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Abstract

This paper presents a light-weight, dependable routing
mechanism for communication between sensor nodes and
a base station in a wireless sensor network. This mecha-
nism tolerates failures of random individual nodes in the
network or a small part of the network. The mechanism
is light weight in the sense that every node does only lo-
cal routing maintenance, needs to record only its neigh-
bor nodes’ information, and incurs no extra routing over-
head during failure-free periods. It dynamically discovers
new routes when an intermediate node or a small part of
the network in the path from a sensor node to a base sta-
tion fails.

1. Introduction

Wireless sensor networking that combines data sensing,
computing, and communication functions has been gaining
tremendous popularity in recent days. Several real-world
applications have already been designed, implemented and
deployed [1][9]. A wireless sensor network (WSN) consists
of a large number of sensor nodes and one or more base sta-
tions. A base station acts as a gateway to connect a WSN to
the outside world, e.g. an end user or the Internet. Individ-
ual sensor nodes sense their environment, and transmit the
sensed or processed data to a base station via a multi-hop
network consisting of several sensor nodes. The base sta-
tion in turn transfers the data to the WSN users.

Although each individual sensor node is highly con-
strained in its computing and communication capabilities,
a complete WSN is capable of performing complex tasks.
An attractive feature of a WSN is the ease of deploying re-
dundancy. Because of the presence of a large number of rel-
atively inexpensive sensor nodes, important dependability
mechanisms such as node and route replication are viable
in a WSN. So, while individual sensor nodes are highly
vulnerable to failures by battery drain, outside damages,
or security attacks, a complete WSN can be built to toler-
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Figure 1. Node failure in WSN

ate/mask these failures. In this paper, we propose a light-
weight, fault-tolerance routing mechanism for wireless sen-
sor networks.

Roughly speaking, a WSN can suffer from two types of
failures: random node failure and area failure [6][11]. Ev-
ery node in a WSN has similar probability to suffer from a
random node failure, which is typically caused by battery
drain or some internal problem in the node. On the other
hand, an area failure results in a failure of all nodes within a
certain geographical area. This is mostly caused by outside
accidents, such as a bomb explosion, fire, successful denial-
of-service attacks, and so on. Figure 1 illustrates these two
types of failures in a WSN.

Several routing protocols for a WSN have been proposed
[4, 10, 8, 3, 14, 15, 12, 13]. Three different methods have
been used to maintain routing paths in the presence of node
failures. In the first method, routing paths are reconstructed
periodically. For example, in a simple beacon protocol [7],
a base station periodically broadcasts a beacon message. By
receiving a beacon message, a node receives an up-to-date
routing path to the base station. Reconstruction of routing
paths is expensive in this method and consumes lots of en-
ergy. In addition, since re-construction is not on-demand, a
nodes has to wait until the beacon to update the routing in-
formation on a node failure.



In the second method, multiple routing paths are used to
transfer data. The key idea is that unless every path from a
sensor node to a base station is broken by a failed node, data
can be transmitted to base station. The multipath version of
directed diffusion [6] uses this strategy. In ARRIVE proto-
col, copies of the same data is sent through different paths
with certain probability to avoid data loss caused by single
node failure or failure area [11]. In INSENS [5], multiple
disjoint paths are built to bypass a failed node. This method
can result in increased energy consumption and packet colli-
sions, because data is sent along multiple paths, irrespective
of whether there is a node failure or not. Also, this method
cannot guarantee bypassing an area failure.

In the third method a routing path is selected probabilis-
tically. In this method, a node chooses another node to for-
ward a packet with certain probability. Since there is no
fixed path to forward data, a failed node can’t block all
packets from a sensor node to a base station. The ARRIVE
routing protocol [11] uses this strategy to forward multiple
copies of the same data. In rumor routing protocol [2], in-
stead of flooding query to whole network, a query is sent
through a random path until it meets event area. This proba-
bilistic approach provides some fault tolerance, but data loss
is still possible with some probability. In addition, the ran-
dom chosen path is not energy efficient.

