downlink,
retransmissions to users experiencing deep fading are
delayed while retransmissions to other users with a cleaner
channel are not delayed. The most efficient realization of a
progressively reliable protocol would clearly integrate infor-
mation provided by user tolerances, congestion and fading.

3.3 Cancelling retransmissions of out-of-date ADU’s

Our progressively reliable transport service also pro-
vides a way for applications to cancel retransmissions asso-
ciated with out-of-date or stale ADU’s. Multimedia data that
has been sufficiently delayed within the transport layer of the
sender can become out-of-date. If image data that was ini-
tially displayed with errors at the receiver is retransmitted
after a delay of many seconds, then fast image browsing will
cause the image data awaiting retransmission at the sender to
become obsolete. Similarly, retransmissions of interactive
video conferencing frames can be delayed by no more than
about five frames before becoming out-of-date, assuming a
playback point of about 200 ms. Retransmitting out-of-date
image data will waste bandwidth and slow down delivery of
other time-sensitive image data over the same low-band-
width wireless access link. Therefore, the ability to cancel
unnecessary retransmissions should accompany the ability to
delay retransmissions of packets.

We propose that the cancellation primitive be imple-
mented at the transport service interface through a generic
ADU label. In Figure 7, the sending application marks each
ADU with a label. The transport protocol receives these
labeled ADU’s through the socket buffer interface. As each
new ADU arrives, there is implicit permission to stop
retransmission of any older ADU residing in the transmit
buffer that shares the same ADU label. Both the data and

state associated with the out-of-date ADU are purged. The
protocol then initiates transmission of the newer ADU.

Our choice is to associate ADU labels with an implicit
cancellation mechanism rather than provide a separate func-
tion that must explicitly be called by the application to can-
cel data. This implicit linkage of labelling and cancellation
simplifies a common case encountered by the multimedia
application. Newly-generated multimedia is often related
spatially and/or temporally (e.g. regions within an image) to
older data in the sender’s cache. It is natural to cancel trans-
mission of related older data before transmitting the newer
data. Since application-level relationships are already
expressed through labelling of ADU’s, then it is natural to
combine cancellation of an older ADU with the arrival of a
newer ADU of the same label. We note that explicit cancella-
tion can be emulated through our implicit cancellation mech-
anism by having the application send a zero-length ADU that
only contains the label of the ADU to be cancelled.

Even though ADU labels express application-level rela-
tionships, the application’s internal semantics are largely
hidden from the protocol. ADU labels communicate the min-
imum information necessary to achieve cancellation. Conse-
quently, the design of the protocol is decoupled as much as
possible from the application’s design. Given an ADU label,
the protocol has sufficient information to identify which
packet of application data needs to be cancelled. No further
information, such as the data type (audio/video/image) or
compression format, is required from the application to iden-
tify which retransmissions should be cancelled.

Figure 7. Retransmissions of out-of-date ADU’s are
cancelled using ADU labels. (1) The transport protocol
receives the new ADU with label Z. (2) Retransmission
of the previously cached ADU Z is stopped and its old
data and state are purged. The protocol then initiates
transmission of the new ADU Z (not shown).

Buffer of ADU’s
at the sender

Retransmit
ADU X

ADU
Label

Y

1

2

Application

Transport Protocol
ATI

Retransmit
ADU Y

Retransmit
ADU Z

N

E

T

W

O

R

K

State
Machine

X

Z New ADU

Z Old ADU

Appeared in ACM Multimedia Systems Journal, March 1999

11

The implicit linkage of cancellation and labelling does
not limit the application’s freedom to define how ADU labels
are interpreted. We give two examples below of how a graph-
ical Web browser can define ADU labels so that they cancel
out-of-date retransmission of block-based regions within an
image, or arbitrarily-shaped objects within an image. ADU
labels can also be used by continuous media applications to
eliminate retransmissions of out-of-date speech samples and
out-of-date video frames, in effect implementing partial
retransmission of audio and video (see Section 3.5).

Figure 8 illustrates how graphical Web browsers could
employ ADU labels to implement region-based and/or
object-based cancellation of overwritten regions within a
scene. In Figure 8(a), an image is subdivided into blocks and
the application tags each block with a region-based ADU
label. When new activity indicates that a portion of the
image should be redrawn, then the sending application gen-
erates new ADU’s for the affected blocks and transfers these
labeled ADU’s to the transport service. The underlying
transport protocol checks for any queued ADU’s that match
the incoming ADU labels and stops retransmitting any out-
of-date queued ADU’s, which in this case correspond to
overwritten image blocks. For example, in Figure 8(b), the
shuttle’s launch causes the block with ADU label S to be
redrawn. When the sending side of the transport protocol

receives the newest ADU with label S and finds a matching
ADU with label S, it terminates retransmissions of the old
ADU and initiates transmission of the new ADU correspond-
ing to image block S.

An alternative use of ADU labels is to cancel retrans-
missions of semantic objects in an image, rather than a
block. In Figure 8(c), the image is partitioned using object-
based ADU labels, and the shuttle is assigned ADU label B.
As the shuttle launches, the sending application generates a
new ADU B that aggregates the launching shuttle and its
exhaust flames, as shown in Figure 8(d). The protocol can-
cels retransmissions associated with the old ADU B and ini-
tiates transmission of the new ADU B. When the new ADU
B arrives at the receiver, the end user will see the launching
shuttle overwrite the old picture of the stationary shuttle.

