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Abstract
In this paper we present X-MAC, a low power MAC

protocol for wireless sensor networks (WSNs). Standard
MAC protocols developed for duty-cycled WSNs such as B-
MAC, which is the default MAC protocol for TinyOS, em-
ploy an extended preamble and preamble sampling. While
this “low power listening” approach is simple, asynchronous,
and energy-efficient, the long preamble introduces excess la-
tency at each hop, is suboptimal in terms of energy consump-
tion, and suffers from excess energy consumption at non-
target receivers. X-MAC proposes solutions to each of these
problems by employing a shortened preamble approach that
retains the advantages of low power listening, namely low
power communication, simplicity and a decoupling of trans-
mitter and receiver sleep schedules. We demonstrate through
implementation and evaluation in a wireless sensor testbed
that X-MAC’s shortened preamble approach significantly re-
duces energy usage at both the transmitter and receiver, re-
duces per-hop latency, and offers additional advantages such
as flexible adaptation to both bursty and periodic sensor data
sources.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Net-

work Protocols; D.4.4 [Operating Systems]: Communica-
tions Management
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Theory
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1 Introduction and Motivation
Energy efficiency is a fundamental theme pervading the

design of communication protocols developed for wireless
sensor networks (WSNs), including routing and MAC layer
protocols. One of the primary mechanisms for achieving low
energy consumption in energy-constrained WSNs is duty cy-
cling. In this approach, each sensor node periodically cy-
cles between an awake state and a sleep state. Key parame-
ters that characterize the duty cycle include sleep time, wake
time, and the energy consumed during the awake state and
the sleep state. The period of a duty cycle is equivalent
to its sleep time plus awake time. Given duty cycling sen-
sor nodes, the challenges faced by designers of communica-
tion protocols are how to achieve high throughput, low de-
lay, and energy efficiency as nodes are waking and sleep-
ing in the network. This paper focuses on the design of
X-MAC, an energy-efficient MAC layer protocol for duty-
cycled WSNs, and introduces an optimization to adaptively
select sleep times for improved energy consumption and la-
tency.

Standard MAC protocols developed for duty-cycled
WSNs can be roughly categorized into synchronized and
asynchronous approaches, along with hybrid combinations.
These approaches are motivated by the desire to reduce idle
listening, which is the time that the node is awake listening
to the medium even though no packets are being transmitted
to that node. Idle listening has been found in 802.11 pro-
tocols to consume substantial energy [8, 14], and therefore
must be avoided in WSNs. Synchronized protocols, such
as S-MAC [16] and T-MAC [15], negotiate a schedule that
specifies when nodes are awake and asleep within a frame.
Specifying the time when nodes must be awake in order to
communicate reduces the time and energy wasted in idle lis-
tening. Asynchronous protocols such as B-MAC [13], and
WiseMAC [7], rely on low power listening (LPL), also called
preamble sampling, to link together a sender with data to
a receiver who is duty cycling. Idle listening is reduced in
asynchronous protocols by shifting the burden of synchro-
nization to the sender. When a sender has data, the sender
transmits a preamble that is at least as long as the sleep pe-
riod of the receiver. The receiver will wake up, detect the
preamble, and stay awake to receive the data. This allows



low power communication without the need for explicit syn-
chronization between the nodes. The receiver only wakes for
a short time to sample the medium, thereby limiting idle lis-
tening. Hybrid protocols also exist that combine a synchro-
nized protocol like T-MAC with asynchronous low power
listening [9].

A key advantage of asynchronous low power listening
protocols is that the sender and receiver can be completely
decoupled in their duty cycles. The simplicity of this de-
sign removes the need for, and the overhead introduced
by, synchronized wake/sleep schedules. Studies of low
power listening have demonstrated its energy-saving capa-
bilities [13, 9].

While the low power listening approach is simple, asyn-
chronous, and energy-efficient, the long preamble in low
power listening exhibits several disadvantages: it is subop-
timal in terms of energy consumption at both the sender and
receiver, it is subject to overhearing that causes excess en-
ergy consumption at non-target receivers, and it introduces
excess latency at each hop. First, the receiver typically has to
wait the full period until the preamble is finished before the
data/ack exchange can begin, even if the receiver has woken
up at the start of the preamble. This wastes energy at both
the receiver and transmitter. Second, the low power listen-
ing approach suffers from the overhearing problem, where
receivers who are not the target of the sender also wake up
during the long preamble and have to stay awake until the
end of the preamble to find out if the packet is destined for
them. This wastes energy at all non-target receivers within
transmission range of the sender. Third, because the target
receiver has to wait for the full preamble before receiving
the data packet, the per-hop latency is lower bounded by the
preamble length. Over a multi-hop path, this latency can ac-
cumulate to become quite substantial.

This paper proposes a new approach to low power listen-
ing called X-MAC, which employs a short preamble to fur-
ther reduce energy consumption and to reduce latency. The
first idea is to embed address information of the target in the
preamble so that non-target receivers can quickly go back to
sleep. This addresses the overhearing problem. The second
idea is to use a strobed preamble to allow the target receiver
to interrupt the long preamble as soon as it wakes up and
determines that it is the target receiver. This short strobed
preamble approach reduces the time and energy wasted wait-
ing for the entire preamble to complete. We demonstrate
through implementation in a wireless sensor testbed that X-
MAC results in significant savings in terms of both energy
and per-hop latency. Finally, X-MAC can optionally use
an automated algorithm for adapting the duty cycle of the
nodes to best accommodate the traffic load in the network.
We demonstrate the additional savings in energy and latency
achieved by this adaptation.

This paper makes the following contributions:

• X-MAC introduces a series of short preamble pack-
ets each containing target address information, thereby
avoiding the overhearing problem of low power listen-
ing, saving energy on non-target receivers.

• X-MAC inserts pauses into the series of short pream-

ble packets, creating a strobed preamble, which enables
the target receiver to shorten the strobed preamble via
an early acknowledgment, thereby achieving additional
energy savings at both the sender and receiver, as well
as a reduction in per-hop latency.

• We describe an adaptive algorithm which can be used
to dynamically adjust receiver duty cycles to optimize
for energy consumption per packet, latency, or both.

