
Social-K: Real-Time K-Anonymity Guarantees for Social Network Applications

Aaron Beach, Mike Gartrell, Richard Han
University of Colorado at Boulder

{aaron.beach, mike.gartrell, richard.han}@colorado.edu

Abstract—Traditional approaches to K-anonymity provide
privacy guarantees over publicly released data sets with
specified quasi-identifiers. However, the most common public
releases of personal data are now done through social networks
and their APIs, which do not fit the previous research-centric
data set release model, nor do they allow for clear assumptions
about quasi-identifiers. This paper proposes a new definition
of K-anonymity that suggests a practical way in which social
networks could provide privacy guarantees to users of their
API. To support as wide a range of applications as possible, the
proposed privacy guarantee assumes all social-networking data
may be a quasi-identifier and does not assume that data may
be generalized and still be useful. Using the Facebook social
networking API, we implement an application to demonstrate
that providing such guarantees in real-time is feasible for real
social networking data.

I. INTRODUCTION

Every month at least 250 million Facebook users release
their personal social networking data through Facebook’s
API. The recipients of this data include over 500,000 social
networking applications, 80,000 external websites, 65 mil-
lion mobile devices, and 180 mobile operators [1]. Due to the
nature of how this data is used and accessed, the traditional
definition of K-anonymity and how it is implemented does
not apply to this public release of personal data. This
paper suggests an alternative approach to K-anonymity that
directly applies to this data and how it is accessed.

This paper introduces a new type of privacy guarantee
for online social network (OSN) applications. This privacy
guarantee deals with the “re-identification” problem and
K-anonymity definition as discussed in [2]. However, this
paper suggests a new K-anonymity problem to fit the most
common usages of personal social networking data. The tra-
ditional approach to K-anonymity is to provide a guarantee
over a data set such that quasi-identifiers associated with one
identity in the data set are indistinguishable from (copies of)
at least k−1 other identities in the data set. While interesting
as related to data sets for research purposes, the traditional
K-anonymity definition is not so useful when applied to the
release of social networking data through publicly available
social networking APIs for the following reasons:

1) Social networks do not currently anonymize their data
sets and have released no plans to do so in the future.
Furthermore, the social networks are the only entities
capable of such anonymization.

2) It is possible that any or all social network attributes
may be used as quasi-identifiers, therefore all social
network data (profile data) must be considered as
quasi-identifiers.

3) Social network API calls access or refer to only a small
subset of the overall data set and usually only refer to a
particular subset of attributes related to an individual.
Whereas, traditional K-anonymity guarantees require
anonymity across the entire data set.

In order for users to maintain anonymity, social networks
would have to provide API calls which allow queries to spec-
ify individuals with non-unique or anonymous information
since knowledge of a users unique identifier is a violation of
anonymity. Therefore, this paper argues that social network
APIs should either provide a trusted system for generation of
anonymous identifiers or support conditional queries which
are submitted to the same anonymity guarantees as the
personal data released in their responses. Also, this paper
assumes that the practicality of social networks changing
their existing APIs or providing an API with anonymity
guarantees is more reasonable than expecting social net-
works to anonymize their entire data set.

Therefore, we propose a new but related K-anonymity
problem defined as follows:

Given a partial release of data from a personal data set,
wherein all data is quasi-identifiable, the released data must
map to at least k distinct sets of individuals within the data
set.

The primary differences between this definition of K-
anonymity and the traditional definition given in [3] are
listed below:

All data is considered a “quasi-identifier”. This paper
takes a “guilty until proven innocent” approach to whether
or not data could be used to re-identify an individual.
Current social networks such as Facebook have differing
and varying access control policies often based on changing
social relations or personally defined settings. Therefore, this
paper makes the assumption that all social network data
may be a quasi-identifier (or cannot be assumed immune
to external re-identification attacks) and as such all data are
considered quasi-identifiers.