We emulated the effect of block-based cancellation in
Figure 8(a) within our experimental X windows server. We
divided the screen into 16x16 blocks, and implemented can-
cellation for each block. A state machine for each block con-
trolled whether the initially noisy version or the final error-
free version of each block’s data was written to the frame
buffer. Whenever a new image update for a block was
received, the state for that block was updated to the “sent ini-
tial version” state and a noisy version of that fresh data was
written to the appropriate block in the frame buffer. Also, the
timer for triggering transmission of the error-free version
was reset to zero. The state machine transitioned from the
“sent initial version” state to the “sent final version” state
after the timer aged beyond the minimum wait time. This
also caused the final error-free or refresh version to be writ-
ten to the frame buffer. An out-of-date refresh version could
never be written, since new image data always triggered a
state transition back to “sent initial version”, effectively can-
celling transmission of out-of-date data. Our modified X
server intercepted all pixels normally rendered into the frame
buffer and diverted them through our state machine, so that
all interactions with the display were subject to the cancella-
tion mechanism.

Given this experimental framework, we found that
delaying the error-free version by five seconds required can-
cellation to maintain reasonable response time for a wide
range of routine screen interactions. For example, activities
such as paging within a text editor or image browsing occur
at a pace faster than once every five seconds and frequently
invoked cancellation of a cached page or image that had not
yet been refreshed. Window manipulation activities like
restacking, resizing, and moving of windows also occurred
with sufficient rapidity that large unrefreshed areas of the
screen were frequently overwritten by new activity, thereby
invoking block-based cancellation. When a window was
dragged across the screen during an opaque move, each
block on the screen that was in the path of that move was
redrawn at a rate of many times per second. Such rapid
redrawing triggered the cancellation mechanism. These

(d)

Figure 8. Ways to use ADU labels to implement
cancellation: (a) Block-based ADU labelling (b)
Retransmissions of out-of-date (shaded) blocks are
cancelled by new image data. (c) Object-based ADU
labelling (d) Retransmissions of out-of-date objects (e.g.
object B) are cancelled.

ADU label
B

(c)

(a) (b)

CBA D E

HGF I J

MLK N O

RQP S T

WVU X Y

CBA D E

HGF I J

MLK N O

RQP S T

WVU X Y

ADU label
B

ADU label A ADU label A

NEW IMAGEPREVIOUS IMAGE

PREVIOUS IMAGE NEW IMAGE

Appeared in ACM Multimedia Systems Journal, March 1999

12

examples illustrate that even routine interactive operations
require careful cancellation if wireless bandwidth is to be
conserved and unnecessary retransmissions are to be
avoided.

Cancellation was also continuously invoked for video.
We observed that if the refresh version of a video frame was
delayed longer than one frame time (typically one-fifth to
one-tenth of a second on our workstations), then the cancel-
lation mechanism prevented the refresh version of any video
frame from ever being transmitted. By setting the refresh
delay to five seconds, then each succeeding video frame in
effect cancelled retransmission of the previous frame.

When an ADU is cancelled at the sender, the receiving
end of the protocol must be informed of this cancellation in
order to purge the receiver’s state associated with the out-of-
date ADU. Otherwise, the receiver’s stored state would grow
without bound. A convenient mechanism for informing the
receiver is simply to propagate the ADU label along with the
ADU to the receiving end of the protocol. The arrival of an
ADU with a piggybacked ADU label purges out-of-date
state at the receiver in the same manner as its arrival at the
sending side of the protocol purged out-of-date state. For
each ADU label, the receiving end should store the most
recent sequence number (assigned by the sending side of the
protocol) that has been received for that ADU label. This
eliminates forwarding of stale ADU’s to the receiving appli-
cation should ADU’s with the same label arrive out-of-order.

Forwarding of ADU labels also enables the protocol to
implement parametrizable partial reliability of the final ver-
sion of an ADU. As mentioned in Section 3.4, one of the
parameters available for the application to specify is the level
of distortion in the final version of an ADU delivered to the
receiving application, i.e. the final version of an ADU is
allowed to contain errors. Different levels of partial reliabil-
ity can be approximated by varying the upper bound on the
number of retransmissions attempted for each ADU. Once
the upper bound has been reached, then the ADU label is
propagated to the receiver to cancel receiver state and termi-
nate further requests for retransmissions.

In related work, there exists a precedent among trans-
port protocols for enabling retransmissions to be cancelled.
The Xpress Transfer Protocol (XTP) provides a “no-error”
mode that allows certain retransmissions to be suspended
[37]. The sending side of XTP marks packets with a NOERR
bit to tell the receiving side not to request retransmission for
these packets. This example provides one means, though not
necessarily the definitive mechanism, for achieving fine-
grained cancellation of retransmissions. Most other reliable
transport protocols, like TCP, do not allow retransmissions to
be stopped once data has been passed to the protocol, since
this would not preserve the order of packets guaranteed by
reliable stream delivery.

3.4 Flow-based scheduling of packets and their retransmis-

sions

When an application permits retransmitted information
to tolerate more latency than the first transmission of an
ADU, then the protocol is in effect implementing packet
scheduling of two flows. The first flow consists of delay-sen-
sitive original application data, and the second flow consists
of delay-tolerant retransmitted packets. This two-flow model
can be naturally extended to accommodate a general number
of application-defined flows that are jointly scheduled by the
protocol for transmission according to their per-flow delay
tolerances and Quality-of-Service (QOS) parameters. The
advantage of employing a multi-flow scheduling policy that
is cognizant of variations in delay sensitivity is improved uti-
lization of limited traffic capacity, since provably optimal
scheduling disciplines like Earliest-Due-Date (EDD) [38]
can be applied instead of simpler policies like first-in-first-
out that are unaware of an application’s delay sensitivities.