• Experimental evaluation validates the performance
gains and energy savings of the X-MAC protocol in
comparison to a traditional asynchronous duty cycle
technique.

In the following, Section 2 describes related work. Sec-
tion 3 describes the basic X-MAC protocol design. Section 4
presents an optimal algorithm for adapting the receiver’s
duty cycle, and then presents a practical approximation. Sec-
tion 5 describes the experimental implementation and eval-
uation on a testbed of motes. Sections 6 and 7 provide a
discussion of future work and our conclusions.

2 Related Work
There are a number of approaches to duty-cycling MAC

protocols seen in the literature. These approaches can be
broadly divided into two categories: techniques that use
some method of synchronization to assure that the wake pe-
riods of the nodes are concurrent; and those that have no
synchronization requirements and instead depend on an ex-
tended preamble and low power listening.

S-MAC [16] is a low power RTC-CTS based MAC proto-
col that makes use of loose synchronization between nodes
to allow for duty cycling in sensor networks. The protocol
uses three techniques to achieve low power duty cycling: pe-
riodic sleep, virtual clustering, and adaptive listening. The
nodes in the network periodically wake up, receive and trans-
mit data, and return to sleep. At the beginning of the awake
period, a node exchanges synchronization and schedule in-
formation with its neighbors to assure that the node and its
neighbors wake up concurrently. This schedule is only ad-
hered to locally, resulting in a virtual cluster, which miti-
gates the need for system-wide synchronization. Nodes that
lie on the border of two virtual clusters adhere to the sched-
ules of both clusters, which maintains connectivity across
the network. After the synchronization information is ex-
changed, the nodes transmit packets using RTS-CTS until
the end of the awake period and the nodes then enter sleep
mode. In [17], the authors introduce adaptive listening to re-
duce latency. When a node hears an RTS or CTS from its
neighbor, it will wake up briefly at the end of the transmis-
sion. If the node is the next hop on the data path, waking
up at the end of the transmission will reduce latency as the
packet can be forwarded immediately without having to wait
until the next scheduled awake period.

T-MAC [15] improves on the design of S-MAC by short-
ening the awake period if the channel is idle. In S-MAC,
the nodes will remain awake through the entire awake period
even if they are neither sending nor receiving data. T-MAC
improves S-MAC by listening to the channel for only a short
time after the synchronization phase, and if no data is re-



ceived during this window, the node returns to sleep mode.
If data is received, the node remains awake until no further
data is received or the awake period ends. The authors show
that, for variable workloads, T-MAC uses one fifth of the
energy used by S-MAC. While this adaptive duty cycling re-
duces energy usage for variable workloads, these gains come
at the cost of reduced throughput and increased latency.

A comparison of duty cycling MAC protocols for WSNs
is performed in [9]. Specifically, S-MAC and T-MAC are
compared to standard CSMA/CA and LPL. S-MAC and T-
MAC are also modified to use low power listening during
the awake period, which further decreases the energy con-
sumption of the protocols. While they show that T-MAC
in combination with low power listening provides very low
power communication, latency is not considered. In addi-
tion, T-MAC was not able to handle as heavy a load as LPL
and S-MAC due to the early sleeping problem.

B-MAC [13], developed at the University of California
at Berkeley, is a CSMA-based technique that utilizes low
power listening and an extended preamble to achieve low
power communication. Nodes have an awake and a sleep
period, and each node can have an independent schedule. If
a node wishes to transmit, it precedes the data packet with
a preamble that is slightly longer than the sleep period of
the receiver. During the awake period, a node samples the
medium and if a preamble is detected it remains awake to
receive the data. With the extended preamble, a sender is
assured that at some point during the preamble the receiver
will wake up, detect the preamble, and remain awake in or-
der to receive the data. B-MAC also provides an interface by
which the application can adjust the sleep schedule to adapt
to changing traffic loads. The method of adaptation is left
to the application developer. The authors show that B-MAC
surpasses existing protocols in terms of throughput, latency,
and for most cases energy consumption. While B-MAC per-
forms quite well, it suffers from the overhearing problem,
and the long preamble dominates the energy usage.

WiseMAC [7], which is based on Aloha, also uses pream-
ble sampling to achieve low power communications in in-
frastructure sensor networks. WiseMAC uses a similar tech-
nique to B-MAC, but the sender learns the schedules of the
receiver awake periods, and schedules its transmission so as
to reduce the length of the extended preamble. To achieve
this, the receiver puts the time of its next awake period in the
data acknowledgment frame. The next time the transmitter
wants to send to that receiver it can begin the preamble only
a short time before the receiver will awaken, taking into ac-
count possible clock skew. This reduces the energy expended
when sending the preamble. In addition, for low traffic loads
where the preamble is longer than the data frame, WiseMAC
repeats the data frame in place of the extended preamble.
Receivers process this data frame and if the node is not the
intended recipient it returns to sleep. If the node is the recip-
ient, it remains awake until the end of the transmission and
sends an acknowledgment. While WiseMAC solves many of
the problems associated with low power communications, it
does not provide a mechanism by which nodes can adapt to
changing traffic patterns.

In addition, low power listening has been implemented

by a number of commercial radios, for example the Chipcon
CC2500 [1] and the MaxStream XBee radios [3]. The XBee
radio modules allow the user to set the sleep period of the
radio and to set the length of the preamble that precedes the
data packet. The user must be sure to set the sleep period
to a duration shorter than the preamble length in order to be
assured that the radio was awakened by the preamble. The
Chipcon CC2500 uses a similar mechanism, but it has the
added benefit of using a low power radio circuit that listens
for the preamble. If in Wake-On-Radio mode, a low power
radio circuit is used to intermittently sample the channel for a
preamble. If the preamble is detected, the main radio circuit
is woken up and the radio receives the data packet.

A variety of techniques have employed a Wake-On-Radio
(WOR) approach [14, 12] for energy-efficient communica-
tion. These approaches employ a second low power radio
as a trigger to wake up the primary radio. These WOR ap-
proaches require special hardware assistance.