The privacy guarantee describes how a subset of
data relates to the entire data set. There is no privacy
guarantee on the entire data set and the privacy guarantee
only applies to the data specified in a particular release. If

this privacy guarantee were to be extended over multiple
releases it would require that all data cumulatively released
be evaluated together. When applied to the entire data set
the proposed K-anonymity definition is equivalent to the
traditional one.

The privacy guarantee refers to a number of sets
of individuals rather than a number of individuals.
Since an API call may specify a set of users and and
not just a single user, we suggest expressing the privacy
guarantee in terms of a minimum number of sets and not
just individuals. Consider that because conditional queries
(e.g.,“users with blue eyes”) may apply to sets of one or
more individuals, expressing the privacy guarantee in terms
of the total number of individuals is somewhat misleading
as these sets of users may uniquely map to the released set
of data (i.e. cumulatively account for the data uniquely). If
there are k individuals in a group that uniquely accounts
for a released data set, then every individual in the group is
uniquely mapped to the conditionals specified in the query.
A simple example of this case is given below.

A. Example

Consider four Facebook users who also have Netflix
accounts: John, Bill, Joe, and Karen. John has blue eyes and
likes the movies “Spiderman”, “X-men”, and “Superman”.
John’s friends Bill, Joe, and Karen do not have blue eyes
and each likes one of the movies. Bill likes “Spiderman”,
Joe likes “X-men” and Karen likes “Superman”. John has a
Facebook application which requests the liked movies of
individuals with blue eyes. In this case, the set of data
being evaluated for public release is John’s liked movies
[Spiderman, X-men, Superman]. The released data may
partially map to any of the users: John, Bill, Joe, or Karen -
however, John alone accounts for all three movies, without
which all three other users (Bill, Joe, and Karen) are required
to account for the entire set of released data. Therefore, an
attacker who knew the movie preferences of each user from
a de-anonymized Netflix data set could deduce two distinct
possibilities: either John has blue eyes or all three other users
have blue eyes (not mutually exclusive). It is in this sense
that, while there are four individuals possibly associated with
the data, expressing the privacy of the data as K-anonymous
with k = 4 is misleading. Since the set of all possibilities can
be simplified to two distinct possibilities, this paper defines
the data release in this example as K-anonymous with k = 2
as it is stronger and appears the more meaningful guarantee
to the authors.

B. Our Contributions

1) We identify that the traditional definition of K-
anonymity is not very useful for social networking
applications which are arguably the most common
case of public releases of personal data.

2) We give a related but different definition of K-
anonymity which is useful for providing privacy guar-
antees that relate to partial data releases through a
“personal” social networking API.

3) We identify the requirements for a personal social
networking API, primarily being that the API support
queries using non-unique identifiers or anonymous
identifiers.

4) We present an algorithm to verify privacy guarantees
in real-time using existing logic-minimization tech-
niques.

5) Through an initial feasibility study we show that such
an approach to privacy guarantees can work for a rea-
sonable number of users and data sizes on Facebook
- however, this evaluation does not provide exten-
sive performance analysis, which is currently under
development using more mature logic minimization
techniques from the circuit optimization community.

C. Social Networks & Applications

The growth of social networks and the use of public APIs
for accessing social network data has created a vast amount
of personal information that drives new types of applications.
Many of these applications now take into account location
and other contextual information to complement the social
relations and personal information provided by online social
networks. The association of real-time physical information
with social network identities highlights just how personal
or intimate the data used by social network applications can
be, including real-time association of the details of physical
contact with one’s social network profile [4].

This paper uses a context-aware mobile application for
proof-of-concept to emphasize the importance of privacy in
emerging mobile social networks and to show that a context-
aware mobile social networking application can function
without knowing the identities of its users. Types of mo-
bile applications that might function anonymously include:
CenceMe, which sends context information to the social
network, e.g. the location of the user and contextual cues
such as whether the user is talking [5]; Serendipity [6]
and WhozThat [7], which both import social context into
the local context using mobile devices; and commercial
location-aware mobile social networking services such as
Brightkite and Loopt.

