A Systematic Framework for Evolving TinyOS

Eric Trumpler, Richard Han
University of Colorado, Boulder
Eric. Trumpler @colorado.edu, Richard.Han @colorado.edu

Abstract

TinyOS [1] is a key element of the software infrastruc-
ture for the research and development community involved
in realizing wireless sensor networks (WSNs). In order to
improve the long-term impact of the research developed by
the WSN community, we contend that it is important to ex-
ploit Moore’s Law to augment TinyOS on current and fu-
ture sensor motes. The tenfold increase in available RAM
since the earliest motes makes possible the introduction of
important and useful operating system constructs such as
priorities and true multithreading. The phased introduction
of these capabilities should maintain compatability with the
existing body of nesC source code. Our framework, called
TinyMOS, provides an evolutionary pathway that ultimately
allows nesC applications to execute in parallel with other
system threads.

1. Introduction

TinyOS was developed for extremely resource-
constrained sensor nodes. Since the early Rene mote
included only 512 bytes of RAM, the combined sys-
tem overhead and stack use of any developed operating
system had to be considerably lower than today’s stan-
dards. TinyOS obtained this goal by implementing an
elegant event-driven system, denoted primarily by a sched-
uler operating within a single thread of execution. The
TinyOS code written in nesC [8] has a 226 byte mem-
ory footprint adapted to early motes like the Rene. The
emphasis on limited resources is apparent in the delega-
tion of many system-critical tasks to application program-
mers.

In its current condition, the TinyOS scheduler manages
a FIFO task queue to handle all processes not in an event
context. Typical system execution is triggered by an event
that posts one or more tasks to the queue and quickly leaves
its event context. These posted tasks cannot be preemp-
tively time sliced or system terminated. Therefore any long-
running processes within the queue, such as compression

and encryption, will effectively block the system. Current
attempts at augmenting TinyOS to address these issues are
largely ad hoc and inflexible [10, 11]. The modifications to
TinyOS become application-specific and are not integrated
into the developer source, which make them difficult to use
by the wider community.

Our approach begins with treating the entirety of TinyOS
as a single scheduled thread on top of a multithreaded
scheduler. This “master” scheduler shown in Figure 1 pro-
vides two features we feel are critical additions to TinyOS:
priority scheduling and a new capability to spawn slave
threads. Slave threads create an opportunity to schedule
long-running and blocking tasks, or tasks of high priority,
independent of the task queue. In this way, we can provide
a framework that cleanly supports both preemption and pri-
orities in order to mitigate the TinyOS programmer’s obli-
gation to concurrent, task-safe code. Since the thread man-
agement of the master scheduler is invisible to TinyOS pro-
cesses, developers are effectively able to create tasks decou-
pled from prior run-time restrictions. We have proved the
feasibility of this approach with an implementation called
TinyMOS described in this paper.

Within the context of Moore’s Law, today’s motes al-
ready offer sufficient memory to execute such advanced OS
functions [3, 2]. The advent of the next generation has pro-
vided ten times more memory than in the first generation
motes at reduced cost. Today’s standard MICA2/z [7] and
TELOSB [6] motes provide 4 and 10 KB of RAM respec-
tively. While we don’t necessarily expect that sensor nodes
will follow these trends to become GHz/GB devices, pri-
marily due to power constraints, we do expect the standard
sensor mote to continue to evolve and show modest resource
gains. We believe that it is important to the future of this
community to take advantage of these additional resources
and develop more sophisticated systems, and to do so in a
manner that is evolutionary and systematic rather than ad
hoc.

2. Related Work

SOS [3] is one of two WSN operating systems support-
ing dynamic modules. Although not the primary focus of

| > E
—
Slave TinyQS
Thread Task Queue
<:' IS, Primary
Signal
Handler Thread

Master Scheduler

Figure 1. TinyMOS framework: slave threads
are dynamically created and post results to
the Primary thread as a task before termi-
nating. The Primary thread and any slave
threads are time sliced by the master sched-
uler.