3 X-MAC Protocol Design
The design goals of the X-MAC protocol for duty-cycled

WSNs are:
• energy-efficiency

• simple, low-overhead, distributed implementation

• low latency for data

• high throughput for data

• applicability across all types of packetizing and bit
stream digital radios

For many applications, asynchronous duty cycling tech-
niques are preferable to synchronized techniques in terms of
energy consumption, latency, and throughput. In part, this is
because they do not incur overhead due to synchronization.
In addition, asynchronous techniques do not have to share
schedule information and only stay awake long enough to
sample the medium unless they are receiving or transmitting
data. Hence, the awake period can be significantly shorter
than that of synchronized methods. With a shorter awake pe-
riod, asynchronous protocols can wake up more often while
still maintaining a low duty cycle. This can also lead to re-
duced latency and higher throughput. However, the extended
preamble begins to dominate the energy per packet as latency
tolerance, and thus the receiver’s sleep period, increases.

In general, for applications with loose latency require-
ments, synchronized approaches may be more appropriate.
In [9], a modified version of T-MAC is shown to conserve
more energy than LPL in the absence of latency require-
ments. In this study, the period of T-MAC was 610 ms while
the sleep time of LPL was 270 µs; this would result in an
order of magnitude difference in their latencies. In [13], the
authors show that for a 10 hop network B-MAC outperforms
S-MAC with respect to energy for latencies under 6 seconds.

For these reasons, X-MAC builds upon the founda-
tion provided by asynchronous duty-cycled MAC protocols.
While asynchronous techniques perform quite well, there are
a number of problems which, if mitigated, would allow for
even more efficient communication. X-MAC is designed to
address the following problems of low power listening: over-
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Figure 1. Comparison of the timelines between LPL’s
extended preamble and X-MAC’s short preamble ap-
proach.

hearing, excessive preamble and incompatibility with pack-
etizing radios.

3.1 Asynchronous Duty Cycling
A visual representation of asynchronous low power lis-

tening (LPL) duty cycling is shown in the top section of
Figure 1. When a node has data to send, it first transmits
an extended preamble, and then sends the data packet. All
other nodes maintain their own unsynchronized sleep sched-
ules. When the receiver awakens, it samples the medium. If
a preamble is detected, the receiver remains awake for the
remainder of the long preamble, then determines if it is the
target. After receiving the full preamble, if the receiver is not
the target, it goes back to sleep.

3.2 Embedding the Target ID in the Preamble
to Avoid Overhearing

A key limitation of LPL is that non-target receivers who
wake and sample the medium while a preamble is being sent
must wait until the end of the extended preamble before find-
ing out that they are not the target and should go back to
sleep. This is termed as the overhearing problem, and ac-
counts for much of the inefficiency and wasted energy in
current asynchronous techniques. This means that for ev-
ery transmission, the energy expended is proportional to the
number of receivers in range. Hence, the energy usage is
dependent on density as well as traffic load. This problem
is exacerbated by the fact that sensor networks are often de-
ployed with high node densities in order to provide sensing
at a fine granularity.

In X-MAC, we ameliorate the overhearing problem by di-
viding the one long preamble into a series of short preamble
packets, each containing the ID of the target node, as indi-
cated in Figure 1. The stream of short preamble packets ef-
fectively constitutes a single long preamble. When a node
wakes up and receives a short preamble packet, it looks at
the target node ID that is included in the packet. If the node
is not the intended recipient, the node returns to sleep imme-
diately and continues its duty cycling as if the medium had

been idle. If the node is the intended recipient, it remains
awake for the subsequent data packet. As seen in the figure,
a node can quickly return to sleep, thus avoiding the over-
hearing problem.

With this technique, the energy expenditure is signifi-
cantly less affected by network density. The approach of a
series of short preamble packets scales well with increasing
density, i.e. as the number of senders increases in a neigh-
borhood, energy expenditure remains largely flat. In com-
parison, as the number of senders increase in each neighbor-
hood of a WSN using LPL, the entire WSN stays awake for
increasing amounts of time.

Another advantage of this approach is that it can be em-
ployed on all types of radios. Any packetizing radio, such
as the CC2420 characteristic of MICAz and TelosB motes,
the CC2500, and/or the XBee, will be capable of sending a
series of short packets containing the target ID. As we will
see later, such universal support across packetizing radios is
not true of the traditional extended preamble LPL. In addi-
tion, the short preamble packets can be supported across all
radios with bit streaming interfaces, e.g. the CC1000 that is
found in the MICA2 mote.

3.3 Reducing Excessive Preamble using
Strobing

Using an extended preamble and preamble sampling al-
lows for low power communications, yet even greater en-
ergy savings are possible if the total time spent transmit-
ting preambles is reduced. In traditional asynchronous tech-
niques, the sender sends the entire preamble even though,
on average, the receiver will wake up half way through the
preamble. The entire preamble needs to be sent before every
data transmission because there is no way for the sender to
know that the receiver has woken up. This is one case where
more time is spent sending the preamble than is necessary,
as illustrated by the extended wait time in Figure 1. Another
case occurs when there are a number of transmitters waiting
to send to a particular receiver. After the first sender begins
transmitting preamble packets, subsequent transmitters will
stay awake and wait until the channel is clear. They will
then begin sending their preamble, and this occurs for every
subsequent sender. Consequently, each sender transmits the
entire preamble when in fact the receiver was woken up by
the first transmitter in the series.

In the development of X-MAC, we provide solutions for
both of these cases. Instead of sending a constant stream of
preamble packets, as would most closely approximate tradi-
tional LPL, we insert small pauses between packets the series
of short preamble packets, during which time the transmit-
ting node pauses to listen to the medium. These gaps enable
the receiver to send an early acknowledgment packet back
to the sender by transmitting the acknowledgment during
the short pause between preamble packets. When a sender
receives an acknowledgment from the intended receiver, it
stops sending preambles and sends the data packet. This al-
lows the receiver to cut short the excessive preamble, which
reduces per-hop latency and energy spent unnecessarily wait-
ing and transmitting, as can be seen in Figure 1. Since the
sender quickly alternates between a short preamble packet



and a short wait time, we term this approach a strobed pream-
ble.