D. Privacy in Social Networks

Previous work at Duke University [8] has dealt with
privacy and anonymity questions as they apply to sharing
presence information with other users and matching users
with a shared location and time. This work may be used
to support anonymous identifiers that would allow anony-
mous queries for specific users’ information. For instance,
SmokeScreen [8] presents a protocol by which devices may
broadcast identifiers which can be resolved to an identity

through a trusted broker system. However, SmokeScreen
does not address the K-anonymity problem that we discuss
in this paper.

E. K-anonymity in Social Networks

Prior work on K-anonymity in social networks has largely
focused on developing algorithms that anonymize only the
social graph of friendships [9], [10], [11], or both friendship
and user profile data obtained from social networks [12].
[9], [10], [11] primarily involve perturbation of the social
graph structure in a social network. In contrast to this work,
Social-K avoids distorting the social graph structure and
instead employs a fundamentally different approach that
selectively withholds user profile data to achieve anonymiza-
tion such as that discussed in [13]. [12] uses generalization
to anonymize user profile data, which consists of replacing
the actual value of a data item with a more general value
that is considered “faithful” to the original. For example,
the value of “80305” for a ZIP code could be generalized to
“803**” or “Boulder, CO”. Instead of distorting user profile
data by generalization, Social-K preserves the accuracy
of data by satisfying the K-anonymity guarantee through
selective withholding of released data.

II. THE INDIRECT OR K-ANONYMITY PROBLEM

This paper proposes a personal social networking API,
that is, an API which provides privacy guarantees for the
data that it releases. In particular, it guarantees than an
“anonymous” release of personal data cannot be used to
distinguish between a minimum number of users, designated
by k. The value of k refers specifically to the number
of distinct and indistinguishable sets of users. This paper
chooses to define k in terms of sets of users rather than
total number of users due to the latter being implied by the
former but not vice versa. An example of this was discussed
in section I-A.

This new definition of K-anonymity was motivated by
the fact that the existing definition relates to the public
release of data sets, usually for research purposes. However,
this definition makes assumptions that are not realistic or
useful when applied to the how social networks release their
personal data. Social networks release their data through
public APIs, through which social network applications,
external web sites, or mobile applications can integrate social
networking data.

The new definition of K-anonymity targets the way in
which social networks release their data through APIs. When
this problem is stated in set theory it is clear that it is a
generalization of the traditional data set release problem
assumed by the traditional definition of K-anonymity. A
formal definition of this new K-anonymity is given below
in terms of sets, however its basic relationship to the
traditional definition of K-anonymity is as follows: In the
traditional definition of K-anonymity an individual maps to

set of quasi-identifiers, and this set of quasi-identifiers is
guaranteed to fully map to at least k − 1 other individuals
within the data set. In the new definition of K-anonymity
any set of quasi-identifiers which may be released must fully
map to at least k distinct sets of users within the data set.
Defining the guarantee more generally in terms of all quasi-
identifier subsets allows the guarantee to be applied to APIs
within which all data is treated as a quasi-identifier and any
subset of that data may be queried. Furthermore, data which
does not meet the privacy guarantee is withheld. While it
may be possible that certain data may be generalized to
achieve anonymity and used by some applications, it can
not be assumed that this approach applies to all types of
applications. Such an approach is considered a separate
problem beyond the scope of this paper.

Definition 1. K-Anonymity
Given two sets U and T . U is a set of all individuals and
T is a set of all quasi-identifiers. There is a many-to-many
mapping between T and U . t is any subset of T and u is a
subset of U . Tk is the superset of all sets tx which may be
released under a K-anonymity guarantee, then
∀tx ∈ Tk,∃{u1, . . . , uk} ∈ Uk where: ∀ux ∈ Uk, ux 7→ tx
and |Uk| = k.