Recently, Woo et al. investigated the challenges of mul-
tihop routing in wireless sensor networks and proposed a
routing scheme based on node’s neighborhood link esti-
mates [13]. This protocol is for a many-to-one, data collec-
tion routing scenario in WSN. A sensor network can quickly
react to node failures and data transmission range changes,
and find new routing path for sensor nodes. To do this, a
sensor node needs to periodically broadcast its routing in-
formation, or periodically probe its neighbor nodes’ routing
information. In addition, it needs to maintain a table which
contains its neighbor nodes’ routing information.

In this paper, we propose a robust and light-weight rout-
ing mechanism that can be incorporated in any routing pro-
tocol for WSN to make it fault tolerant. It dynamically re-
pairs a routing path between a sensor node and a base sta-
tion. In contrast to [13], a node stores only its parent node
routing information, and asks for neighbor nodes routing in-
formation when parent node is inaccessible. When an origi-
nal routing path is broken, a node selects a new path from its
neighbor nodes. This light-weight routing mechanism toler-
ates both random node and area failures.

2. Protocol Description
2.1. Assumptions

In this paper, we focus on how each sensor node main-
tains its routing path to a base stations. We assume that the

initial routing mechanism from each sensor node to a base
station has already been set up. This can be done using a
number of protocols that have been proposed in the past,
e.g. the TinyOS beacon protocol discussed below. In par-
ticular, we assume that each node already has a path to the
base station, and knows its parent node, neighbor nodes and
the number of hops it is from the base station. This informa-
tion can be initialized by using the TinyOS beacon protocol
for setting up routing paths. In this protocol, the base sta-
tion floods a beacon message in the network. When a node
first hears the beacon message, it records the sender of that
beacon message as its parent node and forwards the beacon
message to all of its neighbor nodes. When a node needs to
send/forward a message to the base station, it sends the mes-
sage to its parent node. The parent node in turn forwards the
message to its parent node, and so on, until the message gets
to base station. A key problem with this protocol is that it is
not fault tolerant. If the parent node of a sensor node fails,
the sensor node cannot communicate with the base station.

2.2. Path Repair Algorithm

The basic idea to repair routing paths in case of random
node or area failures is quite simple: every node monitors
its parent node. When it finds that parent node has failed,
it asks its neighbor nodes for their connection information.
It then chooses a new parent node from its neighbor nodes
based on this connection information. As shown in Figure
1, the mechanisms can tolerate node failures and routes a
message circumventing a the failed nodes.

This mechanism consists of four parts: the failure detec-
tion, failure information propagation, new parent detection,
and new parent selection. First, a node detects if its par-
ent node is alive and if the parent node can connect to base
station. This part is called failure detection. If a node s de-
tects that its parent node works well, it won’t do any mainte-
nance work. If there are some problems in parent node, such
as node failure or disconnected to base station (probably one
of parent node’s ancestor node is failed), node s informs its
children nodes about the failure, which is called failure in-
formation propagation. In addition, s requests the connec-
tion information from its neighbor nodes since it needs to
choose a new parent node from them. This part is called
new parent detection. After collecting information from its
neighbor nodes, s decides a new parent node based on the
information it collected. This part is called new parent se-
lection.

We denote a as the node who tries to maintain its route
path. Node p is a’s parent node.

1 node a sends PROBE message to its parent node p, and
set a timeout (timeout_prob) for BAC K message from
.
PROBE :a — p : probe_prt



2 if the p can hear the PROBE message, it will reply a
BACK message. The BAC'K message contains the
information that whether p connects to base station or
not, and if it is connected, the hops to base station. If p
connects to base station, it sends BACK Y message
back to a. The format of BACK Y is

BACK'Y :p— a: connected||hops

If p cannot connect to base station, it sends BACK _N
back to a:

BACK_N : p — a: brokenl||broken_hops

the broken_hops represents the distance to untouched
ancestor node. If p cannot connect to its parent node
p.parent, the p.broken_hops is set to 1. Otherwise,

p.broken_hops «— p.parent.broken_hops + 1

3a if a receives BACK_Y from p, a resets its hops as par-
ent p’s hops plus one: apops < hops + 1. If a node’s
hops beyond a maximum threshold value, it sets itself
unconnected: apops < OO.