In order to guarantee that preambles will be successfully
received and that disconnection is avoided, the length of the
preamble sequence must be greater than the maximum re-
ceiver sleep period. Additionally, the application designer
may choose maximum or minimum sleep periods to bound
latency and energy consumption, respectively.

In addition to shortening the preamble by use of the ac-
knowledgment, X-MAC also addresses the problem of multi-
ple transmitters sending the entire preamble even though the
receiver is already awake. In X-MAC, when a transmitter is
attempting to send but detects a preamble and is waiting for a
clear channel, the node listens to the channel and if it hears an
acknowledgment frame from the node that it wishes to send
to, the transmitter will back-off a random amount and then
send its data without a preamble. The randomized back-off
is necessary because there may be more than one transmit-
ter waiting to send, and the random back-off will mitigate
collisions between multiple transmitters. Also, the back-off
is long enough to allow the initial transmitter to complete
its data transmission. To enable this technique, after the re-
ceiver receives a data packet it will remain awake for a short
period of time in case there are additional transmitters wait-
ing to send. The period that a receiver remains awake after
receiving a data packet is equal to the maximum duration of
the senders back-off period, to assure that the receiver re-
mains awake long enough to receive any additional transmit-
ters data packet.

Together, these two techniques greatly reduce excessive
preambles, result in the reduction of wasted energy, and al-
low for lower latency and higher throughput. In addition,
both of these techniques are broadly applicable across all
forms of digital radios, including packetized and bit stream,
because the short time gaps, early acknowledgments, and
random back-off can all be implemented in software.
3.4 Packetizing Radios

LPL has a limited ability to support packetizing radios.
For example, B-MAC is the default MAC protocol for
TinyOS [10] but is incapable of supporting some packet ra-
dios such as the Chipcon CC2420. B-MAC was originally
developed for bit streaming radios like the Chipcon CC1000,
which provides low-level access to the individual bits re-
ceived by the radio. With these radios, B-MAC can gener-
ate long preambles. However, the new generation of sensor
motes, such as the MICAz [2], TelosB [4], and iMote [11],
make use of the Chipcon CC2420 [1] 802.15.4 radio. In-
stead of transmitting a raw bit stream, this type of packetiz-
ing radio takes as input the payload of the packet, and the ra-
dio module inserts its own preamble, header information and
CRC. When a packet is received, the radio strips the header,
checks the CRC, and if the packet is not corrupted passes
the payload of the packet to the microprocessor. While the
packet interface reduces the burden on the microprocessor, it
limits the ability of the application to precisely control the
bits that are sent over the air. Most pertinent, with these
radios the application cannot send a preamble of arbitrary
length. This precludes the use of LPL protocols that depend
on an extended preamble.

For these radios, it is also not possible to mimic an ex-
tended preamble by sending a long data packet, which acts
as a pseudo-preamble. This is because the receiver will be
unable to sample the packet containing the pseudo-preamble,
i.e. the packetizing radio will only deliver the packet after it
has fully received the entire pseudo-preamble. This defeats
the purpose of preamble sampling.

LPL is supported in certain kinds of packetizing radios,
such as in the Chipcon CC2500 and MaxStream XBee ra-
dios, but only because it is implemented directly in the hard-
ware. In this case, long preambles can be specified because
the radio supports this configuration option, unlike the Chip-
con CC2420.

In contrast, X-MAC’s short strobed preamble is well-
suited to all types of digital radios, as mentioned earlier.

4 Adaptation to Traffic Load
While many sensor network applications produce consis-

tent periodic traffic, there is also the need to adapt to vari-
able traffic loads. In addition, different nodes in a multi-hop
network may experience different average traffic loads. For
example, in a tree topology nodes closer to the base station
will forward more data than those closer to the leaves. Nodes
with differing traffic loads will consequently have different
ideal sleep schedules. Even for a periodic sensing applica-
tion, it would be difficult for a developer to hand tune all
of the nodes’ sleep schedules. For applications with time-
varying traffic loads, any pre-determined fixed schedule will
be sub-optimal.

The performance of a duty-cycling MAC is largely deter-
mined by the choice of radio sleep and wake periods for both
the senders and receivers. (See Table 3 in Appendix A.) In
this section we describe a lightweight algorithm for approx-
imating the optimal sleep and listen periods.

4.1 Optimality
We consider the following metrics for MAC qual-

ity: sender and receiver energy consumption and latency.
Throughput will be roughly equal to the offered load. The
expected energy consumption can therefore be modeled in
terms of the durations of the sender and receiver sleep, lis-
ten, and transmit periods.

We will show that if the probability, Pd(t), of receiving
a packet in any given interval is known then sender and re-
ceiver tunable parameters can be set to optimal values. Let
PT x, PRx, and Ps be the power required to transmit, receive,
and sleep, respectively. Sp, Sal , and Sd denote the duration
of the sender’s preamble, acknowledgment listen, and data
transmission periods. Rl and Rs denote the receiver listen
and sleep periods.

Based on the cycle shown in Figure 1, and assuming un-
correlated packet arrivals and sleep/wake periods, the ex-
pected energy to send a packet is given by:



Es =(preamble energy + energy per ACK listen)

∗ (expected preamble-listen iterations required)

+(energy to send packet)

=(PT xSp +PRxSal)





1
(

Rl−Sp
Rl+Rs

)



+SdPT x

=
(PT xSp +PRxSal)(Rl +Rs)

Rl −Sp
+SdPT x

(1)

The protocol implementation adds a post-packet-
reception delay Rqpl to catch queued packet trains. This
extra wake time changes the expected number of preamble-
listen iterations required, giving:

Es =
PT x Sp +PT x Sal

1−
(

1−Pd Rqpl
)

(

1− Rl−Sp
Rs+Rl

) +SdPT x (2)

The expected energy to receive a packet is given by:

Er =(listen cycle energy + sleep cycle energy)

∗ (expected iterations for a preamble to arrive)

+(energy to send an ACK)

+(energy to receive packet)

=
PsRs +PRxRl

1− (1−Pd(t))(Rl+Rs)
+PT xRa +RdPRx

(3)

The expected latency for a single hop is:

Lat =(duration of preamble + ACK listen)

∗ (expected number of iterations required)

+(duration to send packet)

=





1
(

Rl−Sp
Rl+Rs

)



∗ (Sp +Sal)+Sd

=
(Sp +Sal)(Rl +Rs)

Rl −Sp
+Sd

(4)

These models lead to the following observations, the
derivations of which can be found in appendix B.
THEOREM 4.1. Energy and latency are both minimized
when Sp and Sal are set to the lowest values which allow for
the preamble to be transmitted and ACK received, respec-
tively.

