
Defending against Path-based DoS Attacks in Wireless
Sensor Networks

Jing Deng, Richard Han, and Shivakant Mishra
Department of Computer Science

University of Colorado
Boulder, Colorado, USA

Jing.Deng@colorado.edu, Richard.Han@colorado.edu, mishras@cs.colorado.edu

ABSTRACT
Denial of service (DoS) attacks can cause serious damage in resource-
constrained, wireless sensor networks (WSNs). This paper ad-
dresses an especially damaging form of DoS attack, called PDoS
(Path-based Denial of Service). In a PDoS attack, an adversary
overwhelms sensor nodes a long distance away by flooding a multi-
hop end-to-end communication path with either replayed packets
or injected spurious packets. This paper proposes a solution us-
ing one-way hash chains to protect end-to-end communications in
WSNs against PDoS attacks. The proposed solution is lightweight,
tolerates bursty packet losses, and can easily be implemented in
modern WSNs. The paper reports on performance measured from
a prototype implementation.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing and In-
formation Systems—Security and Protection; I.2.9 [Sensors]

General Terms
Security

Keywords
Security, Sensor Networks, Denial of Services Attacks

1. INTRODUCTION
Wireless sensor networks (WSNs) offer the promise of exciting

new technological developments. Applications of WSNs are wide-
ranging, including environmental monitoring, smart spaces, mili-
tary deployments, medical systems and robotic exploration.

To conserve energy and network bandwidth, large sensor net-
works are often organized hierarchically, consisting of member nodes,
aggregator nodes, and a base station, as shown in Figure 1. Mem-
ber nodes send their sensed data to an aggregator node. Aggregator
nodes process and summarize the data from member nodes, and
send the aggregated result to a base station via a multi-hop,end-to-
end communication path.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SASN’05, November 7, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-227-5/05/0011 ...$5.00.

Due to their inherent limitations, WSNs are especially sensitive
to Denial of service (DoS) attacks[19]. In contrast to resource-rich
networks such as the Internet, a WSN is less stable, more resource-
limited, subject to open wireless communication, and proneto the
physical risks of in-situ deployment. These factors increase the
susceptibility of WSNs to DoS attacks. While an adversary may
resort to a localized signal jamming attack, a more effective form
of DoS attack against a WSN is to overwhelm nodes that are many
hops away by flooding packets, which will quickly exhaust the
limited energy, communication bandwidth, memory, and CPU of
resource-limited sensor nodes. INSENS proposed one way hash
chains (OHCs) to limit the ability of an attacker to flood to the en-
tire sensor network [4]. During set up of the routing tables,OHCs
limit broadcast flooding of control packets. After routing tables
have been securely set up, data packets are confined to securely
specified routes and thus cannot flood the entire WSN. However,
after the data begins flowing, INSENS does not address how to
limit an adversary from flooding replayed or spurious data along
any routing path, which will overload all nodes along the path to-
wards a base station.

This paper focuses on defending against suchpath-based DoS or
PDoS attacks launched by flooding data packets along multi-hop,
end-to-end routing paths. This problem was important enough
to be addressed in several other papers [22, 26], though it was not
given an explicit name. We will discuss these solutions in more
detail in the related work section. For now, we observe that PDoS
attacks are especially easy to launch, and are especially effective
at disabling large portions of a WSN with limited effort expended
by the attacker. Figure 1 shows the nodes that would be affected
by a PDoS attack. First, nodes along the path will quickly become
exhausted. Second, nodes downstream from nodes along the main
path will also be unable to communicate with the base station, due
to the tree-structured topology of a WSN. Thus, PDoS attackscan
disable a much wider region than simply a single path.