3b if p is dead or its signal is jammed, it cannot reply
BAC K message within timeout _prob. if a cannot re-
ceive BAC K message from p within timeout _prob, a
knows that it cannot connect to base station through p.
Then it broadcasts a RQ) ST message to all of its neigh-
bor nodes to find a new parent node.

RQST :a — NEIGHBORS : request_parent

3¢ If a receives BACK_N from p, a knows that p can-
not connect to base station at that moment. Instead
of broadcasting R(Q)ST message immediately, a waits
a timeout timeout_prt before sending RQST. The
timeout_prt depends on the value of broken_hops
from BACK _N message. This strategy gives parent
node p some time to find its new parent node. a will
set its broken_hop, and propagate it when its children
nodes send PROBFE message to a.

4 when one of a’s neighbor node ¢ receives RQ ST mes-
sage from a, and if ¢ can connect to base station, it
sends a RPLY message back to a. RPLY message
contains the ID of ¢’s parent node, and ¢’s hops to base
station:

RPLY : ¢ — a: connected||c-hops||c.parent

if ¢ cannot connect to base station, it won’t send any
message back to a. Instead, it records a as one of its
RQST senders. (here, a’s children nodes won’t sends
RPLY message back to a since it is not necessary.)
If a hasn’t got any RPLY message from its neigh-
bor nodes, it will re-send RQ.ST after a certain time-
out timeout _rqst.

RRPLY;R BACK_Y
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Figure 2. Protocol finite state machine.

5 When a receives RPLY messages from its neighbor
nodes, if the RPLY message says that the sender con-
nects to base station, a records the sender as a parent
candidate. Finally, a selects its new parent node whose
hops to base station is smallest among all candidates.
After it selects parent node, a sets its hops as its par-
ent node’s hops plus one: apops < a.parentpops + 1.
If a ever received RQST message from its neighbor
nodes, it will send RPLY back to the RQST senders.

In figure 2, we present a formal description of this mech-
anism with a finite state machine (FSM). This FSM shows
the major state translation except the caching/precessing of
RQST requests. We use = : y to describe the state transla-
tion condition. x denotes the action of events: R means re-
ceives a message, S means sends a message. y denotes the
content of message.

3. PROPERTIES

3.1. Random node failure and area failure

The proposed mechanism is robust in finding new paths
under random node failure and area failure. Figure 3 de-
mos how a node find alternative path when its parent node
is failed. In figure 3, p is a failed node, showed as a black
node. When p’s child node a detects that it cannot connect
to p by running step 1, a broadcasts R(Q).ST" message to its
neighbor nodes (as described in step 3b). If any of a’s non-
child neighbor nodes can connect their parent nodes, they
will send RPLY message back to a (in step 4). This fig-
ure demos that a chooses c as its new parent node from the
RPLY messages, and then a has a new path to base sta-
tion.

Figure 4 shows that the node are randomly failed in
the network. The black nodes are failed nodes. The dash-
anchor lines point connect original child node to original
parent node, and the solid-anchor lines show the RPLY



Figure 4. Bypassing random failed nodes

messages corresponded to RQ) ST messages. With our pro-
posed mechanism, Node « finds a new path to base station
and bypasses several failed nodes on the path.

Figure 5 demos the case that the nodes within a certain
area are all failed. This may be caused by some accidents,
i.e, fire, a bomb, or a signal jamming attack. This type of
failure is called area failure. When it happens, the nodes just
close to the failure area will send RQ)ST messages to their
neighbor nodes. In the beginning, some nodes choose other
nodes along the failure edge as their parent nodes. That is
because these nodes may detect the failure area at slight dif-
ferent time. But quickly, the nodes just behind the failure
area will detect that their neighbor nodes are also discon-
nected to base station. We call this area as “block area”.
Because of routing update inconsistency, some nodes may
form routing loop in the “block area”, which we will dis-
cuss in next section. In the edge of the failure area, which
we call “edge area”, nodes will find the real path to base sta-
tion, and the routing information of these nodes will even-
tually affect the nodes in “block area” and connect them to
base station.