In Figure 9, we depict a transport protocol that includes
a multi-flow packet scheduler that distinguishes between
variations in delay tolerances within a flow (i.e. initial trans-
missions as distinct from retransmissions) as well as delay
variations across multiple flows. The scheduler chooses
which packet to transmit next from a pool of “eligible” pack-
ets. Initial transmissions of packets are immediately eligible
for scheduling at their corresponding flow’s delay bound
(e.g. for flow 1, the scheduler would apply delay bound d1).
Eligibility of retransmissions for scheduling is determined
by the state machine and depends upon several factors. The
state machine must have been informed through an ACK/
NAK or a time-out that a retransmission is needed. Further,
congestion control and flow control policies will influence
the state machine’s decision to trigger a retransmission.
Also, incoming ADU’s may cause the state machine to can-
cel specified retransmissions at any time. Once the state
machine has determined that certain packets must be retrans-
mitted, then these retransmissions are added to the pool of
eligible packets and are scheduled according to their corre-
sponding flow’s retransmission deadlines (e.g. by d2 for flow
1). The uniqueness of this approach is that retransmissions
are treated as schedulable entities with their own delay
bounds.

While a wide variety of flow-based scheduling algo-
rithms, also called service disciplines, have been proposed
[39], the class of scheduling policies that guarantee delay
bounds may not be suitable for progressively reliable packet
delivery. Given well-behaved sources and admission control
at all access points into a wired backbone network, then it is
possible to guarantee end-to-end delay bounds (deterministic
or statistical) for certain scheduling disciplines operating at
each internal network switch, like EDD, but not for other ser-
vice disciplines like Fair Queueing and Virtual Clock [40].
However, delay guarantees cannot be made if the scheduler
makes its decision based on incomplete information at the

Appeared in ACM Multimedia Systems Journal, March 1999

13

sender, i.e. by considering only progressively reliable packet
traffic and neglecting transmission of TCP/UDP traffic from
the same host. Further, if the operating system does not sup-
port real-time execution of processes/threads, then the sched-
uler cannot ensure that delay bounds are not violated.
Moreover, the wired Internet backbone will continue to be
best-effort for some time to come. Consequently, the QOS
scheduling required to guarantee end-to-end delay bounds
will not necessarily be supported by intermediate network
switches. Finally, the wireless access link will introduce gen-
erally unpredictable delay, since random fluctuations in
channel fading will introduce fluctuating traffic due to
retransmissions. At best, a statistical characterization of the
fading may provide a statistical bound on delay, but this
seems uncertain given the wide variety of wireless links and
causes for fading. For these reasons, our view is that the pro-
tocol’s scheduler should not guarantee end-to-end delay
bounds. Instead, negotiated QOS parameters are interpreted
as useful indicators of delay sensitivities that enable the pro-
tocol to provide differential service across multiple applica-
tion-defined flows.

The sender’s scheduling discipline should also enforce
fair sharing of bandwidth among the multiple applications’
flows if progressively reliable packet delivery is to be sup-
ported. We constructed a two-flow scheduling model of pro-
gressive reliability within our modified X server. A noisy
version of an image was written immediately to the frame
buffer, simulating transmission of delay-sensitive data via a
first flow called the interactive flow. The noisy image was

eventually overwritten with a clean version of that image,
simulating delay-tolerant retransmissions of image data via a
second flow called the refresh flow. We observed the well-
known problem that a naive priority-based scheduling policy
that always gave higher priority to the interactive flow over
the refresh flow would, under certain conditions, unfairly
starve the lower-priority flow. For example, we attempted to
run typical bursty windowing applications (e.g. file editing,
paging, scrolling, moving/resizing/restacking windows)
while streaming video. We found that the continuous video
generated enough delay-sensitive traffic so that the refresh
traffic for the bursty windowing applications was starved for
bandwidth. Error-induced artifacts were never removed, or
removed too slowly, in the non-video portion of the screen.
A desirable scheduling policy for this scenario would sup-
port a fair trade-off between delay-tolerant cleanup of the
non-video portion of the screen and delay-sensitive transmis-
sion of video.

We introduce a flow header to identify individual sub-
streams within the general data stream. The flow header
alone completely characterizes the service required by that
data; no knowledge of the internal semantics of the pack-
etized data is required. The per-flow QOS parameters that
we have found most useful include how much scheduling
delay that first-time transmissions can tolerate, how much
initial corruption can be tolerated, how soon retransmissions
can begin after confirmed initial delivery, how much multi-
plexing delay that retransmission redundancy can tolerate,
and when to terminate retransmissions (e.g. after a finite
number of trials, or after a finite amount of time, or after a
sufficiently reliable packet has been received). We do not
explicitly support “priorities” across the ATI, since we
believe that priorities and classes can be derived from delay-
based and reliability-based QOS parameters.

Cancellation of retransmitted ADU’s depends only on
the ADU label, and not on the flow header. For example, an
ADU with label X may be directed along flow 1 by the send-
ing application. Later, the application may wish to send a
newer ADU also labeled X along another flow 2 and cancel
the older ADU in flow 1. Cross-flow cancellation can be
applied to hierarchically coded images (say progressive
JPEG) that are partitioned into multiple layers that are then
sent via different flows serviced with variable QOS. The
application can send low frequency coefficients first along a
delay-sensitive flow 1, and then later transmit the full set of
frequency coefficients along a separate delay-tolerant flow 2.
Arrival of the latter set of coefficients can be designed to
cause cancellation of retransmissions of the first set, even
though the two sets reside in different flows. By basing can-
cellation exclusively on ADU labels, and not on flow head-
ers, we enable the application to cancel ADU’s across flows.

In related work, other end-to-end protocols have sup-
ported a limited degree of parameterization or QOS configu-
ration, e.g. OSI/TP4 and XTP [21]. XTP supports intra-

Flow 1

Multi-flow
Scheduler

Multiple
data flows

Sending
application

Figure 9. The protocol’s scheduling policy distinguishes
between the varying delay sensitivities di of
retransmissions and initial packet transmissions within
a flow, as well as variations across multiple application-
defined flows. RSM = retransmission state machine.

To
Network

RSM

 Send flow 1 by
time d1

ATI
Transport Protocol

RSM

Flow 2 Send flow 2 by d3

Retransmit
by d2

 Retransmit
by d4

Appeared in ACM Multimedia Systems Journal, March 1999

14

protocol scheduling based on priorities via its “sort” field
[37], but this is susceptible to the starvation problem we
encountered earlier.