SOS, the more relevant addition to SOS is a set of priority
queues within the event-driven scheduler. The priority lev-
els are designed to service messages - tasks between exter-
nal modules - called from an interrupt context and deemed
to be of a high priority. However, since the queued high pri-
ority task is unable to preempt the system, its execution is
dependent on the current processes time to completion. We
believe high priority tasks combined with preemptive thread
control is a more effective long-term solution.

Contiki is another event-driven sensor OS themed toward
dynamic modules. However, the other kernel features sug-
gest a similar hybridized system with both simulated and
preemptive multithreading. Protothreads [9] are thread-like
methods that provide a blocking context to event-driven
tasks without individually allocated thread stacks. Although
this limits protothreads to only global variables, they are
primarily designed to facilitate limited concurrency. When
necessary, applications may link an external library for
cooperative and preemptive multithreading functionality.
However, whereas Contiki’s library functions at a high level
and is secondary to event-driven scheduling, we will show
that enforcing a multithreaded scheduler at a low level is a
generic, practical method to introduce preemption.

The MANTIS operating system (MOS) [2] uses a
lightweight multithreaded scheduler with preemptive
time slicing. We use this operating system as a tem-

plate for the design and implementation of TinyOS above
a multithreaded scheduler. Since the MOS code is writ-
ten in ANSI C, it’s backwards compatible with nesC, a lan-
guage built on top of C. Applications in nesC are first
compiled into C code which is then passed to a stan-
dard C compiler. By linking these applications with the
MOS kernel they have access to a multithreaded sched-
uler and associated thread function calls.

A similar approach has been applied to real-time oper-
ating systems [12]. This example employs a hierarchical
scheduler that adds a significant possibility for race errors.
To address this problem they offer a concurrency analysis
tool for detecting and avoiding race conditions at each hi-
erarchy. The issue of concurrency is solved in TinyMOS by
the dependent nature of slave threads, and locking access
that is sufficient protection for persistent threads in our two
level scheduling.

3. Augmenting TinyOS with Slave Threading

One of the key motivations of our TinyMOS framework
is to offer the TinyOS developer the capability to spawn
one or more slave threads from within TinyOS, and thereby
bypass the problem noted earlier with cooperative schedul-
ing, namely that a long-running task can block other urgent
tasks from running in TinyOS. Rather than a construct, slave
threading is the conceptual use of thread creation and termi-
nation to mirror the facilities of posted TinyOS tasks with-
out leading them to become I/O driven. These slave threads
will execute concurrently with the thread encapsulating the
TinyOS scheduler and task queue, hereafter called the Pri-
mary thread. In this usage, the programmer will create one
or more slave threads from within the Primary thread, and
place within each slave a self-contained compute-bound
long-running task, which will be time sliced in parallel
with the main TinyOS thread, thereby minimizing block-
ing of the processor by long-running tasks. Our design al-
lows TinyOS to be the dominant thread and new threads to
execute as “slaves” to the core TinyOS scheduling mechan-
ics. This approach also takes advantage of thread priorities
and acts as a midway between an event-driven and a persis-
tently multithreaded system.

3.1. TinyOS as a Thread - Implementation

With only minor modifications, we have implemented
TinyOS to run as a thread within the multithreaded MAN-
TIS operating system. The Unix-style scheduler gives each
application a starting thread and allows users to create new
threads at will with a specified stack size and priority. By
setting the default thread to begin executing the nesC main
function, we effectively start the TinyOS scheduler as an

event-driven thread. Without utilizing any multithreaded
features, this is a self contained copy of TinyOS.

3.2. The Master Scheduler

Our implementation presents two levels of scheduling.
While the TinyOS scheduler operates the Primary thread,
we also enforce the underlying MANTIS scheduler, referred
to as the master scheduler because it operates outside the
TinyOS domain. When multiple threads are running, the
master scheduler is essential for creating and preemptively
time slicing new threads. However, if no additional threads
are active, the master scheduler has only limited responsi-
bilities concerning sleeping and power management.