A. Note on the relation to Logic Simplification

The distinct sets of individuals which map to a set of
quasi-identifiers can be expressed as distinct (or disjunct)
possibilities in a Boolean algebra equation. The equation
would take a sum-of-products form in which each set of
individual(s) is expressed as a disjunct clause of literals,
where each individual is its own literal and each clause is
a set of individuals which fully maps to the set of quasi-
identifiers. Expressing the sets of individuals this way allows
us to find the “minimal” number of sets which could possibly
account for the set of quasi-identifiers.

Refer back to the story at the end of the introduction in
which an attacker was able to use known movie preferences
to deduce a minimum of two possibilities regarding the
unknown eye color of the individuals. The attacker could
in fact have considered many more redundant possibilities,
such as the set of all individuals or any set that included
the one individual which fully accounted for the entire set
of quasi-identifiers. As such, it is necessary to find the
“minimal” set of possibilities to provide a true K-anonymity
guarantee.

To find this minimal set of possibilities we express the
possible sets of individuals as a Boolean algebra equation
and find the minimal number of prime implicants of the
expression. This can be done by finding the minimal dis-
junctive normal form (DNF) expression. This is the problem
solved by the classic Quine-McCluskey algorithm[14] and
many other logic minimization techniques. This equivalence
allows us to pose the problem of guaranteeing K-anonymity
as a Boolean algebra or logic minimization problem and in

Identity Server

AID Manager

Application User A

Query for
user A's

 OSN profile data

User A's
AIDUser A's filtered

 OSN profile data

1
2

Social-K

Social Network
Data Gatherer

Expression
Builder

Logic
Minimizer

Profile Data
Filter

3

45

6

7

Social NetworkSocial Network API

Figure 1. Interaction between Social-K and a social network application

doing so, allows us to draw upon the wealth of research into
practical, fast, and efficient solutions to this problem, such
as ESPRESSO [15].

III. SOCIAL-K ARCHITECTURE

This section will outline the architecture of an example
personal social network API, Social-K. Social-K was imple-
mented on top of the Facebook API to test feasibility of such
a solution. The system is made up of five major components:
Identity Server, Social Network Data Gatherer, Expression
Builder, Logic Minimizer, and Profile Data Filter, as shown
in Figure 1. All of these components are centralized and
trusted. The Identity Server manages mappings between
unique identifiers and anonymous sessions or nonce values
which are generated by the Identity Server and used by
applications to make anonymous API calls to the system.
The Social Network Data Gatherer processes Social-K API
calls by retrieving, filtering, and appropriately storing the
necessary social network data for the other components. The
Expression Builder takes the non-anonymized data from the
social network and converts it into a Boolean expression as
discussed in section II-A. The Logic Minimizer simplifies
the expression from the Expression Builder, producing a
simplified DNF expression that can be evaluated under the
K-anonymity guarantee. The Profile Data Filter returns the
results to a query if the Logic Minimizer produces an expres-
sion with at least K disjunctive clauses guaranteeing the K-
anonymity of the response, otherwise it removes/selectively
withholds values as necessary to meet the K-anonymity
guarantee.

The Facebook API is not only used within the context
of browsing Facebook.com, but is also accessed from over
80,000 external web sites and 65 million mobile devices.
Our main interest in the Facebook API has been related to
mobile applications and as such, the example application
was chosen to be a context-aware mobile application which

uses the Facebook API to request movie preferences of
individuals.

Social-K was implemented on top of Facebook which
means that our service has only partial access to the en-
tire social network. However, the system is still capable
of analyzing parts of the network which are sufficient to
provide network-wide anonymity guarantees as long as at
least k distinct sets of users are found. If such a system
were implemented directly by a social network, such as
Facebook, it would not require a data gathering layer as it
could access the database directly and could perform more
efficient queries against the entire social network.

Figure 1 depicts Social-K processing a query for a user’s
Facebook profile data. This figure also shows how each of
the Social-K components interact in fulfilling the query.