3.2. Routing Loop Discussion

3.2.1. Loops In our proposed mechanism, every node de-
cides its path based only on local information, such as its
parent node and neighbor nodes’ routing information. So, it
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Figure 5. Bypassing area failure

is possible to form a loop in the routing path. Because the
RPLY message contains the parent node of RPLY sender,
a node can find and avoid the short loop which only con-
tains 2 or 3 nodes. However, longer loops cannot be pre-
vented. In general, an occurrence of a loop is more likely in
case area failure than random node failures.

When an area failure occurs, some nodes detect their par-
ent failures and send RQ).ST messages, and some nodes that
haven’t yet detected the failure keep their old routing infor-
mation. This routing information inconsistency can create
loops. However, if there is a loop, the hop count of that path
will continuously increase, and eventually it will be higher
than the hop count of paths of nodes that have real paths
to the base station. If a node finds its hops continually (and
regularly) growing, it will begin to detect all its neighbor
nodes’ hops. These nodes that have real paths will attract
the nodes on the loop with their low hops value and finally
break the loop.

We believe that the loop problem in sensor network rout-
ing is not as serious as that in the Internet routing or tradi-
tional mobile as hoc routing. This is because we are only
concerned with communication between sensor nodes and
a base station in a WSN, as opposed to communication be-
tween any two nodes in other networks. If the base station
is not isolated, and if there is at least one node in the loop
whose neighbor node connects to base station, the indefi-
nite increase in hop count will cause this node to use its
neighbor node as the parent node at some point in time and
hence break the loop. Another problem caused by loops is
energy consumption and increased packet delay/loss. Nodes
in a loop may waste their power by continually forwarding
packets.

3.2.2. Loop Elimination We don’t use sender ID and
originating sequence number to detect loop since that re-
quires a node s to memorize lots of history information
if there are lots of nodes sending packets to base station
through s. In stead, we propose the following mechanism to
eliminate loop. Suppose there is aloopa; — az — ... —
ar — a1. This loop exists because there is a node (ay) that
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Figure 6. Elimination of loop

finds that its original path is broken and it can connect to
a;. Before choosing a; as its new parent node, aj, needs
to broadcast RQ ST to its neighbor nodes, and so a1 will
know ay’s path is broken. If a;_; and its downstream nodes
continually inform their downstream nodes the path bro-
ken event, the “path broken” information will quickly prop-
agate to all downstream nodes. At the same time, ay accepts
a; as its new parent node and sends new hops information
to its downstream nodes. Although the “new hops” infor-
mation will eventually propagate to all downstream nodes,
its propagation speed is much slower than “path broken”
event, since a child node gets “new hops” information af-
ter it sends PROBE message and receives BACK Y. If
there is a loop, from a; through ay, to a1, the “path broken”
event will get to a; and continue to reach aj, and eventu-
ally it will catch “new hops” information. At that time, ev-
ery node on the loop will get “path broken” event and the
path of the loop will disappear.

One way to implement above strategy is that in step
3c, after receiving BACK _N, node a immediately sends
PENDING message to its children nodes. The format of
this message is:

PENDING : a — CHN : pending||pending_hops

Initially, a sets pending_hops as 1. When a node re-
ceives PENDING from its parent node, it increases
pending_hops by 1 and forwards this message to its chil-
dren nodes immediately. This way, the “path broken” in-
formation will spread to all downstream node very quickly.
However, although the PEN DING propagation prevents
loop, it may also generate the PEN DIN G message storm
to downstream nodes. To prevent PENDING storm, a
node can slow down PEN DING message forwarding. It
can wait a short time out (timeout_pend) before forwarding
a PEN DING message, timeout_pend < timeout_prob.
In addition to avoiding loop, a PEN DIN G message can
also be used to control packet sending rate, i.e. down-
stream nodes will slow down or stop sending packets after
they know that the path is temporary broken.