To defend against a PDoS attack, an intermediate node must be
able to detect spurious packets or replayed packets, and then reject
them. One way to detect spurious packets is to have the source
node establish a separate shared key with other sensor nodesin the
communication path. The sender node then uses each key to sepa-
rately generate authentication/integrity information for each packet
to satisfy each node along the path. However, the highly restricted
packet size in WSNs (e.g. 29 bytes for data in TinyOS packet)
makes it difficult to include such a large amount of verification in-
formation in a sender’s packet, e.g. an 8-byte message authentica-
tion code (MAC)[15] for each node in the path. In addition, this
imposes an onerous burden on the sender, who must know a priori
each node in the path in order to send the relevant verification infor-

S (Aggregator)

B (base station)

Adversary

Figure 1: A PDoS Attack in End-to-End Communication in
WSNs.

mation. Alternatively, a sender could use a single “path” key that
is shared with each node along the path, thus requiring only one
MAC for each packet. This approach is vulnerable to compromise
of any of the sensor nodes along a path, because the attacker will
then have the path key and be able to flood legitimate packets along
the path in a PDoS attack. One way to detect replay of duplicate
packets is to have each intermediate node store a history of all pack-
ets they have forwarded. However, both memory and computation
limitations of a sensor node make this solution infeasible.

Another possible PDoS defense is to limit the number of packets
an intermediate node can forward per second, namely rate control.
However, given the asymmetric nature of WSNs, nodes at different
locations need to forward different numbers of packets per second.
For example, nodes near a base station will typically need tofor-
ward more packets per second than the nodes far from the base
station. Furthermore, different types of sensor nodes havedifferent
packet sending rate requirements, e.g. aggregator nodes reporting
different types of events, nodes undergoing dynamic reprogram-
ming, etc. In addition, when a routing path changes, the ratecontrol
setting for some nodes need to be updated. Security, efficiency, and
scalability issues suggest that a rate control solution is non-trivial.

In this paper, we propose a lightweight secure mechanism to de-
fend against PDoS attacks on intermediate nodes in a multi-hop
end-to-end data path in WSNs. This mechanism configures a one-
way hash chain in each node along a path, enabling each interme-
diate node to detect a PDoS attack, and prevent the propagation
of spurious or replayed packets. In this mechanism, every packet
sent by an end point includes a new one-way hash chain number.
An intermediate node forwards a packet only if the included OHC
number is verified to be new. This OHC-based solution is more
resilient to compromise than the approach of sharing a single path
key since an adversary given the current and earlier OHCs cannot
generate a legitimate next OHC number, and therefore cannotflood
the path with bogus packets or replayed packets. This OHC-based
solution also requires minimal storage.

This paper makes four contributions. First, this section iden-
tified an important path-based DoS attack that is relativelyeasy
to launch and can severely impact both computation and commu-
nication in a WSN. Second, Section 3 proposes an efficient and
lightweight mechanism based on OHCs to defend a sensor network
against PDoS attacks. While OHCs have been used to solve se-
curity problems in the Internet [14], wireless ad hoc networks [6]

and WSNs [15, 3, 25, 4], our unique approach is to apply OHCs
to protectunicast paths from easily launched DOS attacks. Third,
Sections 4 and 5 describe novel and robust mechanisms tomaintain
OHCs given high WSN packet loss rates[23], irregular spatial wire-
less ranges[24], and frequently time varying transmissionranges
[18]. These mechanisms include bootstrapping an OHC in inter-
mediate nodes, refreshing an OHC after a loss of a burst of packets,
and adapting to path changes. Finally, the proposed OHC solu-
tion has been implemented and quantitatively evaluated on modern
sensor nodes in terms of its storage and generation costs, demon-
strating the feasibility of our solution in Section 6.

2. RELATED WORK
Denial of service attacks in WSNs are a critical security issue.

Different types of DoS attacks in different layers of a sensor net-
work protocol stack are discussed in [19], and some countermea-
sures to defend against them are proposed. Security problems of
different sensor network routing protocols are analyzed and mech-
anisms to enhance the security of sensor network routing arepro-
posed in [10].

A. Perriget. al proposed theµTESLA protocol to securely broad-
cast messages in a WSN [15]. This protocol uses an OHC number
as the key to generate a message authentication code (MAC) of a
broadcast message. A different OHC number is allocated for each
time slot, and this number is used to generate MACs for the packets
sent in that time slot. To tolerate packet losses,µTESLA has been
extended by introducing multi-level one-way hash chains [12]. A
higher-level OHC is used to bootstrap low-level OHCs. We adopt
the idea of using a higher-level OHC to maintain low-level OHCs
in our solution to tolerate a sequence of packet losses. However,
we use a different mechanism to maintain low-level OHCs and our
OHC maintenance scheme doesn’t require time synchronization.