A. Identity Server

The Identity Server (IS) provides identity management
services for social network application users. The IS gen-
erates and distributes anonymous identifiers (AIDs) to users
through requests. An AID is a nonce which may be included
with a query to anonymously identify the user (or users)
associated with the query. A user’s AID is mapped to the
user’s social network ID by the database on the IS.

Whenever a user seeks to advertise his or her AID to an
application, he/she first requests an AID from the IS. The
IS generates a new AID using a cryptographic hash function
such as SHA-1, with a random salt value. The IS associates
the newly generated AID with the user and returns the new
AID. AIDs may then be shared safely with applications,
which may be social network applications running in a Web
browser, on a phone, or even integrated into a context-aware
application as described in section IV.

B. Social Network Data Gatherer

After the IS receives a request for a user’s social network
profile data (we will call this user “user A”) Social-K begins
gathering pertinent user profile data for a large set of users.
It was convenient to start with the user’s friends on the
social network since they were easiest to access through the
Facebook API.

C. Expression Builder

Upon retrieving the relevant user profile data for a set of
users, Social-K invokes the Expression Builder component
to construct a Boolean expression representing the relation-
ship between all of the users and their profile information.
The following describes an example of how individuals and
profile data being considered for release can be combined
into a Boolean expression:

Consider the example shown in Figure 2. If the data set
(Chemistry class, Anne, 1) is released, it could be mapped
back to the distinct sets (Bill) and (Fred, Joe) implying
that at least, Bill OR (Fred AND Joe) could have generated

!"#$% &'(")'*+,-$*.% /01$*23% 4'503$3%

!"##$ %&'(")*+,$-#.))$ /00'$ 1$

2+'3$ 45)"-$-60-'+*$ /00'$ 7$

86.00'$ 45)"-$-60-'+*$!69$ 7$

86'$ %&'(")*+,$-#.))$ %&+")$ 1$

!"##:$%&'(;$

86':$%&'(;$

!"##:$/00'$

2+'3:$/00'$

!"##:1

86':1

<=>$!<?@=$

1$

7$

Figure 2. Example of how released data set {Chemistry Class, Anne,
1} and its associated individuals can be expressed as a directed graph in
which all paths are sets of individuals which could possibly account for the
released data set

the data. This would be an example of K-anonymity where
K ≤ 2.

For more complex data sets, the Boolean expression
linking the set of users to the set of data to be released needs
to be systematically derived, which can be achieved using a
directed graph that models the relationship between the data
to be released and the individuals who could be linked to
that data. For any data set that we wish to release (d1, d2, ...,
dn), we construct a column of nodes for each di, where each
node in column i consists of the pair (username, di). This
identifies all possible users who could be associated with
the release of data item di. Next, we interconnect the nodes
in a column with the nodes in the next column. This creates
the directed graph. The set of all truth cases would be the
superset of all paths across the graph. Each path would map
to a conjunctive clause of literals (one literal per node) in the
final disjunctive normal form (DNF) Boolean expression.

For example, before releasing (Chemistry class, Anne, 1),
we generate the directed graph shown in figure 2 consisting
of three columns, one each for all users associated with the
Chemistry class, Anne, and one course. A single path #1
through the graph corresponds to the Boolean expression
(Bill AND Bill AND Bill), or just (Bill). A second zigzag
path #2 corresponds to the Boolean expression (Joe AND
Bill AND Joe), or just (Joe, Bill). The union of all possible
paths through the graph gives us all possible combinations
of users that could be associated with the release of the data
(Chemistry class, Anne, 1).

D. Logic Minimizer

Next, we apply logic minimization algorithms to simplify
the Boolean expression provided by the Expression Builder.
Several well known logic minimization algorithms exist, in-
cluding ESPRESSO [15] and Quine-McCluskey [14]. When
applied to our example graph in figure 2, the simplified
Boolean expression reduces to (Bill) OR (Joe, Fred). If the
number of disjunct clauses is greater than or equal to k then

the data is admissible under a K-anonymity guarantee, if
not the data must be filtered by the Profile Data Filter.