For any objective function f (·) which is a function of
sender energy, receiver energy, and latency:
THEOREM 4.2. Optimal receiver sleep and listen times for
minRs,Rl f (·) depend solely on Pd(t) and device constants.

For any objective function f (·) consisting of a convexity-
preserving combination of sender energy, receiver energy,
and latency:
THEOREM 4.3. minRs,Rl f (·) can be found by standard con-
vex optimization techniques.

Thus, given an estimate of Pd(t) and a suitable objective
function, the optimal protocol parameters R∗

s and R∗
l can be
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determined mechanically. While any linear combination of
sender energy consumption, receiver energy consumption,
and latency is a suitable objective function, the remainder of
this paper focuses on a single example - optimizing purely
for per-packet energy consumption in the one-sender, one-
receiver case.

4.2 Approximation
Nonlinear minimization is too demanding a process to

be desirable in a sensor networking MAC. That said, the
mapping Pd(t) → (Rs

∗,Rl
∗) is smooth enough to admit

lightweight approximations. Figure 2 shows this mapping
over a range of packet arrival rates.

The on-node approximation is based on linear interpola-
tion: We pre-compute a table of Pd(t) values and their asso-
ciated optimal Rs

∗,Rl
∗ values[6]. In on-line operation, the

sensor node uses its estimate P̂d(t) to perform a table lookup
and interpolates between the closest pre-computed values.

Numerical simulations suggest that this approximation
achieves energy efficiency comparable to direct optimiza-
tion. We chose an interpolation table of 24 exponentially-
spaced entries, ranging between 10−4 and 103 expected
packets per second. The energy-efficiency of the optimal
and interpolated values of Rs and Rl were then compared for
ten thousand values of Pd . Figures 3 and 4 show the results
of this experiment: Figure 3 shows the “raw” difference be-
tween optimal and interpolated results, and Figure 4 shows
the difference as a fraction of the optimal value. The mean
difference is 0.45%, and 95th percentile difference is 1.3%.

4.3 Implementation Issues
We found that the timing mechanism used in the imple-

mentation of X-MAC was unable to correctly schedule listen
periods of less than ≈ 20ms. This is well above the opti-
mal energy-consumption minimizaing values given in Fig-
ure 2 for any load. This produces some inefficiency, but
fixing Rl at 20ms makes finding optimal values of Rs sig-
nificantly simpler. The objective function for which we op-
timized, f (Rs,Pd) ≡ ES +Er, was the total energy consumed
per packet by one sender and one receiver. Figure 5 shows
δ f
δRs

. The line labeled “0” denotes the set of (Rs,Pd) for which
f ′ = 0, which is a local minimum with regard to Rs.
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It is worth noting that there’s a large “plateau” around the
optimum in which −1 µJ

ms ≤ f ′ ≤ 1 µJ
ms . For the data rates of

interest, the optimal energy consumption is between 103 and
104µJ per packet. Thus, within this plateau, a sleep time
even 100 ms off of the optimum will do at most 10% worse.
An overly long sleep time is more forgiving than a too-short
one in terms of energy, but is worse for latency.

4.4 Model Validation
A series of experiments were performed to determine how

closely the analytical model of energy consumption matched
reality. The analytic model was found to model the re-
ceiver energy consumption extremely closely (adjusted R2

= 0.9975.) For the sender, the model appeared to be close
for the number of preamble-listen iterations required, but to
overestimate the energy consumption per iteration by a fac-
tor of ≈ 1.25. This error may stem from imperfect timing or
power measurements, or may represent some aspect of the
protocol dynamics not captured by the model. The adjusted
R2 for the sender energy consumption is 0.8487.

The adaptation function used in all of the experiments, as
well as for figures 5 and 6, includes an adjustment factor of
0.8 for the per-iteration energy consumption. Figure 6 com-
pares the predicted and observed total energy consumption
at several data rates.
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4.5 Estimating Traffic Load
The preceding produces near-optimal values when the

traffic load Pd(t) is known. An estimate of the instantaneous

value, P̂d(t) can be derived from the observed packet arrival
rate: The likelihood of k packets arriving over a period of
n ∗ t can be modeled as a Bernoulli process of n trials with
probability of success Pd(t). The most likely value of Pd(t)
is that which maximizes the probability of the observed out-
come. Applying Bayes’ rule, the most likely value of Pd(t)
is the maximum on the interval (0,1) of the function:

f (Pd |k,n) =

n!
(n−k)!k! Pd

k(1−Pd)n−k f (Pd)
R 1

0
n!

(n−k)!k! Pd
k(1−Pd)n−k f (Pd) dPd

(5)

THEOREM 4.4. P̂d(t) = k
n is an optimal instantaneous esti-

mate of Pd(t).
In the case where there is no prior knowledge of the prob-

ability distribution of Pd(t), equation 19 has its maximum at
k
n . The derivation is given in appendix B.



A moving estimate can be maintained by any of the stan-
dard mechanisms; without knowing the dynamics of appli-
cation load change it is impossible to identify an optimum.

5 Evaluation
In order to evaluate and demonstrate the correctness and

benefits of X-MAC we have implemented the protocol on
top of the Mantis Operating System (MOS) [5]. MOS is an
open source, multi-threaded operating system developed at
the University of Colorado at Boulder for use on wireless
sensor networking platforms. An application starts X-MAC
by calling an initialization function which takes the mini-
mum sleep time, maximum sleep time, initial sleep time, and
initial wake time as parameters.