Y. Hu et. al proposed a secure on-demand routing protocol for
ad hoc networks [6], in which an OHC is used to thwart mali-
cious routing request floods. When an initiator node broadcasts
a ROUTE REQUEST message, it attaches an OHC number on the
message. Other nodes can check the authenticity of the packet by
verifying the OHC number. OHCs were used in INSENS to limit
broadcast floods for control routing updates in WSNs [4]. In con-
trast, our approach employs OHCs to defend against DoS attacks
onunicast messages that follow a path. Problems unique to unicast
messages must be addressed, e.g. maintaining OHCs when many
packets are lost, and how to generate and store OHCs in a highly
resource-constrained sensor node.

Recently, en-route filtering schemes have been proposed forin-
termediate nodes to filter false data generated by maliciousaggre-
gator nodes as well as intruders engaged in what we have termed
PDoS attacks [22][26]. The basic idea is that the intermediate
nodes share some keys with the member nodes in a sensor node
group or cluster. Member nodes generate MACs for the reported
data using the shared keys. Intermediate nodes can verify the MACs
before forwarding packets. In the SEF scheme proposed by Yeet.
al., the Bloom filter is used to reduce the size of MACs and ensure
their security. The intermediate nodes and member nodes useran-
domly pre-distributed keys to generate and verify MACs. In this
scheme, it is highly likely that the false data will be dropped by one
of the intermediate nodes and won’t reach the base station. How-
ever, there are several problems with the SEF scheme. First,SEF
uses a probabilistic approach. It cannot guarantee that every spuri-
ous packet will be filtered out on the path. In addition, statistically,
a spurious packet will be forwarded for a certain number of nodes
before it is filtered out. Second, the message overhead of SEFis
still large. The size of the Bloom filter is 14 bytes long, which is

about half of data payload of a TinyOS packet.
In the interleaved key scheme proposed by Zhuet.al. [26], mem-

ber nodes and intermediate nodes set up interleaved keys using ran-
domly pre-distributed keys. These interleaved keys and hop-by-
hop authentication ensure that the base station will detectany false
packets when no more than a certain number (t) of nodes are com-
promised. The problem of the interleaved key scheme is that there
is no efficient mechanism to authenticate two nodes to each other
through multiple hops. In addition, the communication overhead of
the pairwise key establishment for multihop nodes is large,and the
process is slow.

In contrast to SEF and interleaved keys, our PDoS solution fil-
ters out bogus packets immediately, wherever they are injected.
Unlike [22], our mechanism is deterministic and guaranteesthat
that the bogus packets will be filtered out with only a small message
overhead. Unlike [22][26], our mechanism is easy to bootstrap, is
lightweight and flexible in the face of routing path changes,and is
extensible enough to protect general forms of unicast communica-
tion against PDoS attacks, e.g. reliable end-to-end communication
between a base station and a sensor node.

Some fault tolerance routing mechanisms can make it harder on
the attacker to deny service to the WSN. For instance, in Mintrout-
ing [18], a node has multiple parent nodes, and it selects oneparent
node to forward its data based on the connectivity quality between
itself and the parent node. So if the one parent node is overwhelmed
by a PDoS attack, the node can select another parent node to send
its data. However, the PDoS attack can still be launched against
Mint routing; the only added requirement is that the attacker pos-
sess more energy, i.e. it will simply take longer for the attacker to
exhaust the network. The nodes on the attacked path will still be
overwhelmed by a PDoS attack. Even worse, nodes along alterna-
tive paths will also eventually be overwhelmed.

3. A LIGHTWEIGHT DEFENSE AGAINST
PATH-BASED DOS ATTACKS

3.1 Assumptions
We assume that there is an end-to-end data communication be-

tween a sensor nodeS and a base stationB. The path betweenS
andB has already been securely set up as:S → n1 → n2 →
... nm → B, wheren1 ... nm are the intermediate nodes.S and
B share a secret key that they use to protect the confidentiality,
integrity and authenticity of the data exchanged.