3.3. Spawning Slave Threads

event result_t timer.fired()
{
post compute_bound_task();
return SUCCESS;
}

event_result_t timer.fired()
{
mos_thread_new (compute_bound_task,
stack_size,
PRIORITY_NORMAL) ;
return SUCCESS;

Figure 2. An interface transition for applying
a long-running task to a slave thread.

The concept of slave threading enables a TinyOS devel-
oper to call mos_thread_new(mytask, stack_size, priority) to
replace any computation that may excessively occupy the
processor. The code in Figure 2 shows a practical use of a
slave thread in place of a task. New threads are contextu-
ally equivalent to TinyOS tasks; they can be preempted by
events, share global variables, and have no passed param-
eters. As the figure shows, modifying code to support the
MOS thread interface is clean and minimal.

Figure 1 shows the TinyOS scheduling sequence with a
single slave thread. When a TinyOS signal handler begins a
new slave thread, the slave thread runs in parallel with the
Primary thread. The essential benefit is whenever possible
the programmer is not responsible for dividing an algorithm
into concurrent-friendly segments. In addition to support
long-running and blocking tasks, slave threads that wait for
I/O or other signals will only take CPU cycles when not in
the blocked state, and will never preempt the TinyOS sched-
uler while blocked. However, to protect access to shared

Application Blink Surge
TinyOS 49 bytes | 1929 bytes
Slave Threading 354 bytes | 2234 bytes
Shared Resources | 580 bytes | 2263 bytes

Table 1. RAM usage for TinyOS applications
Blink and Surge through our stages of modi-
fication.

resources at the application layer slave threads should not
initiate signals of their own. Instead, a slave thread should
post a standard TinyOS task to pass information to the Pri-
mary thread before it terminates. A more detailed discus-
sion of how TinyMOS deals with locking access to shared
resources to prevent race conditions can be found in Sec-
tion 5.

The master scheduler framework requires additional
memory, but is sufficiently lightweight that this approach is
still practical on MICA2 and TELOS standard motes. Min-
imized without device drivers, the master scheduler and
related code of MOS uses 305 bytes in RAM, includ-
ing stack allocation for the TinyOS thread. This is a rel-
atively small cost to achieve our proposed benefits in
complex applications. The memory that a TinyOS ap-
plication occupies is added to this value, though space
is not typically consumed in the thread stack because
data is globally defined. Table 1 shows the memory re-
quirements for the Blink and Surge applications with
the initial phases of our evolution implemented on the
MICA2 (we will address the contention of shared re-
sources and interfaces in section 5). Since the memory
required for MOS is a static value, Blink gains an over-
head six times greater than its original size. By compar-
ison, a Surge application already uses over 1900 bytes
in RAM so the features we add become more practi-
cal relative to our 300 byte cost. The total size of Surge is
still significant but well under the MICA2’s 4 KB maxi-
mum, leaving the remaining memory for additional thread
stacks.

Overhead also exists for each concurrent thread, both in
terms of stack size and context switching. Each new thread
must allocate a minimum 30 byte thread stack from the
heap, plus the size of local variables. As mentioned ear-
lier, even the largest TinyOS applications still leave enough
space for many new threads. CPU cycles required for con-
text switching are inherent to preemptive multithreading.
Within our MANTIS OS template each context switch re-
quires about 60 microseconds. Although most event-driven
systems argue that this is a substantial loss, only 3% of the
processor is spent in context switches relative to the 20 mil-
lisecond time slice (since having been modified from the

published 10 ms) [2]. Slave threads are not static so they
have no context switches until creation. However, constant
thread turnover has a small cost. Each new thread takes ap-
proximately 50 microseconds to initialize. Since the rela-
tive CPU usage is proportional to the interval at which each
task delegated to a slave thread, rapid thread creation be-
comes linearly more expensive. Thus slave threads are most
efficiently used with long-running tasks that are relatively
infrequent in being spawned.