E. Profile Data Filter

If a set of data is found to not meet the required K-
anonymity guarantee then the data is reduced and tested
again. This project has not yet designed any advanced
technique beyond random withholding and retest, however
any mature solution to this problem should consider this step
seriously as it involves a trade-off between response time,
computational resources, and information loss. Based on the
data in figure 2 consider the simple example below of how
withholding a piece of data may increase the value of k.

If we wish to release (Chemistry class, Chris, 1), then a
single possibility may be deduced - that Joe is related to the
data since he is the only friend of Chris. However, if we
withhold the data item (Chris) and only release (Chemistry
class, 1), then the possible identities are (Joe) OR (Bill).
Thus, we’ve increased the anonymity to K ≤ 2.

IV. FEASIBILITY STUDY

We have implemented a prototype of Social-K and per-
formed an initial evaluation of its behavior and feasibility.
This section describes our implementation and some initial
results from a feasibility study.

A. Implementation

The IS was implemented using the Java Standard Edition
(SE) 5.0 platform. All IS services accessed by mobile
and/or stationary devices are exposed as web services con-
forming to the REST architecture [16]. We expose each
resource on the IS, including a user’s AID and the Facebook
profile information for a user, as separate URL-accessible
resources supporting the HTTP GET method. The body of
each HTTP request is encoded using JSON (RFC 4627).
All web service network traffic between the IS and other
mobile/stationary devices is encrypted using HTTPS, and
access to all resources is authenticated using HTTP basic
access authentication (RFC 2617). [17] provides more
information about the implementation of the IS.

We use an open source Quine-McCluskey implementa-
tion [18] to perform logic minimization in Social-K. As
our evaluation results will show, this component performs
reasonably well as the number of variables and terms in the
Boolean expression to be minimized increases.

We use the SocialAwareFlicks application described
in [19] as an example of a context-aware social networking
application that queries the IS for user profile data. So-
cialAwareFlicks displays movie trailers that match the movie
preferences of one or more users jointly watching a common
large-screen display.

B. Feasibility Study Results

We have gathered some initial performance metrics to
demonstrate the feasibility of Social-K. All performance
testing was performed using a Macbook notebook running
Mac OS X 10.5, with a 2.0 GHz Core2Duo processor, 2
GB of RAM, and a university-provided high-speed Internet
connection.

Our metrics were gathered using the Facebook account
of a volunteer, here called “user A”, who has 222 Facebook
friends and seven favorite movies listed on his Facebook
profile. In a study conducted by Ellison et al. [20], the mean
number of Facebook friends reported by the study partici-
pants was between 150 and 200. Therefore, we suppose that
user A is a reasonable representation of a typical or average
Facebook user.

We conducted our evaluation of Social-K performance
by submitting a query to the IS requesting the list of
favorite movies in the Facebook profile for user A. Social-K
begins processing this query by first gathering the favorite
movies lists for each of user A’s Facebook friends. Social-K
then proceeds to use the Expression Builder component to
construct a Boolean expression representing the relationship
between user A’s friends and their favorite movies.

Figure 3 shows how the time required to minimize the
unsimplified Boolean expression in the Social-K Logic Min-
imizer component varies with the number of terms in the
unsimplified Boolean expression. We see from this plot that
the Logic Minimizer component scales reasonably well for
unsimplified Boolean expressions containing up to about
450 terms. We expect that 450-term Boolean expressions
will account for many typical usage scenarios, although this
will vary based on the number of the user’s favorite movies
that match with his friends’ favorite movies. There is a
nonlinear relationship between the number of terms in the
unsimplified Boolean expression and the number of terms
in the simplified expression. Based on the results of our
tests, we have found that unsimplified Boolean expressions
containing around 450 terms have up to about 20 terms
when simplified by the Social-K logic minimizer. 20 terms
in the simplified Boolean expression provides K-anonymity
guarantees for k = 20. Thus, we have shown that Social-K
is feasible for K-anonymity guarantees up to k = 20, which
includes user groups as large as most social network friend
lists (consisting of 200–300 friends).