4. Variations and Extensions
4.1. Generalization of Our Mechanism

In section 2, we described a basic robust and light-
weight routing algorithm for WSN, which is composed of
four parts: failure detection, failure information propaga-
tion, new parent detection, and new parent selection. In fail-
ure detection, a node detects if its parent node has failed.
We use PROBE and BACK messages to detect failure.
In failure information propagation, a node tells other nodes
about the failure information. BACK _N and RQST mes-
sages are used for this purpose. In new parent detection,
a node finds out information about new parent candidates.
RQST and RPLY messages are used to find new parent
candidates. Finally, in new parent selection, a node uses ap-
propriate metrics to choose a new parent node from candi-
date nodes. In the basic mechanism, a node uses number of
hops to base station as the metric.

In real applications, all four parts can be modified to
adapt to the requirements of different scenarios. For exam-
ple, in Section 3, we changed the way failure information is
propagated to eliminate routing loop. For failure detection,
we can attach a piggyback a PROBE message in normal
data packets, and BAC K message can be used for reliable
hop-by-hop data transmission.

4.2. Using Different Metrics

An important part of our mechanism is the metrics used
for new parent node selection. All nodes must use a com-
mon metrics to evaluate their routing cost to the base station.
This metrics must be such that its value decreases mono-
tonically as you get closer to the base station. Every node
can simply use a greedy algorithm to select its parent node
based on this metrics value. Number of hops is one type of
metric that satisfies this property. Any other metric that sat-
isfies this property can also be used.

4.2.1. Metrics Based on Location Information If a node
can get location of its neighbor nodes (by using GPS, direc-
tional antenna or other techniques), then it can choose a par-
ent node node based on the location of the failed nodes. For
example, when it finds that most of its neighbor nodes in
one direction have failed, it concludes that there is an area
failure in that direction. In that case, it will choose a new
parent node based not only on hops cost, but also on its lo-
cation relative to the failed area.

4.3. Directed Diffusion

The proposed robust and light-weight routing mecha-
nism can be used in directed diffusion based routing algo-
rithms. In directed diffusion routing algorithm [10], a sink



node disseminates its interest to the network. When corre-
sponding source node gets the intrest, it sends events data
back to sink along the path through which interest dissemi-
nated. Then the sink reinforce a path that connects sink and
source nodes. This reinforcement is based on the cached
events propagation information. Every new node on the
path does reinforcement until the path gets to source node.
If a link is broken, a node can find alternate path by run-
ning reinforcement again. Since the dissemination of intest
passed a large area of nodes between sink and source, the
nodes within the area can get and keep the cost metrics to
sink. When the reinforced path is broken, other nodes on the
path can run this scheme to find another path towards sink.

4.4. Node Join and Network Re-Construction

In this paper, we focus on node failure problem in WSN.
However, we can extend our scheme to deal with new node
joins and recovery of failed node. When a new node is added
in the network, it broadcasts a message to find its neigh-
bor nodes and their hops to base station. Then this node can
choose its parent node and join the network. In addition, the
new node may change other nodes’ paths to the base sta-
tion. Some nodes may have shorter path to the base station
through new node. Here, we use conservative strategy for
a node to change its parent from a longer path to a shorter
path because that is useful to prevent loop, and prevent ma-
licious node from sending forged hops information. When
a node finds that its neighbor nodes has a shorter hops to
base station, it sends two copies of a message to base sta-
tion, one through that node and the other through its cur-
rent parent node. If it receives the feedback message from
its neighbor node earlier that from its parent node, then it
consider to change its parent node.

If there are lots of node failure and new node joining
in the network, our scheme can still build routing paths for
alive nodes but the paths may not be efficient. In this situa-
tion, it is better to use base station to send beacon message
to reconstruct the routing paths in the network.

5. Conclusion and Future Work

In this paper, we have presented a light-weight, depend-
able routing mechanism for communication between sensor
nodes and a base station in a wireless sensor network. This
scheme tolerates failure of random individual nodes in the
network or a small part of the network by dynamically dis-
covering new routes when nodes fail. The proposed mech-
anism is generic in the sense that it can be incorporated in
several routing protocols to make them fault tolerant. In the
future, we plan to experiment with this mechanism, includ-
ing a simulation and implementation, to evaluate its perfor-
mance and usability in a real sensor network application.
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