An adversary can eavesdrop, modify, or block any packets trans-
mitted along the path fromS to B. She can also inject any number
of spurious packets along this path. If the adversary compromises
an intermediate nodenk, she can determine all keys stored innk,
and control every packet passed throughnk. To launch a PDoS
attack, an adversary can inject bogus packets, compromise an in-
termediate node, or compromise a source nodeS. In general, DoS
attacks would be easy to defend if we knew where the adversary
launched an attack. When an adversary launches a DoS attack from
a fixed senderS, a base station can use its shared key withS or the
OHC to identify misbehavior from a maliciousS, and inform in-
termediate nodes not to forward any more packets forS. However,
replay PDoS attacks can be initiated from anywhere along a path.
As a result, in this paper, we focus on intermediate nodes or outside
sources capable of launching PDoS attacks.

Our goal here is to address only PDoS-style attacks. Verifying
whether the content of an aggregation result is correct is beyond
the scope of this paper, and has been addressed elsewhere [16]. We
also do not focus on localized jamming or blocking attacks that

S n1 n2 nm B

HS1 P1

Verify
HS0=F(HS1)

Verify
HS0=F(HS1)

S n1 n2 nm B

HS2 P2

Verify
HS1=F(HS2)

Verify
HS1=F(HS2)

(a)

Verify
HS0=F(F(HS2))

Verify
HS0=F(F(HS2))

(b)

S n1 n2 nm B

X Bogus

Verify
HS2=F(...F(X))

(c)

X Bogus

Drop

Figure 2: Defending Against PDoS Attacks with a One-way
Hash Chain.

an adversary may launch [3][20], or more exotic attacks to routing
schemes, such as the rushing attack or wormhole attack [10].

3.2 Basic Scheme Using One-Way Hash Chains
A one-way hash chain is employed as an efficient and simple

solution on resource-constrained sensor nodes for mitigating DOS
attacks along paths. A one-way hash chain [11] is a sequence of
numbers generated by a one-way functionF that has the property
that for a givenx it is easy to computey = F (x). However, given
F andy, it is computationally infeasible to determinex, such that
x = F−1(y). An OHC is a sequence of numbersKn, Kn−1,. . .,
K0, such that∀i : 0 ≤ i < n , Ki = F (Ki+1). To generate
an OHC, we first select a random numberKm as the seed, and
successively apply functionF onKm to generate other numbers in
the sequence.

To defend against a PDoS attack, each source nodeS (mostly
S is an aggregator node) maintains a unique one-way hash chain
HS : < HSn, HSn−1, . . . , HS1, HS0 >. WhenS sends a packet
to the base station through multiple hops, it includes anOHC se-
quence number from HS in the packet: it attachesHS1 in the first
packet,HS2 in the second packet, and so on. To validate anOHC
number, each intermediate noden1, . . . , nm maintains a verifier
VS for nodeS. Initially, VS is set toHS0. WhenS sends itsith
packet, it includesHSi with the packet. When an intermediate
nodenk receives this packet, it verifies ifVS = F (HSi). If so,nk

validates the packet, forwards it to the next intermediate node, and
setsVS to HSi. In general,nk can choose to apply the verification
test iteratively up to a fixed numberw times, checking at each step
whetherVS = F (F...(F (HSi))). If the packet is not validated
after the verification process has been performedw times,nk sim-
ply drops the packet. Figure 2 demonstrates this mechanism.The
reason for performing the verification process more than once is to
tolerate packet losses. In particular, by performing the verification
processw times, up to a sequence ofw packet losses can be toler-
ated, where the value ofw depends on the average packet loss rate
of the network.

This OHC-based scheme brings several advantages. First, itcon-
strains PDoS attacks from an adversary, since an adversary cannot
generate the next validOHC number, while replayed oldOHC

numbers will be dropped. Second, the memory and computational

costs of OHC execution are quite lightweight, as we will show.
Third, this scheme tolerates packet losses. Fourth, our approach
does not require tight time synchronization, unlike SEF [22] or in-
terleaved keys [26]. A source node can send its message at anytime
without needing to be tightly synchronized with any intermediate
node.