4. Augmenting TinyOS with Priority Schedul-
ing

A pivotal advantage to our two level scheduling Tiny-
MOS framework is that it systematically provides a thread-
based priority system set by the master scheduler. Evolv-
ing sensor applications have already encountered a need for
such dynamics [10, 11], specifically in wireless security.
TinySec, a security architecture integrated with TinyOS, re-
quires a modified two-priority scheduler to support its en-
cryption algorithms. Without priority scheduling, crypto-
graphic operations in the task queue risk not meeting their
real time deadlines. Although this case shows it is possi-
ble to replace the TinyOS scheduler, those changes are not
developer supported, so in cases like TinySec application
programmers are required to rewrite several scheduler func-
tions themselves.

All MANTIS threads typically fall into HIGH,
NORMAL or SLEEP priority. We default the pri-
ority of the Primary thread by setting the last argu-
ment in a mos_thread_new(tosmain, stack_size, PRIOR-
ITY_ NORMAL) call. Although this may be changed,
setting the TinyOS scheduler to a NORMAL priority per-
mits new threads that are prioritized above or below
it.

When a HIGH priority slave thread is created, it immedi-
ately preempts any threads at a lower priority level than it-
self, but will return control to those lower priority threads,
including the Primary thread, only after it runs to comple-
tion. Although these threads are limited by their slave capa-
bilities they can effectively preempt the TinyOS scheduler
when the priority necessitates the action.

Slave threads spawned at a SLEEP priority have the
unique ability to be entirely preempted by the TinyOS task
queue. SLEEP priority threads are considered a low pri-
ority and will only run when the TinyOS scheduler is in
an idle (sleep) state. Putting it another way, a low priority
thread will only be given CPU control when the task queue
is empty. Scheduling threads beneath the task queue keeps
processor priority on important system tasks and events,
while necessary but time-insensitive threads are permitted
to run when no critical tasks are present. For example, a
node aggregator may want to set slave-threaded data aggre-

gation and compression algorithms at a SLEEP priority so
they do not conflict with event-driven tasks used to trans-
mit and receive incoming packets. However, since the radio
interface could alternatively be set to a HIGH priority, this
goes to show the flexibility of the master schedulers thread
control.

5. The Path Towards Persistent Multithread-
ing

As the next phase in the evolution of TinyOS, we de-
scribe how TinyOS can further exploit this TinyMOS master
scheduler framework to not only spawn run-to-completion
slave threads from the Primary thread, but also to spawn
persistent parallel threads that handle other important tasks.

Our to-date implementation allows TinyOS to start one
or more threads at the initialization sequence that then be-
come permanent system components. Each of these threads
are static, in contrast to dynamic slave threading, and are
designed to decouple functionally different TinyOS inter-
faces from a single queue of tasks. Figure 3 illustrates a
multithreaded TinyOS node running a standard routing pro-
tocol. As the figure emphasizes, the computations and sig-
nals for each interface are handled within that thread’s con-
text, and may be preempted. We keep these signals sepa-
rate because they are no longer mutually exclusive; multi-
ple threads may simultaneously be in a signal context with-
out exclusive CPU access.

Since threads can now operate independently, promot-
ing thread-safe operation within TinyOS requires resource
contention tools within the nesC code. Event-driven sys-
tems have no locking mechanisms in place due to their
linear process management. To solve this problem we redi-
rected all TinyOS device accesses to a hardware con-
tention layer (HCL) that interfaces to device drivers writ-
ten in MOS. Using radio commands as an example,
calls to the SendMsg interface are transparently trans-
lated by TinyMOS to com_send(IFACE_RADIO, packet)
defined in the MOS radio driver. Upon entering the
driver the resource is locked during execution by call-
ing mos_mutex_lock(radio_mutex) and is unlocked on
exit.

Unlike the real-time example [12] we only need two de-
grees of locking; in the layers above and below the HCL.
Mutexes sufficiently protect against race errors below the
HCL by locking device drivers. To protect resources at the
layers above the HCL, access to global variables and thread-
to-thread communication should only be facilitated by post-
ing tasks to the FIFO queue.