3.5 Partial retransmission of video and audio

The versatility of progressively reliable packet delivery
permits it to be configured to implement partial retransmis-
sion of continuous media like audio and video. For streaming
applications, any video frames or audio samples that arrive
after the designated playback point due to network delays
will be discarded as out-of-date. Any retransmissions that
arrive prior to the playback point can still be used. Depend-
ing on the tightness of the playback bound, no retransmis-
sions, a few, or many retransmissions may be attempted. For
interactive video conferencing, the playback point is on the
order of a couple hundred milliseconds, essentially preclud-
ing end-to-end retransmissions. For unicast video playback
from a remote video database, the playback point can be on
the order of minutes after a frame was initially transmitted.
Consequently, a large number of retransmissions may be
attempted and video can be streamed over a fully reliable
protocol like TCP. Between these two extremes lie other
video applications like “live” unicast video that have play-
back points on the order of seconds to tens of seconds. For
these applications, a partial retransmission strategy that stops
retransmitting after a finite number of attempts can improve
the quality of the displayed video without violating delay
constraints.

We implement partial retransmission of continuous
media by employing out-of-date cancellation. As a sequence
of video frames (or speech samples) is transmitted, we con-
ceptually form a fixed-size sliding window at the sender
whose duration is equivalent to the playback delay bound.
Frames within the window are immediately retransmitted if
necessary. As each new frame is generated, the window
slides forward by one frame, incorporating the newest frame
into the retransmission-eligible window while also cancel-
ling any retransmissions of the oldest frame that was just
eased out of the window. The end result is that retransmis-
sions are only attempted on frames within the window, and
terminate after a finite number of attempts once the playback
point is reached.1

Another aspect of this cancellation scheme is that, if the
user pauses the video sequence to view a frozen frame for
editing purposes, then the progressively reliable protocol
automatically sends the retransmission redundancy needed
to remove any errors in the still frame. This simplifies the
design of the video application, which no longer needs to

explicitly send the paused frame again via a reliable protocol
in order to remove any frozen artifacts.

In related work, partial retransmission of wireless audio
has been described by several authors [41][42][43]. End-to-
end partial reliability at the transport layer has also been pro-
posed [44][45]. One distinction between these partially reli-
able approaches and progressive reliability is our notion of
forwarding an initially noisy packet version followed by suc-
cessive refinement of this noisy version over time to remove
channel-induced errors. Another difference is our ability to
delay retransmissions to minimize conflict with delivery of
delay-sensitive data within a flow-cognizant scheduling par-
adigm.

3.6 Progressive image transmission

Another intriguing application for our transport service
involves integrating progressive image transmission with
progressively reliable packet delivery. We implemented a
simple progressive colormap scheme within our experimen-
tal two-flow X server. Initially, every block on the screen
would be drawn in monochrome. Eventually, every block
would be displayed with full color depth. Combining this
type of progressive source coding with progressively reliable
packet delivery, essentially a type of progressive channel
coding, we achieved the following effect: blocks would ini-
tially be displayed in noisy black-and-white form, and would
eventually be displayed in an error-free color form. This
emulated composite progressive system proved to be interac-
tive even when bandwidth was tightly constrained (<100 kb/
s) and the BER was severe (1%). Under these same condi-
tions, the normal full-color X server became noticeably non-
interactive due to the limited bandwidth. In these experi-
ments, we did not emulate FEC within our X server, nor did
we emulate corruption of packet headers. More information
about our experimental setup and observations can be
obtained from [22].

4. Selected implementation issues for Leaky ARQ

In this section, we discuss the minimal set of architec-
tural modifications that must be made to an ARQ protocol to
support progressively reliable packet delivery. At the mini-
mum, a progressively reliable protocol must support the two
basic properties of successive refinement of corrupt packets
and forwarding of corrupt packets. In Section 4.1, we con-
sider the options for realizing successive refinement within
an ARQ protocol. In Section 4.2, we observe that forwarding
corrupt packets requires a mechanism that distinguishes
between corrupt headers and corrupt payloads. We conclude
with a discussion on the feasibility of building progressive
reliability on top of UDP or on top of a combination of TCP
and UDP. Other implementation issues such as time-out esti-
mation, NAKs vs. ACKs, congestion control, flow control,

1. The idea of using a circular cancellation scheme within our pro-
gressively reliable protocol to partially retransmit audio was
first observed by Sanjoy Paul, currently at Lucent Bell Labs, in
a conversation with the first author.

Appeared in ACM Multimedia Systems Journal, March 1999

15

and state machine design for both the transmitter and
receiver are beyond the scope of this section. The issues of
fragmentation and reassembly of ADU’s to preserve end-to-
end application-level framing were discussed in [22].

Our first observation is that an ARQ protocol’s retrans-
mission loop needs to be modified at the receiver to permit
intermediate versions of a corrupt packet to be leaked to the
receiving application, hence the name Leaky ARQ. The next
step is to ensure that these noisy packet versions share the
property of statistically improving reliability. In order to
determine whether the current version of a packet has fewer
channel-induced errors than any previously decoded version
of that packet, the receiver must maintain some per-packet
state or history. Caching dirty versions of decoded packets at
the receiver maintains history and also enables us to exploit
standard packet combining ARQ techniques to achieve pro-
gressively improving reliability. We will explain packet com-
bining strategies in the next section. If the more advanced
functions of delaying retransmissions, cancelling retransmis-
sions, and flow-based scheduling are also desired, then addi-
tional modifications need to be made to the sending side of a
standard ARQ protocol. Figure 10 identifies the major modi-
fications to a standard ARQ protocol architecture that are
needed to fully realize all of the features proposed for pro-
gressive reliability.