One possible attack in this scheme is that a malicious node can
listen to and block all packets sent from the source node, andin
addition, collect all theOHC numbers included in these packets.
These accumulated numbers can be used to generate a flash flood
against subsequent intermediate nodes by sending a burst ofspuri-
ous packets in a very short period of time. Since, the subsequent
intermediate nodes have not seen theseOHC numbers, they will
validate the corresponding packets and forward them. However,
such an attack is limited in two respects. First, the adversary will
have to wait for a relatively long period of time to collect a large
number of validOHC numbers that it is blocking. Second, the
adversary can send only as many packets as the number ofOHC
numbers it has collected, i.e. such an attack can be sustained for
only a short period of time.

If the packets sent by a source node arrive out of order, e.g. a
source node sends packetp1 first andp2 second, and somehow an
intermediate nodeni getsp2 before getsp1, thenni will drop p1

sinceni will think that p1 has an oldOHC number. Although out-
of-order arrival is common in Internet routing, since packets from
the same source to the same destination may be routed through
different paths, we argue that this is not a large problem in sensor
networks because standard routing paths between a source node
and destination node are typically unique. In addition, each node
will forward packets based on a FIFO (first in, first out) policy. We
will discuss the effect of changes in the routing topology later.

4. BOOTSTRAPPING THE INITIAL ONE-
WAY HASH CHAIN NUMBER

Our solution requires that every intermediate node be configured
with the initialOHC number (VS = HS0) before communication
can begin. One advantage of thisOHC scheme is that we only
need to protect authenticity, not confidentiality, of the initial OHC

number. To bootstrap the initialOHC number, the base station
can apply either a public key scheme [13], or aµTESLA secure
broadcast mechanism[15].

As mentioned in section 3, the path between the base station
B and the sensor nodeS is assumed to have been already set up
as: B → nm → nm−1 → ... → n1 → S. In our public key
scheme, the base station possesses a private keyPKs and every
node has the corresponding public keyPKp. To bootstrapHS0,
the base station sends a message containingHS0 and a signature
of HS0 signed withPKs to the nodesn1 to nm, andS in the path.
When a nodenk receives this message, it can usePKp to verify
the authenticity ofHS0, and forwards the message to the next node
nk−1 if the verification is a success. Malanet.al implemented an
elliptic curve public key scheme on Berkeley motes [13]. Their
experiment showed that the encryption/decryption processcosts 30
to 40 seconds. Compared to theµTESLA option described below,
the public key approach is slow. As a result, we employ publickeys
only during bootstrapping, and not during per packet verification.
Public key bootstrapping of OHCs has the advantage overµTESLA
that loose time synchronization is not required.

To apply theµTESLA protocol, all nodes in the network are
loosely time synchronized. When base stationB bootstraps a one-
way hash chain,B generates a packet containingHS0, the ID of
the destination nodeS, and a MAC for the packet using keyKi,

whereKi is the number in the key chain number corresponding to
time slotti. The packet format is:

bsp : B|S|HS0|MACKi
(B|S|HS0)

In the time slotti, B sendsbsp to nm. nm recordsHS0, and
forwards the packet tonm−1; nm−1 recordsHS0, and forwards
the packet tonm−2; and so on, until the packet reachesS. To
authenticateHS0, B releases the keyKi in time slot ti+d. On
receiving this key, an intermediate node can verify the integrity and
source authentication ofHS0.

Notice that thebsp message doesn’t flood to the whole network,
which saves data bandwidth, and won’t bring any attacks against
the network even if the nodes on the other side of the network don’t
receiveKi at ti+d. Since the messages that areMACed byKi are
supposed to be sent out at time slott, an adversary cannot launch
any attacks withKi when he getsKi at ti+d[15].

5. ONE-WAY HASH CHAIN MAINTENANCE

5.1 Refreshing a BrokenOHC

An intermediate node performs the verification process up tow
times. This allows the node to tolerate a sequence of up tow packet
losses. However, if a sequence of more thanw packets are lost, an
intermediate node will be unable to recover, i.e. won’t be able to
validate any later packets and will simply drop them. We callthis
problem a brokenOHC problem. An adversary can exploit this
limitation by jamming the communication medium around an in-
termediate node for a sufficient time period that will resultin more
thanw packet losses. In this way, an adversary can block the com-
munication between a source nodeS and a base stationB by only
launching jamming attacks for a short time.