Figure 4 shows how the time required to minimize the
unsimplified Boolean expression in the Social-K Logic Min-
imizer component varies with the number of terms in the
simplified Boolean expression (k). We see from this plot that
there is minimal correlation between the value of k and the
time required to minimize the unsimplified expression. We
can conclude from figures 3 and 4 that the time to minimize
the unsimplified Boolean expression is correlated with the
size of the input to the Social-K Logic Minimizer component

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	 50	 100	 150	 200	 250	 300	 350	 400	 450	 500	

M
in
im

iz
a'

on
	 '
m
e	
(m

s)
	

Unsimplified	 number	 of	 terms	

Figure 3. Time to minimize the unsimplified Boolean expression vs.
number of terms in the unsimplified Boolean expression

R²	 =	 0.24086	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	 5	 10	 15	 20	 25	

M
in
im

iz
a'

on
	 '
m
e	
(m

s)
	

Simplified	 number	 of	 terms	 (k)	

Figure 4. Time to minimize the unsimplified Boolean expression vs.
number of terms in the simplified Boolean expression (k)

(the number of terms in the unsimplified expression), and
is not correlated with the size of the output (the number
of terms in the simplified expression). This is the expected
behavior for a logic minimizer.

Table I shows the run times of each component of Social-
K for the following conditions for user A:

• Number of friends: 222
• Number of movie matches: 13
• Number of friend matches: 7
• Number of terms in unsimplified expression: 339
• Number of terms in simplified expression: 7
The Social-K total run time in table I is the time for

our system to return K-anonymous favorite movie prefer-
ences for a user. In our tests, the run time of the Social
Network Data Gatherer component dominates the run time
of Social-K, since this component spends most of its time
downloading data from Facebook. We expect that running
Social-K with local access to Facebook’s user database
would significantly reduce the run time of this component.
However, the current average total Social-K run time of
1377 ms for our tests provides acceptable performance for
applications such as SocialAwareFlicks.

Component Mean run time
(ms)

Run time stan-
dard error (ms)

Social network data gatherer 852 145
Expression builder 11 1.7
Logic minimizer 297 8.29
Social-K total 1377 134.7

Table I
RUN TIMES FOR EACH SOCIAL-K COMPONENT

V. CONCLUSION

This paper presents Social-K, a new approach to K-
anonymizing social network data whereby data is released
without modification as long as K-anonymity constraints are
met, and is otherwise selectively withheld. This contrasts
to existing approaches that release modified data, either
distorted or generalized, to maintain K-anonymity. Social-K
further offers a new and useful definition of K-anonymity in
relation to social network queries. This privacy guarantee is
defined in terms of set theory, which relates sets of users to
sets of data, thereby allowing the problem to be solved using
equivalent logic minimization algorithms, for which many
efficient solutions exist. This Social-K solution is then tested
with a proof-of-concept implementation which demonstrates
that it is practical to employ our logic minimization approach
to K-anonymize social networking data profiles.

REFERENCES

[1] “Facebook statistics,” http://www.facebook.com/press/info.
php?statistics.

[2] L. Sweeney, “Uniqueness of simple demographics in the U.S.
population,” in LIDAPWP4, 2000.

[3] ——, “k-anonymity: a model for protecting privacy,” Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp.
557–570, 2002.

[4] A. Beach, B. Ray, and L. Buechley, “Touch me wear: Getting
physical with social networks,” Workshop on Social Com-
puting with Mobile Phones & Sensors: Modeling, Sensing
and Sharing (SCMPS09) at SocialCom09 in IEEE Interna-
tional Conference on Computational Science and Engineer-
ing, vol. 4, pp. 960–965, 2009.