4.1 Achieving successive refinement via “packet combining”

We leverage off of traditional packet combining ARQ
techniques to achieve successive refinement. Packet combin-
ing is a technique that uses the history of corrupt retransmis-
sions for a given packet to obtain a better estimate for
decoding that packet than the memoryless estimate provided
by a single isolated retransmission. Rather than discard noisy
packets and their noisy retransmissions at the receiver,

packet combining ARQ typically caches these packets at the
receiver to be used for future decoding. Packet combining is
classified into time-diversity combining and code combin-
ing, both explained below.

Caching of a packet’s received history reduces the num-
ber of retransmissions needed to decode a given packet, and
more importantly for our purposes enables successive refine-
ment. For example, consider the common case in which a
protocol retransmits copies of the original packet, also called
repetition coding. If the receiver caches all noisy copies, then
bit-by-bit majority-logic decoding can be applied as each
new retransmitted copy arrives. For each bit, the majority-
logic decoder will decode the value 0 or 1 that has the most
occurrences, i.e. that is in the majority [46]. Suppose two
noisy copies of a packet (due to the initial transmission and
the first retransmission) are cached at the receiver, and a
third corrupt copy arrives due to a second retransmission.
The packet version produced by majority-logic decoding of
these three packets is statistically more likely to have fewer
bit errors than any of the individual copies. This simple
example shows that packet combining allows the receiver to
converge more quickly to an error-free representation of a
packet, thereby reducing the number of retransmissions
required for decoding each packet. This example also indi-
cates that packet combining is capable of guaranteeing that
the most recent estimate of a packet has statistically fewer
errors than previous estimates. For this reason, packet com-
bining ARQ serves as the basis for successive refinement in
Leaky ARQ.

Majority-logic decoding is a simple example of a
broader class of packet combining approaches called time-
diversity combining [47]. In time diversity combining,
decoding of a given packet from multiple cached versions is
performed on a bit-by-bit or symbol-symbol basis. For
example, given repetition coding and Viterbi decoding, then
a soft-decision diversity combiner could compute a weighted
energy average derived from the analog pre-detection values
of each bit within the multiple received copies of the ADU,
and feed these symbol averages into a Viterbi decoder [48].
Repetition coding with majority-logic bit-by-bit decoding is
an example of hard-decision diversity combining.

Code combining is an even more powerful form of
packet combining than time-diversity combining. In code
combining, retransmissions contain FEC redundancy rather
than merely repetitions of the original packet’s information.
A well-known example of code combining is Type-II Hybrid
ARQ [13]. In this hybrid ARQ protocol, retransmissions
alternately contain the original payload (say P1) or the con-
volutional parity check (say P2) computed from the FEC
code and P1. The receiver either caches a corrupted P1 and
then uses the next retransmission P2 to correct errors in the
cached P1, or caches a corrupted P2 to correct any errors in
the next P1. Type-II Hybrid ARQ cannot, strictly speaking,
guarantee statistically improving reliability since only one

 Queue at
Sender

 2

����������������
����������������

Figure 10. Leaky ARQ is a progressively reliable
protocol that alters a traditional ARQ protocol as
follows: (1) at the receiver, noisy yet successively refined
(SR) packets are delivered to the receiving application.
At the sender, (2) retransmissions are delayed (3)
multiple flows are scheduled with different delay
objectives, and (4) out-of-date retransmissions are
cancelled.

Flow 2

Flow 1

SR

 ARQ Sender ARQ Receiver

Noisy
ADUsACK/NAK

MUX

 1

3

 4

Appeared in ACM Multimedia Systems Journal, March 1999

16

prior retransmission is cached. A sequence of two severely
degraded packets P1 and P2 can cause a decoded packet ver-
sion to have more errors than previous versions, so that the
number of errors will vary according to channel conditions
and not converge towards zero.

Strictly speaking, the entire received packet history must
be stored in order to guarantee that future packet versions
will be decoded with statistically fewer errors than the previ-
ous versions. Maximum-likelihood (ML) code combining is
the general form of code combining that operates over multi-
ple cached packets to ensure that packets have statistically
fewer errors over time. The FEC redundancy in the Nth trans-
mission is conceptually concatenated to the FEC redundancy
cached at the receiver from the N-1 previous transmissions
(including the original payload). The concatenation of pay-
load plus FEC redundancy forms an FEC codeword that can
then be decoded into a single error-corrected payload. A ver-
sion of ML code combining using fixed-length retransmis-
sions of the same size as the original payload was introduced
in [49]. An alternative approach employs variable-length
retransmissions that contain incremental FEC redundancy
generated by rate-compatible punctured convolutional
(RCPC) codes [50]. In this scheme, individual retransmis-
sions may not contain sufficient information to indepen-
dently reconstruct the original message. A hybrid approach
that initially retransmits incremental redundancy, followed
later by fixed-length payload-size repetitions has also been
proposed [51]. A comparison of the efficiency of diversity
combining vs. code combining has been made for the case of
repetition coding with multiple copy decoding [52]. ARQ
protocols that implement packet combining are also called
memory ARQ [53] [54].

We propose that Leaky ARQ’s successive refinement
feature be implemented via the simplest form of code com-
bining embodied in Type-II Hybrid ARQ. While it is desir-
able to cache as much of the received packet history as
possible, memory constraints at the receiver may limit our
ability to statistically guarantee successive refinement, hence
our compromise in choosing limited code combining. Also,
end-to-end Type-II Hybrid ARQ is readily implemented
given the availability of software implementations of Reed-
Solomon FEC coders and decoders on the Internet. In addi-
tion, the more advanced techniques of incrementally redun-
dant transmission require maximum-likelihood decoding at
the receiver, i.e. a Viterbi decoder. Since Leaky ARQ oper-
ates as an end-to-end transport layer protocol, then it is
unlikely that it will have access to soft symbol information.
Hard-decision Viterbi decoding based on Hamming distance
path metrics will have lower performance than soft-decision
decoding. Moreover, Viterbi decoding would have to be
implemented in software and operate in reasonable time at
the receiver.