Simply increasing the value ofw can help intermediate nodes
tolerate more packet losses, but cannot defend against an adver-
sary’s jamming attack. To address the brokenOHC problem, we
periodically bootstrap a newOHC number (theOHC number
most recently sent by the source node) in the intermediate nodes.
This way, even if a sequence of more thanw packets are lost, in-
termediate nodes can set up a new value forVS using this periodic
bootstrapping mechanism, and validate subsequent packets. As a
result, if an adversary wants to attack this enhanced schemeand
block communication betweenS andB, she is forced to repeat-
edly launch jamming attacks by either jamming all packets orby
periodically jamming bootstrap messages. She cannot blockall
future communication by simply jamming for a short duration.

There are two problems in bootstrapping a newOHC number
that we need to address. First, how can intermediate nodes authen-
ticate the newOHC number? Second, if an adversary intercepts
the newOHC number, how do we stop the adversary from flood-
ing spurious packets to upstream intermediate nodes that haven’t
received the newOHC number? For example, suppose the last
OHC number that an intermediate nodenk received isHSi, and
the most recentOHC number thatS has sent out isHSj, where
j − i > w. SupposeHSj+1 is being bootstrapped using the peri-
odic bootstrapping mechanism. If an adversary interceptsHSj+1,
she can generatej +1− i spurious packets containing validOHC
numbers (HSi+1, ..., HSj+1), and send them in a flash flood to
nk. nk will validate theseOHC number and forward the corre-
sponding spurious packets to the next node.

To address the first problem, a second one-way hash chain is in-
troduced, called thecontrol one-way hash chain (denoted byOHCC),
to authenticate the newly bootstrappedOHC number.OHCC is
only used for periodically bootstrapping a new one-way hashchain
number for data transmission. In this subsection, the OHC used for

S n1 n2 nm B

S n1 n2 nm B

(a) S sends S_B message along path n1 to B. n1 to nm
records MACCi(Hu), and B gets Hu.

(b) B sends B_S message along path nm to S. nm to n1 get
Hu.

S_B:)(|||)(||
1 uCiuK

HSMACCuHSEBS
iBS +

)(
1 uC

HSMAC
i+

)(
1 uC

HSMAC
i+

)(
1 uC

HSMAC
i+ u

HS

B_S:
ui

HSCSB |||
1+

u
HS

u
HS

u
HS

� �

� �

Figure 3: Refreshing a BrokenOHC Number.

data communication is denoted byOHCD, to differentiate it from
OHCC . To address the second problem, the newOHCD number
is bootstrapped first in nodes closer to the base station, i.e. the new
OHCD number is bootstrapped in nodenk before nodenj , where
k > j. This way, if nodenk is compromised, it cannot use the
newOHC number to generate spurious packets and forward them
to nodesnk+1, nk+2, etc. This is because nodesnk+1, nk+2, ...
would have already received the newOHC number, and so drop
the spurious packets.

Our solution to refresh a broken one-way hash chain combines
these two mechanisms as follows. The source nodeS and base sta-
tionB share a second one-way hash chainOHCC :< Cm, Cm−1, . . . , C0 >.
All intermediate nodes are bootstrapped with the initial number
of OHCC , i.e. C0, using the mechanism described in Section
4. As shown in Figure 3, a roundtrip exchange is employed con-
sisting of two messages, a RQSTS B and an RACKB S, to
bootstrap a newOHCD numberHSu in the intermediate nodes.
The first message (S B) sent byS to B contains a hash value
of HSu (MACCi+1

(HSu)), index of HSu in OHCD (u), the
next newOHCC number (Ci), and an encrypted form ofHSu

(EKBS
(HSu)). The hash value is computed usingCi+1, which

is the next newOHCC number afterCi, and encryption is done
using a secret keyKBS shared betweenS andB. Ci is included
to loosely authenticate the source of the message. The format of an
S B message is as follows:

RQSTS B : S|B|EKBS
(HSu)|u|Ci|MACCi+1

(HSu)

When an intermediate node receives this message, it authenti-
cates the source by verifyingCi as the nextOHCC number, given
that Ci−1 or earlier was received in a previousB S message. If
authenticated, this node saves the MAC verification forHSu, and
forwards the message to the next node. WhenB receives this mes-
sage, it first authenticates the source. If authenticated, it decrypts
EKBS

(Hu) and obtains the newOHCD numberHSu. At this
point,B knows that every intermediate node have already received
theMACedHSu.