Taking advantage of our shared resources optimizes the
combined memory footprint. Referring to Table 1 again, ev-
ery slave-threaded application has a 305 byte static over-
head added by MOS. When resources are shared, the over-

Hardware

i

Resource Contention Layer

I I I

Data Network System
Signals Signals Signals
I/O Driven Network Tasks
Thread Routing
Thread -
TinyOS
< ' < Thread

i

Master Scheduler

Figure 3. TinyMOS framework: A practi-
cal implementation of persistent multithread-
ing within TinyOS. Multiple threads must
access hardware through a resource con-
tention layer for thread-safe device access.

head is initially high but subsequently normalizes when ap-
plied to complex applications with shared modules. In our
implementation, the Blink application rises to 580 bytes,
indicating a roughly twofold inflation due to MOS code.
But, as elaborate applications like Surge utilize more of the
optimized interfaces, we seea almost equivalently efficient
memory use than a strictly slave-threaded implementation.
In our example the optimized Surge footprint, including the
resource contention layer, is only 29 bytes larger than its
last code size in MOS.

6. Summary and Future Directions

We have offered a lightweight framework called Tiny-
MOS for systematically evolving TinyOS to acquire more
advanced yet highly useful OS constructs that minimize
scheduling responsibilities given to the programmer. We
have have shown through a succession of implementation
examples the feasibility of using TinyOS as the “primary”
thread that spawns slave threads, higher priority threads,
and persistent threads. In the future, we envision that this
framework will be used to evolve beyond the master/slave
relationship described here, and move towards a peer rela-
tionship where nesC application threads execute in parallel
with threads that are their own masters.

Acknowledgments

We wish to thank Lakshman Krishnamurthy at Intel Re-
search for suggesting this line of research.

References

[1] J.Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister.
“System Architecture Directions for Networked Sensors”.
Proceedings of Ninth International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), November 2000.

[2] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose,
Anmol Sheth, Brian Shucker, Charles Gruenwald, Adam
Torgerson, Richard Han. “MANTIS OS: An Embedded
Multithreaded Operating System for Wireless Micro Sen-
sor Platform”. ACMKluwer Mobile Networks & Applica-
tions (MONET) Journal, Special Issue on Wireless Sensor
Networks, August 2005.

[3] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler and
Mani Srivastava, “SOS: A dynamic operating system for
sensor networks”. Proceedings of the Third International
Conference on Mobile Systems, Applications, And Ser-
vices (Mobisys), 2005.

[4] Adam Dunkels, Bjrn Gravall, and Thiemo Voigt. “Contiki -
a Lightweight and Flexible Operating System for Tiny Net-
worked Sensors”. Proceedings of the First IEEE Workshop
on Embedded Networked Sensors, 2004.

[5] Jonothan W. Hui, David Culler. “The Dynamic Behavior of
a Data Dissemination Protocol for Network Programming
at Scale”. Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, SenSys, 2004.

[6] Moteiv Tmote Sky motes, http://www.moteiv.com.

[7] Crossbow MICA motes, http://www.xbow.com.

[8] David Gay, Phil Levis, Rob von Behren, Matt Welsh, Eric
Brewer, and David Culler. “The nesC language: A holistic
approach to networked embedded systems”. In Proc. SIG-
PLAN’03, 2003.

[9] Adam Dunkels, Oliver Schmidt, and Thiemo Voigt. Us-
ing Protothreads for Sensor Node Programming. In Pro-
ceedings of the REALWSN 2005 Workshop on Real-
World Wireless Sensor Networks, Stockholm, Sweden,
June 2005.

[10] Chris Karlof, Naveen Sastry, and David Wagner. “TinySec:
A Link Layer Security Architecture for Wireless Sensor
Networks”. Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys 2004).
November 2004.

[11] Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao,
David Culler, Scott Shenker, Ion Stoica. “A Unifying Link
Abstraction for Wireless Sensor Networks”. In Proceedings
of the Third ACM Conference on Embedded Networked
Sensor Systems (SenSys), November 2-4, 2005.

[12] John Regehr, Alastair Reid, Kirk Webb, Michael Parker,
Jay Lepreau. “Evolving Real-Time Systems Using Heirar-
chical Scheduling and Concurrency Analysis”. Proceedings
of the 24th IEEE Real-Time Systems Symposium (RTSS
2003), December 2003.