4.2 Separating header and payload error detection

Corrupt packet payloads can only be forwarded to the
receiving application if their corresponding packet headers
are decodable. To distinguish between a corrupt packet pay-
load and corrupt packet header at the receiver, we need sepa-
rate error detection mechanisms for the transport protocol
data unit’s (TPDU) header and TPDU payload (i.e. encapsu-
lated ADU, possibly fragmented). For this reason, we calcu-
late two checksums per TPDU, the first on the TPDU header
only, and the second on the TPDU payload alone. When a
TPDU arrives at the receiver, error detection is applied on the
header first. If the computed header-only checksum matches
the embedded header-only CRC, then the header is error-free
and the TPDU payload is successively refined via packet
combining. At this point, the receiving side of the protocol
calculates the second checksum exclusively on the succes-
sively refined TPDU payload and compares it to the embed-
ded payload-only CRC. If the payload-only checksums
match, then the transport protocol knows that this TPDU has
been delivered without errors, and can update the receiver
state machine appropriately as well as inform the sender via
acknowledgment that this TPDU has been correctly received.
If payload-only error detection fails, then the noisy packet is
cached at the receiver for packet combining. In either case,
the successively refined TPDU is forwarded to the receiving
application even if there are still errors in the payload after
packet combining.

4.3 Leaky ARQ as an application-level protocol

In this section, we discuss strategies for implementing
Leaky ARQ as an application-level protocol above the exist-
ing infrastructure provided by TCP and UDP.

One approach that achieves progressive reliability is to
send an initial version of an image via UDP, and a subse-
quent reliable version via TCP. This (TCP+UDP) solution
suffers from several problems that lead to decreased effi-
ciency over wireless links. Once a packet is sent to TCP,
there is no way to stop TCP from sending that packet reliably
to the receiver. This poses two problems: we cannot stop
TCP retransmissions from conflicting with the more urgent
delivery of the UDP image data (for immediate interactiv-
ity); and we cannot stop retransmissions of out-of-date
image data. Retransmissions of TCP packets will uncontrol-
lably steal bandwidth from newly arrived UDP packets,
increasing the delay of time-sensitive UDP data. Hence,
(TCP+UDP) cannot promise consistent interactivity. Also,
TCP can waste scarce wireless resources trying to reliably
transport out-of-date information. TCP does not permit us to
identify and “cancel” retransmissions of stale data.

Another approach is to build progressive reliability on
top of UDP alone, thereby avoiding the difficulties with TCP.
An application-level progressively reliable protocol could be

Appeared in ACM Multimedia Systems Journal, March 1999

17

implemented above UDP, much like the application-level
Real-Time Protocol (RTP) used by multicast video tools
[10]. However, UDP checksumming must be turned off in
order to support forwarding of corrupt packet payloads to the
application-level protocol. UDP checksums are calculated
over the IP pseudo header plus the entire UDP datagram
(UDP header + UDP payload) [8]. Turning off UDP check-
sums can cause the application-level protocol to receive
UDP datagrams with corrupt UDP headers and/or corrupt IP
pseudo headers.

Error detection must be performed on three layers of
header fields, including the TPDU header, UDP header, and
IP pseudo-header. Leaky ARQ is responsible for calculating
a checksum over the TPDU header. Leaky ARQ’s checksum
can also be calculated over the UDP header and IP pseudo-
header. This approach places the entire burden of header val-
idation on Leaky ARQ.

An alternative is to partition the error detection respon-
sibility. Leaky ARQ could make use of “UDP-lite” [55], a
form of UDP that calculates the UDP checksum over the
UDP header and IP pseudo header only. In this scenario,
UDP-lite acts as an initial filter that only passes UDP pay-
loads that had error-free headers (UDP and lower) up to
Leaky ARQ. The task remaining for Leaky ARQ is simply to
calculate the checksum on the TPDU header. This UDP-lite
approach has several limitations. Both UDP sender and UDP
receiver stacks would have to be modified to incorporate
header-only checksumming. An additional complication is
that header-only UDP checksums may lead to the failure of
some pure-UDP applications which were designed to handle
packet loss, but not necessarily packet corruption. A poten-
tial solution is to calculate header-only checksums exclu-
sively for Leaky ARQ packets, and to practice conventional
UDP checksumming for all other UDP datagrams.

If header-only error detection is implemented exclu-
sively at the Leaky ARQ layer, without the benefit of UDP-
lite, then the Leaky ARQ receiver must have access to the
source IP address and source UDP address. Fortunately,
these two fields can be obtained from the socket interface via
address structures that are returned with each received UDP
datagram [56].

5. Conclusions

We have introduced the notion of progressively reliable
packet delivery for delay-sensitive multimedia transmitted
over Internet connections with a wireless access link. Tradi-
tional ARQ protocols were shown quantitatively to incur
exponential delay over low bandwidth high BER links and
therefore were unlikely to meet interactive delay bounds.
FEC was shown to introduce delay due to overhead and
interleaving that could violate interactive delay bounds given
sufficiently bandlimited channels, severe fading, and multi-
media that is of high volume even after compression. For

interactive video conferencing or Web browsing over wire-
less links, the approach of error-tolerant compression was
observed to provide a lower-distortion solution than the more
traditional combination of aggressive compression and
aggressive FEC. Delivery of corrupt error-tolerant packets
was also shown quantitatively to be able to meet interactive
delay bounds. In this context, we proposed a progressively
reliable transport service that permits corrupt packets to be
delivered to the receiving application in increasingly reliable
fashion. Progressively reliable packet delivery also allows
multimedia applications to delay retransmissions, cancel
out-of-date retransmissions, and define multiple flows that
are scheduled by the protocol with variable delay constraints.
An example was given to illustrate how the protocol could be
parameterized to implement partial retransmission of video/
audio. The protocol was termed Leaky ARQ because corrupt
packets could be leaked to the receiving application. We dis-
cussed how to achieve successive refinement by modifying
packet combining techniques like Type-II Hybrid ARQ.
Finally, we observed that implementing Leaky ARQ as an
application-level protocol above UDP requires header-only
error detection on UDP headers and IP pseudo-headers.