The next stage in Figure 3(b) consists ofB releasing the plaintext
of HSu to each node along the path via anRACK. B sends a
message (B S) to S that has the following format:

RACKB S : B|S|Ci+1|HSu

When an intermediate node receives this message, it first authenti-
cates the source by verifying thatCi+1 is the next newOHC num-
ber in OHCC . It then computesMACCi+1

(HSu) using Ci+1

n1

a1 a2

n3 n4

a3

n6

m1

m2

m3

(a) Adversary m1 can launch PDoS along path a1 to n3, and m3 can launch PDoS attach
along path a3 to n6. m2 cannot launch PDoS attack to a2 since b1 will drop its packets.

b1

n1

a1 a2 a3 a4
a5

n6

m1

(b) Adversary m1 can launch PDoS attack along a long path from a1 to n6.

Figure 4: Routing path repair. Nodesn1, n2, . . . , n6 are old
nodes that already have anOHC number, and nodesa1, a2,
. . . , a5 are new nodes in the path that don’t have anOHC
number.

andHSu included in this message and compares it with the hashed
value ofHSu received earlier in messageS B. If there is a match,
the intermediate node assignsHSu toVS and forwards the message
to the next node. WhenS receivesB S message, it knows that ev-
ery intermediate node has receivedHSu, so it can useHSu+1 for
the next packet.

This refresh mechanism is resilient to a variety of attacks.First,
the use of the control hash chainCi prevents nodes from flooding
forgedRQST andRACK messages to intermediate nodes. Sec-
ond, the sequence of disclosure means that a nodenk learnsHSu

beforenj if k > j, i.e. if nk is closer toB. However,nk cannot
use this knowledge to launch a PDoS attack onnj since traffic goes
from nj to nk.

5.2 Resilience To Path Changes
Due to irregularity of radio coverage [24] and frequent changes

in the data transmission range [18], the end-to-end routingpaths
in WSNs can change during an end-to-end communication. For ex-
ample, by monitoring routing information broadcast by its neighbor
nodes, a nodenk may detect that it cannot reachnk+1, but that it
can reachnk+2 via another nodea1. When a routing path changes,
new nodes joining the path will need to securely receive theOHC
number and initialize their verifierVS .

One approach to deal with a path change is to employ the boot-
strap protocol every time the path changes. However, this method
is costly. In addition, it exposes the protocol to new DOS attacks:
an adversary can simply jam one node on the path, causing the
path to change. This forces the base station to re-bootstrapa new
OHC for all nodes on the path. An adversary can repeatedly jam
along the path, forcing the base station to repeatedly re-boostrap.
To defend against this DOS attack, we propose two mechanisms
that both reduce the frequency of bootstrapping.

5.2.1 OHC Proactive Bootstrapping
The high redundancy of WSNs enables most sensor nodes to find

another node near the failed node, e.g. the failed node’s neigh-
bor or even nodes two to three hops away, to repair a path [18].
If nodes near the path can be bootstrapped and refreshed withthe
OHC, then re-bootstrapping theOHC can be postponed and need
not occur every time the path is changed. When base stationB
and nodes along the designated pathn1 to nm bootstrap the initial
OHC number, their neighbor nodes can receive these messages
and receive the authenticated initialOHC number. Similarly, these
nodes can also receive the refreshedOHC number. These nodes
can be chosen for a new path, and will be able to authenticateOHC

 550

 600

 650

 700

 750

 800

 850

 900

 950

2^11 2^19 2^20 2^21 2^22

M
em

or
y

(B
yt

es
)

Size of One-way Hash Chain

Figure 5: Memory Consumption in One-way Hash Chain Generation.

numbers from the source node without re-bootstrapping. This tech-
nique can be generalized to proactively bootstrap neighbors that are
up toK hops from the designated, though we omit the description
due to lack of space.