A second initialization function, spawns a receive thread
that wakes and sleeps the radio and handles the adaptation of
the sleep periods. The current and boundary values for the
wake and sleep times can also be modified directly.

The application thread uses a MOS system call to pro-
cesses packets in the receive queue, as well as wor send()
and wor send skip preamble(). The second of the two send
functions is only used if the developer is confident that the
receiver is listening. To completely sleep the node, the ap-
plication thread must also put itself to sleep.

5.1 Experimental Setup
For our experiments, deployed an indoor testbed of

TelosB motes. The TelosB platform was developed at the
University of California at Berkeley and is marketed and sold
by Moteiv and Crossbow. The radio used by the TelosB is
the Chipcon CC2420, which is an 802.15.4 compliant de-
vice, has a data rate of 250kbps, and operates in the 2.4 GHz
ISM band. The mote uses an 8 MHz TI MSP430 processor
and has 1 MB of external flash.

The current draw of the device was calculated by using
an oscilloscope to measure the voltage drop across a 10 Ohm
resistor on the power line of the USB cable connecting the
node to the desktop. Several baseline values, shown in Table
1, were calibrated for the additional power consumed by the
on-board FTDI chip, which is active when the mote is con-
nected to the desktop. These baseline values were checked
against moteiv’s TelosB data sheet [4]. Similar methods were
used to test the power consumption of X-MAC, which will
be described later.

State V (mV) I (mA) Calibrated I (mA)
FTDI-Only 197.028 19.7028 ——-
RF Off 213.881 21.3881 1.685
RF On 390.213 39.0213 19.319
TX 369.422 36.9422 17.239

Table 1. Observed baseline TelosB current draw using
5V.

As the energy draw of the radio when receiving is far
greater than when in idle mode, it is of the utmost importance
to achieve a low duty cycle to extend the life of the network.
Because the processor consumes an extremely small amount
of energy in comparison with the radio, in our evaluation we
allow the application thread to run continuously while the
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Figure 7. Duty cycles of non-contending senders and re-
ceiver and as a function of network density.

radio is turned on and off according to the duty cycle. For
these evaluations, the wake time is always 20 ms.

As a comparison protocol for X-MAC, we have imple-
mented a basic asynchronous LPL MAC protocol. This pro-
tocol is the closest approximation that we could develop us-
ing a packetizing radio. When sending, the transmitter sends
a stream of preamble packets as rapidly as possible, and after
the extended preamble the data packet is sent. There are two
differences between X-MAC and the LPL protocol; first, the
LPL protocol does not inspect the preamble packets for the
target ID so all receivers will remain awake until they receive
the data packet; second, with the LPL protocol, transmitters
always send the entire extended preamble and receivers do
not send an acknowledgement packet to the transmitter. In
addition, the adaptation algorithm cannot be applied to the
protocol. Although the receiver can adjust its sleep period,
the transmitter will not be aware of this change so it will not
know to adjust the length of its preamble.

5.2 X-MAC Performance
To evaluate the performance impact of the X-MAC proto-

col, we performed a number of experiments that test X-MAC
without adaptation on simple topologies with no contention.
We then introduce contention into the network, and finally
evaluate the adaptive optimization for X-MAC.
5.2.1 Duty Cycle Under No Contention

To demonstrate the benefits of the overhearing avoidance
and the strobed preamble in X-MAC, we performed an ex-
periment with a varying number of nodes. For this, we set
up a star topology consisting of one receiver and up to nine
senders where all nodes are within transmission range of
each other. Each node sends a packet once every 9 seconds
to the receiving node and all nodes have a sleep period and
preamble length of 500 ms. The number of senders was var-
ied between 1 and 9, with the transmissions timed so as to
avoid contention.

As can be seen in Figure 7, both the X-MAC and LPL
duty cycles increase approximately linearly with the number
of senders. The difference in slope reflects X-MAC’s shorter
preambles. Note that fixed overheads such as the minimum
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listen time and queued packet listen time reduce the differ-
ence.

For this experiment, we show the senders’ and receivers’
duty cycles separately. In the single-sender case, the re-
ceiver’s duty cycle is 4.3% for X-MAC and 5.7% for LPL,
resulting in a 32.5% increase in energy lifetime of the re-
ceiver for X-MAC. On the senders’ side, the duty cycle is
7.0% for X-MAC versus 9.3% for LPL. These gains increase
as the network becomes more dense.
5.2.2 Energy Usage

In order to show the energy savings in terms of actual
power consumption, we attach an oscilloscope to one of the
transmitting nodes, and repeat the above experiment. We
measure the mean current draw in mA. As can be seen in
Figure 8, the energy consumption of the LPL protocol in-
creases as network density increases. For X-MAC, energy
consumption remains relatively constant as network density
increases. These results agree with the previous measure-
ments of the duty cycles.
5.2.3 Duty Cycle Under Contention

To show the performance of X-MAC in the presence of
contention, we perform a number of experiments similar
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to the previous duty cycle experiment but with contending
transmissions. All packets are sent using a best-effort policy.
We vary the number of nodes in the network, and all nodes
are within range of each other. All senders generate pack-
ets at the same average rate, with randomized jitter to avoid
continually synchronized transmissions. As the number of
transmitters increases the traffic load increases proportion-
ally. In addition to changing the density of the network, we
vary the sleep time of the nodes. We do this for packet send
rates of one packet per second, shown in Figure 9, and one
packet every ten seconds, shown in Figure 10.

The results follow the same trend as the non-contention
experiment previously presented. X-MAC uses less energy
for nearly all sleep periods and generation rates, and is less
sensitive to network density. It should be noted that even
over greatly different sleep times (i.e. 200 ms and 500 ms),
X-MAC still performs significantly better than LPL. This is
seen in the single sender case with a sleep period of 200 ms
and a packet generation rate of once every 10 seconds, as
seen in Figure 10. In this case, X-MAC uses 10% less energy
than LPL.