6. Acknowledgments

We wish to thank Richard LaMaire and Srini Seshan at
IBM T.J. Watson Research Center for their helpful reviews.

7. References

[1] S. Narayanaswamy, S. Seshan, et al, “Application and Network
Support for InfoPad,” IEEE Personal Communications Maga-
zine, vol. 3, no. 2, pp. 4-17, April 1996.

[2] C. Kantarjiev, A. Demers, R. Frederick, R. Krivacic, M.
Weiser, “Experiences with X in a Wireless Environment,” Pro-
ceedings of the USENIX Mobile and Location-Independent
Computing Symposium, pp. 117-128, 1993.

[3] J. Bartlett, “Experience with a Wireless World Wide Web Cli-
ent,” COMPCON, pp. 154-7, March 1995.

[4] I. Wakeman, “Packetized Video -- Options for Interaction
Between the User, the Network and the Codec,” The Computer
Journal, vol. 36, no. 1, pp. 55-67, 1993.

[5] D. Ferrari, “Client Requirements for Real-Time Communica-
tion Services,” IEEE Communications Magazine, pp. 65-72,
November 1990.

[6] R. Han, D. Messerschmitt, “Asymptotically Reliable Transport
of Multimedia/Graphics Over Wireless Channels,” SPIE Mul-
timedia Computing and Networking, Proc. SPIE, Vol. 2667,
pp. 99-110, January 1996.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee,
HTTP/1.1, RFC 2068, January 1997.

[8] W. Stevens, TCP/IP Illustrated, Volume 1, Addison Wesley,
1994.

[9] J. Bolot, “End-to-End Packet Delay and Loss Behavior in the
Internet,” SIGCOMM, pp. 289-298, 1993.

[10] S. McCanne, V. Jacobson, “VIC: A Flexible Framework for
Packet Video,” ACM Multimedia, pp. 511-522, November
1995.

Appeared in ACM Multimedia Systems Journal, March 1999

18

[11] T. Turletti, C. Huitema, “Videoconferencing on the Internet,”
IEEE/ACM Transactions on Networking, vol. 4, no. 3, pp. 340-
352, June 1996.

[12] A. Tanenbaum, Computer Networks, 2nd edition, Prentice-
Hall, 1989.

[13] S. Lin, D. Costello, M. Miller, “Automatic-Repeat-Request
Error-Control Schemes,” IEEE Communications Magazine,
vol. 22, no. 12, pp. 5-16, December 1984.

[14] A. DeSimone, M. Chuah, O. Yue, “Throughput Performance
of Transport-Layer Protocols over Wireless LANs,” GLOBE-
COM, vol. 1, pp. 542-549, November 1993.

[15] Y. Chang, C. Leung, “On Weldon’s ARQ Strategy,” IEEE
Transactions on Communications, vol. 32, no. 3, pp. 297-300,
March 1984.

[16] D. Towsley, “The Stutter Go Back-N ARQ Protocol,” IEEE
Transactions on Communications, vol. 27, no. 6, pp. 869-875,
June 1979.

[17] M. A. Jolfaei, “Stutter XOR Strategies: A New Class of Multi-
copy ARQ Strategies,” International Conference on Network
Protocols, pp.56-62, 1994.

[18] D. Weissman, A. Levesque, R. Dean, “Interoperable Wireless
Data,” IEEE Communications Magazine, vol. 31, no. 2, pp.
68-77, February 1993.

[19] E. Ayanoglu, S. Paul, T. LaPorta, K. Sabnani, R. Gitlin, “AIR-
MAIL: A link-layer protocol for wireless networks,” ACM
Wireless Networks, vol. 1, no. 2, pp. 47-59, February 1995.

[20] J. Padgett, C. Gunther, T. Hattori, “Overview of Wireless Per-
sonal Communications”, IEEE Communications Magazine,
vol. 33, no. 1, pp. 28-41, January 1995.

[21] W. Doeringer, D. Dykeman, M. Kaiserswerth, B.W. Meister,
H. Rudin, R. Williamson, “A Survey of Light-Weight Trans-
port Protocols for High-Speed Networks,” IEEE Transactions
on Communications, vol. 38, no. 11, pp. 2025-2039, Novem-
ber 1990.

[22] R. Han, “Progressively Reliable Packet Delivery for Interac-
tive Wireless Multimedia,” Ph.D. Thesis, University of Cali-
fornia at Berkeley, Dept. of Electrical Engineering and
Computer Sciences, May 1997.

[23] H. Balakrishnan, S. Seshan, R. Katz, “Improving Reliable
Transport and Handoff Performance in Cellular Wireless Net-
works,” ACM Wireless Networks, vol. 1, no. 4, pp. 469-81,
1995.

[24] D. Cox, “Wireless Personal Communications: What Is It?,”
IEEE Personal Communications Magazine, vol. 2, no. 2, pp.
20-35, April 1995.

[25] Proposed EIA/TIA Interim Standard, Wideband Spread Spec-
trum Digital Cellular System Dual-Mode Mobile Station-Base
Station Compatibility Standard, April 21, 1992, Qualcomm.

[26] M. Mouly, M. Pautet, The GSM System for Mobile Communi-
cations, 1992, ISBN 2-9507190-0-7.

[27] E. Biersack, “Performance Evaluation of Forward Error Cor-
rection in ATM Networks,” SIGCOMM, pp. 248-257, 1992.

[28] A. Albanese, J. Blomer, J. Edmonds, M. Luby, “Priority
Encoding Transmission,” TR-94-039, International Computer
science Institute, Berkeley, CA, August 1994.