[5] E. Miluzzo, N. D. Lane, S. B. Eisenman, and A. T. Campbell,
“Cenceme - injecting sensing presence into social networking
applications,” in Proceedings of the 2nd European Conference
on Smart Sensing and Context (EuroSSC 2007), October
2007, pp. 1–28.

[6] N. Eagle and A. Pentland, “Social serendipity: Mobilizing
social software,” IEEE Pervasive Computing, vol. 4, no. 2,
pp. 28–34, 2005.

[7] A. Beach, M. Gartrell, S. Akkala, J. Elston, J. Kelley,
K. Nishimoto, B. Ray, S. Razgulin, K. Sundaresan, B. Suren-
dar, M. Terada, and R. Han, “Whozthat? evolving an ecosys-
tem for context-aware mobile social networks,” IEEE Net-
work, vol. 22, no. 4, pp. 50–55, July-August 2008.

[8] L. P. Cox, A. Dalton, and V. Marupadi, “Smokescreen: flex-
ible privacy controls for presence-sharing,” in MobiSys ’07:
Proceedings of the 5th international conference on Mobile
systems, applications and services. New York, NY, USA:
ACM, 2007, pp. 233–245.

[9] G. Miklau, D. Jensen, P. Weis, and S. Srivastava, “Anonymiz-
ing social networks,” Computer Science Department, Univer-
sity of Massachusetts Amherst, Tech. Rep. Technical Report
07-19, March 2007.

[10] Q. Wei and Y. Lu, “Preservation of privacy in publishing
social network data,” in Proceedings of the 2008 International
Symposium on Electronic Commerce and Security (ISECS
2008). IEEE Computer Society, March 2008, pp. 421–425.

[11] B. Thompson and D. Yao, “The union-split algorithm and
cluster-based anonymization of social networks,” in Proceed-
ings of the 4th International Symposium on Information,
Computer, and Communications Security (ASIACCS 2009).
ACM, March 2009, pp. 218–227.

[12] A. Campan and T. Truta, “A clustering approach for data and
structural anonymity in social networks,” in PinKDD 2008.
ACM, August 2008.

[13] C. D. Capitani, V. Ciriani, S. De, C. Vimercati, S. Foresti,
and P. Samarati, “k-anonymity,” Secure Data Management in
Decentralized System, 2007.

[14] S. Muroga, Logic Design and Switching Theory. New York:
Wiley, 1979.

[15] R. L. Rudell, “Multiple-valued logic minimization for pla
synthesis,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/ERL M86/65, 1986. [Online].
Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/1986/
734.html

[16] R. Fielding, “Representational state transfer (rest),”
http://www.ics.uci.edu/∼fielding/pubs/dissertation/rest
arch style.htm.

[17] A. Beach, M. Gartrell, and R. Han, “Solutions to security
and privacy issues in mobile social networking,” in SMW09:
Workshop on Social Mobile Web at SocialCom 2009 in CSE
’09: Proceedings of the 2009 International Conference on
Computational Science and Engineering. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 1036–1042.

[18] “Quine-mccluskey algorithm (java),” http://en.
literateprograms.org/Quine-McCluskey algorithm (Java).

[19] C. M. Gartrell, “Socialaware: Context-aware multimedia
presentation via mobile social networks,” Master’s thesis,
University of Colorado at Boulder, December 2008,
http://www.cs.colorado.edu/∼rhan/Papers/Mike Gartrell
CU MS thesis-final.pdf.

[20] N. Ellison, C. Steinfield, and C. Lampe, “The benefits of
facebook “friends:” social capital and college students’ use of
online social network sites,” Journal of Computer-Mediated
Communication, vol. 12, no. 4, 2007, http://jcmc.indiana.edu/
vol12/issue4/ellison.html.