5.2.4 Fairness
We use the variance between senders in the number of

data packets generated versus the number of data packets
successfully sent as a metric of fairness. Transmit failures
occur in LPL when CSMA/CA senses the channel is not
clear when it tries to send the data packet. In addition to this,
X-MAC fails to send if its preamble was not acknowledged
in time (for this test, 5 seconds). The results of this experi-
ment are given in Figure 11. Error bars indicate the standard
deviation between the different transmitters, with shorter im-
plying better fairness. X-MAC allows a higher percentage of
packets to be sent. In nearly all cases, X-MAC provided bet-
ter fairness than LPL.

5.2.5 Transmission Success Rate
While performing the contention experiments, we also

measure how many transmitted packets are successfully re-
ceived. In Figure 12, we show the results of this experiment
when sending one packet per second. The results for the one
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packet per ten second generation rate are omitted, as both
protocols received above 90% of the packets for all densities
and sleep times.

X-MAC receives approximately 90% or more of the pack-
ets for all densities and sleep times. In contrast, LPL loses
more packets as density increases. This is due to the longer
preamble used by LPL, which results in the channel being
saturated with a consequent increase in collisions. This is
also evidenced by the fact that LPL performs reasonably well
with a 40 ms sleep time, as the time necessary to transmit a
packet is reduced. This, however, results in a higher duty
cycle and additional energy consumption.
5.2.6 Latency

To show the reduction in latency when using X-MAC, we
use a chain topology of 8 nodes. We generate packets at one
end of the chain at a rate slow enough to ensure two packets
are never on the chain at the same time. We then measure
the traversal time of various sleep periods using the system
clock of the desktop connected to all the motes.

In Figure 13, we show the results of our 7 hop latency
test. Analytically, the traversal time should be about half that
of LPL, as the receiver will wake up, on average, half way
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Figure 14. Average duty cycle of all nodes versus initial
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through the preamble. Our results support this, and show that
X-MAC reduces latency by approximately 50%.
5.2.7 X-MAC with Adaptation

To evaluate the duty cycle performance of X-MAC with
the adaptive optimization, we conduct a series of 1-hop ex-
periments under two given traffic rates. For all subjects we
measure the average duty cycle of the sender and receiver
nodes on a large set of sleep periods. The adaptive variant
of X-MAC initially sets its sleep period to the given value,
and is allowed to adjust between 220 ms and 2300 ms. We
test two traffic rates: 1 packet per second and 0.1 packets per
second. For the first test we send 600 packets and for the
second test we send 60. These values were selected in order
to ensure that each test ran for approximately 10 minutes.
Additionally, we only turn on the radio of the sender when it
needs to transmit packets in order to fairly focus the results
on the amount of energy needed to send and receive a packet.
The results of this experiment are shown in Figures 14 and
15.

For each test, X-MAC’s adaptive optimization has a lower
duty cycle than the static versions of X-MAC and LPL for all
sleep times. This is mostly due to the adaptive protocol being
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able to pick sleep periods between the fixed values given.
We observe that the local minima for the two transmission

rates are located at different sleep cycles (roughly 200 ms
and 600 ms). This highlights the fact that for static X-MAC
and LPL there is no single sleep period that is optimal for all
scenarios. The average sleep time selected by the adaptive
protocol that has an initial sleep period of 400 ms is given in
Table 2. The averages agree with X-MAC’s local minima in
Figure 6.

Rate (pkts/sec) Avg Sleep (ms) Std Dev Sleep (ms)
0.1 592.88 45.64
1 246.1 14.88

Table 2. Average sleep time of X-MAC with adaptive op-
timization given an initial 400 ms sleep period.

6 Future Work
Our experiments have shown that by using a packetized

radio, such as the CC2420, it is possible to achieve signifi-
cant gains over a basic LPL implementation in energy con-
sumption, latency, and throughput. Moreover, our results
have shown that X-MAC’s performance gains continually
improve as the density of the network increases.

Additionally, we have shown that the adaptive extension
of X-MAC introduced in Section 4 is a useful optimization
for automatically tuning each node’s duty cycle when net-
work loads are not known a-priori. There are other types of
traffic, however, for which our adaptive protocol may not be
optimal. Further analysis and experimentation of the adap-
tive optimization are needed to clarify the scenarios (i.e. dif-
ferent types of traffic patterns or application requirements)
for which it is appropriate. We have identified areas of po-
tential improvement, which may improve the accuracy of the
analytic model.

The 20 ms listen time seen in this paper is an artifact of
our implementation and operating system. We are currently
working to reduce this listen time to more nearly optimal
values.

7 Conclusions
This paper describes X-MAC, a new approach to low

power communication in WSNs. X-MAC employs a strobed
preamble approach by transmitting a series of short preamble
packets, each containing the address of the target receiver.
The series of short preamble packets approximates a con-
tinuous preamble. Small pauses between preamble packets
permit the target receiver to send an acknowledgment that
stops the sequence of preamble packets.

Truncating the preamble saves energy at both the trans-
mitter and receiver and allows for lower latency. Non-target
receivers which overhear the strobed preamble can go back
to sleep immediately, rather than remaining awake for the
full preamble as in conventional LPL. This strobed pream-
ble approach can be readily adapted to the packetized radios
that are emerging as the standard in today’s sensor motes.
This paper demonstrated a lightweight algorithm for adapt-
ing X-MAC to select near-optimal sleep and listen periods.
We verified that X-MAC’s strobed preamble approach out-
performs traditional LPL by implementing the protocol and
performing an array of experiments.
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A Definitions

This appendix defines variables, constraints and equations
used in Appendix B.

A.1 Variables

PT x , Power to Tx

Ps , Power to sleep

PRx , Power to Rx

Sp , Duration of sender preamble

Sal , Duration of sender ACK listen

Sd , Duration of sender data Tx

Rs , Duration of receiver sleep

Ra , Duration of ACK send

Rl , Duration of receiver listen

Rd , Duration of receiver data Rx(= Sd)

Pd(t) , Packet probability per time t

A.2 Constraints
The following constraints describe the range of variable

values for which our model is reasonable:

{PT x,Ps,PRx,Sp,Sal ,Sd ,Rs,Ra,Rl ,Rd} > 0 (6)

0 ≤ Pd(t) ≤ 1 probability range (7)

Rl > Sp preamble reception possible (8)

Sal > Ra ACK reception possible (9)

Rd = Sd No Doppler effect (10)

A.3 Concrete Equations
Table 3 gives device-specific constants for the Telos B

mote.