[29] W. Xu, J. Hagenauer, J. Hollmann, “Joint Source-Channel
Decoding Using the Residual Redundancy in Compressed
Images,” IEEE International Conference on Communications
(ICC), vol. 1, pp. 142-148, 1996.

[30] V. Vaishampayan, N. Farvardin, “Optimal Block Cosine Trans-
form Image Coding for Noisy Channels,” IEEE Transactions
on Communications, vol. 38, no. 3, pp. 327-336, March 1990.

[31] N. Cheng, N. Kingsbury, “The ERPC: An Efficient Error-
Resilient Technique for Encoding Positional Information or
Sparse Data,” IEEE Transactions on Communications, vol. 40,
no. 1, pp. 140-148, January 1992.

[32] D. Redmill, N. Kingsbury, “Still Image Coding for Noisy
Channels,” ICIP, vol. 1, pp. 95-99, 1994.

[33] A. Hung, T. Meng, “Error Resilient Pyramid Vector Quantiza-
tion for Image Compression,” ICIP, vol. 1, pp. 583-587, 1994.

[34] EIA/TIA Interim Standard, Cellular System Dual-Mode
Mobile Station-Base Station Compatibility Standard, IS-54-B,
April 1992, Telecommunications Industry Association.

[35] D. Clark, D. Tennenhouse, “Architectural Considerations for a
New Generation of Protocols,” SIGCOMM, pp. 200-208,
1990.

[36] P. Bhagwat, P. Bhattacharya, A. Krishna, S. Tripathi, “Enhanc-
ing Throughput Over Wireless LAN’s Using Channel State
Dependent Packet Scheduling,” INFOCOM, vol. 3, pp. 1133-
1140, 1996.

[37] W. Strayer, B. Dempsey, A. Weaver, XTP: The Xpress Transfer
Protocol, Addison-Wesley, 1992.

[38] L. Georgiadis, R. Guerin, A. Parekh, “Optimal Multiplexing
On a Single Link: Delay and Buffer Requirements,” IBM TJ
Watson Research Center, Research Report RC 19711 (97393),
Aug. 1994. Short version appeared in Proc. INFOCOM 94.

[39] C. Aras, J. Kurose, D. Reeves, H. Schulzrinne, “Real-Time
Communication in Packet-Switched Networks,” Proceedings
of the IEEE, vol. 82, no. 1, pp. 122-139, January 1994.

[40] H. Zhang, S. Keshav, “Comparison of Rate-Based Service Dis-
ciplines,” SIGCOMM, vol.21, no.4, pp.113-121, 1991.

[41] E. Malkamaki, “Performance of the Burst-Level ARQ Error
Protection Scheme in an Indoor Mobile Radio Environment,”
IEEE 44’th Vehicular Technology Conference, vol. 3, pp.
1412-1416, June 1994.

[42] P. Karn, “The Qualcomm CDMA Digital Cellular System,”
Proceedings of the USENIX Mobile and Location-Independent
Computing Symposium, pp. 35-39, 1993.

[43] Y. Hayashida, N. Sugimachi, M. Komatsu, Y. Yoshida, “Go-
Back-N System With Limited Retransmissions,” Eight Annual
International Phoenix Conference on Computers and Commu-
nications, pp. 183-187, 1989.

[44] B. Dempsey, W. Strayer, A. Weaver, “Adaptive Error Control
for Multimedia Data Transfers,” International Workshop on
Advanced Communications and Applications for High Speed
Networks, pp. 279-288, 1992.

[45] R. Marasli, P. Amer, P. Conrad, “Retransmission-Based Par-
tially Reliable Transport Service: an Analytic Model,” INFO-
COM, vol. 2, pp. 621-629, 1996.

[46] R. Cam, C. Leung, C. Lam, “A Performance Comparison of
Some Combining Schemes for Finite-Buffer ARQ Systems in
a Rayleigh-Fading Channel,” IEEE International Conference
on Selected Topics in Wireless Communications, pp. 88-92,
June 1992.

[47] S. Wicker, “Adaptive Rate Error Control Through the Use of
Diversity Combining and Majority-Logic Decoding in a
Hybrid-ARQ Protocol,” IEEE Transactions on Communica-
tions, vol. 39, no. 3, pp. 380-385, March 1991.

[48] B. Harvey, S. Wicker, “Packet Combining Systems Based on
the Viterbi Decoder,” MILCOM, vol. 2, pp. 757-762, 1992.

[49] D. Chase, P. Muellers, J. Wolf, “Application of Code Combin-
ing to a Selective-Repeat ARQ Link,” MILCOM, vol. 1, pp.
247-252, October 1985.

Appeared in ACM Multimedia Systems Journal, March 1999

19

[50] J. Hagenauer, “Rate-Compatible Punctured Convolutional
Codes (RCPC Codes) and their Applications,” IEEE Transac-
tions on Communications, vol. 36, no. 4, pp. 389-400, April
1988.

[51] S. Kallel, D. Haccoun, “Generalized Type II Hybrid ARQ
Scheme Using Punctured Convolutional Coding,” IEEE Trans-
actions on Communications, vol. 38, no. 11, pp. 1938-1946,
November 1990.

[52] S. Kallel, C. Leung, “Efficient ARQ Schemes with Multiple
Copy Decoding,” IEEE Transactions on Communications, vol.
40, no. 3, pp. 642-650, March 1992.

[53] P. Sindhu, “Retransmission Error Control with Memory,”
IEEE Transactions on Communications, vol. 25, no. 5, pp.
473-479, May 1977

[54] J. Metzner, D. Chang, “Efficient Selective Repeat ARQ Strate-
gies for Very Noisy and Fluctuating Channels,” IEEE Transac-
tions on Communications, vol. 33, no. 5, pp. 409-416, May
1985.

[55] Steve Pink at SICS, personal communication.
[56] W. Stevens, UNIX Network Programming, Prentice Hall, 1990.