Variable value source
PT x 86.2 mW device-specific
Ps 0.0183 mW device-specific
PRx 96.6 mW device-specific
Sp 1.98 ms measured
Ra 1.84 ms measured
Sd , Rd 3.8 ms application-

specific
Pd , Pd(1ms) application-

specific
Sal 15.25 ms Shortest schedu-

lable interval
(Sal = Ra is
optimal.)

Rs 0 ≤ Rs
Rl 1.84 ms ≤ Rl

Table 3. Variable values

Substituting these values into equations 2 - 4 gives the
following, where time, power, and energy are measured in
ms, mW and µJ respectively:



Es =
1188.2

1− (1−Pd)
(

1− Rl−1.98
Rs+Rl

) +86.2Sd +2556 (11)

Ee =
0.0183Rs +74.4Rl

1− (1−Pd)
Rs+Rl

+74.4Sd +14.976 (12)

Lat = Sd +
0.52 (Rs +Rl)

Rl −0.26
(13)

B Proofs
B.1 Theorem 4.1
B.1.1 Sender Preamble Time

The sender preamble duration Sp affects the expected en-
ergy to send and the expected latency (equations 2 and 4.)
Both take their optimal (minimal) values when Sp is mini-
mized, as will be shown shortly. Sp is bounded from below
by the message size / the available bandwidth + processing
overhead. The partial derivative of equations 2 and 4 with
respect to Sp are given below.

∂Es

∂Sp
=

(1−Pd Rqpl)(PT x Sp +PT x Sal)

(Rs +Rl)
(

1−
(

1−Pd Rqpl
)

(

1− Rl−Sp
Rs+Rl

))2

+
PT x

1−
(

1−Pd Rqpl
)

(

1− Rl−Sp
Rs+Rl

) (14)

∂Lat
∂Sp

=
(Rs +Rl) (Sp +Sal)

(Rl −Sp)
2 +

Rs +Rl

Rl −Sp
(15)

It follows from constraints 6 and 8 that ∂Es
∂Sp

> 0 and
∂Lat
∂Sp

> 0 for all permissible values. Thus, within the de-
fined bounds, the expected latency and expected sender en-
ergy consumption are always reduced by lowering Sp, and
expected receiver energy consumption is unaffected.
B.1.2 Sender ACK Listen Time

The sender acknowledge listen time, Sal also affects equa-
tions 2 and 4.

The partial derivative of equation 2 with respect to Sal is
given below.

∂Es

∂Sal
=

PT x

1−
(

1−Pd Rqpl
)

(

1− Rl−Sp
Rs+Rl

) (16)

It follows from constraints 6 and 8 that ∂Es
∂Sal

≥ 0 for all
feasible values of all variables. Consequently, Es is always
minimized when the lowest permissible value is chosen for
Sal .

Similarly for the expected latency,
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it is always the case that ∂Lat
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≥ 0.
From the preceding paragraphs, it follows that latency, re-

ceiver energy consumption and sender energy consumption
all take minimal values when Sal is minimized.
B.2 Theorem 4.2

Once the device attributes and the parameters with invari-
ant optimal values are fixed, all three objective functions are
given by equations 11 - 13. The values of the objectives de-
pend on, at most, {Pd ,Sd ,Rl ,Rs}.

Pd and Sd can be regarded as unknown constants1. Thus,
given any particular Pd and Sd and a constrained range of
values for Rl and Rs, there exist minimal values E∗

s , E∗
r , and

Lat∗.
For any given (Pd ,Sd), for each objective or for any com-

bination thereof, there exists a non-empty set of (R∗
l ,R

∗
s )

pairs producing the minimal value of the objective. Addi-
tionally, Sd does not appear in the partial derivative of Es,
Er, or Lat with respect to Rl or Rs. Consequently, the sets
of values which minimize those objectives do not depend
on the value of Sd . Thus, any objective based on some
combination of Es, Er, and Lat, can be be written as some
f (Pd ,Rl ,Rs) : R3 → R.
B.3 Theorem 4.3

Consider f (x) ∈ {Es,Er,Lat}. Each function is convex
over the domain x consistent with the constraints given in ap-
pendix A.2. All three functions are twice differentiable over
this domain, and thus have a well-defined Hessian matrix.
For each f , ∀x ∈ dom f :

O2 f (x) � 0

Therefore, each f is convex over the appropriate range
of Rs and Rl . By extention, any g(x) which consists of
convexity-preserving combinations of these f s is also con-
vex. A notable group of these is the set of nonnegative linear
combinations of f s.

Any local minimum of g(x) within the appropriate range
will therefore also be a global minimum, which means that
many non-linear programming techniques can be applied.
B.4 Theorem 4.4

For any given Pd(t), the probability that k packets will ar-
rive over duration nt can be modelled as a Bernoulli process
of n trials with probability of success Pd. The frequency
mass function for the probability of k “hits” in n trials is
given by
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Applying Bayes’ rule, we get the following frequency
density function:
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1They can, of course, change value over time.



In the case where there is no prior information about the
distribution, that is where f (Pd) is uniform, and k ≥ 0, equa-
tion 19 reduces to:
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The best estimate P̂d(t) is the value of Pd which maxi-
mizes f (Pd |k,n). Note that equations 19 and 20 are unde-
fined where Pd is 0 or 1. For the special cases k = 0 and k = n,
f (Pd |k,n) has no extrema in the interval [0,1]. Where k = 0,
the maximum is found where Pd = 0 and similarly where
k = n, the maximum occurs where Pd = 1. For 0 < k < n, the
following analysis holds:
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is zero where:
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Equation 22 has two solutions: Pd = 0 and Pd = k
n . As

mentioned above, equations 19 and 20 are undefined where
Pd is 0. Thus:

P̂d(t) =







0 if k = 0
k
n if 0 < k < 1
1 if k = n

(23)

This is just P̂d(t) = k
n for 0 ≤ k ≤ n.