To successfully launch a DOS attack against proactive bootstrap-
ping, an adversary has to destroy many more nodes, and has to con-
tinually move from one place to another place and destroy nodes.
This significantly increases the cost of the attack. The public
key and/orµTESLA provide further protection against saving the
wrong initialOHC number.

5.2.2 Lazy OHC Bootstrapping
One observation is that modest changes in the path do not require

immediate bootstrapping. When only one new node is added in
the path, theOHC need not be bootstrapped in the new node(s)
immediately. This is because the extent of a PDoS attack willbe
limited to only the new node(s). Other nodes that haveVS already
set up can still verify packets and hence are still resilientto stopping
PDoS attacks.

As shown in Figure 4 (a), when new nodes (a1, a2 anda3) that
have just joined the path are sparsely distributed, an adversary can
flood only some of these nodes (a1 anda2), but cannot flood the
other nodes (e.g.n4) that are separated by old nodes. However,
if several new nodes form a long path, as shown in Figure 4(b),a
PDoS attack can cause more damage. To avoid the situation where
a long path of new nodes exists, the bootstrapping process can be
performed periodically, or when the base station finds that the num-
ber of new nodes in the path exceeds some threshold, or when the
length of a path formed by the new nodes exceeds some threshold.

6. EVALUATION
To evaluate the feasibility of our mechanism in current WSN

platforms, we need to measure the resource consumption for gen-
erating, storing, and verifying one-way hash chains in resource
constrained sensor nodes. To do this, we implemented an OHC
generation and verification algorithm on Berkeley motes MICA2.
Furthermore, to evaluate the practicality of our mechanism, it is im-
portant to understand its performance overhead, which is the extra
delay introduced in communication. To do this, we simulatedour
solution in a multi-hop network. The overhead of bootstrapping is
one message passed from base station B to node S in the public key
approach, and two messages passed from B to S in theµTESLA
approach. The OHC refresh also consists of two messages passed.

6.1 One-way Hash Chain Verification
The Berkeley MICA2 mote has a 7.3MHz processor with 128

KB flash memory, 4.0 KB RAM, and a Chipcon CC1000 radio at

 0

 2

 4

 6

 8

 10

 12

 14

 16

2^11 2^19 2^20 2^21 2^22

T
im

e
(m

s)

Size of One-way Hash Chain

Max Time
Test Average Time

Figure 6: Time Consumption in One-way Hash Chain Generation.

19.2 Kbps. We adopt the method of generating OHCs by a block
cipher encryption algorithm [3]. To measure the resource require-
ments of the OHC verification function, we adopted the implemen-
tation of skipjack in TinySEC [9].

We measured the time for oneOHC verification operation to
be 1.49 millisecond. Considering the slow speed of wirelesslinks
(19.2 kbps), this verification time of 1.49 ms is quite reasonable.
This shows that the proposed mechanism for preventing PDoS at-
tacks is a viable mechanism that can easily be supported by current
sensor nodes such as motes.

If 8 byte OHC numbers are used, an intermediate node needs to
store only 16 bytes for each transmission link. For nodes that are
on many paths, we store the OHC numbers in flash memory, which
has 128 KB, and cache frequently used OHCs in SRAM, of size 4
KB. According to Daiet.al[2], reading/writing a page costs only
< 250µs/14ms. We think that 14ms is short enough for a node
to write data to flash during its non-I/O cycle. If a node has to
receive/send a packet every tens of milliseconds, it will exhaust its
battery in a few days.

Since a singleOHC number is included in each packet, with-
out counting setup overhead, the message overhead is 8 bytesper
packet. This is less that the 14-byte per packet overhead of the SEF
protocol[22]. As suggested in [9], we can use 4 bytes of MAC for
end-to-end security. So the total security overhead is 12 bytes. No-
tice that end-to-end security overhead may still be required for SEF,
since the Bloom filter only provides probabilistic securityprotec-
tion. node.

6.2 One-way Hash Chain Generation on a Source
Node

The method of generating and storing a long OHC in a sen-
sor node is not straight forward. Naive algorithms require either
too much memory to store every OHC number, or too much time
to compute the next OHC number. None of these algorithms are
practical on resource-constrained sensor nodes. Recently, some ef-
ficient OHC generation algorithms for resource-constrained plat-
forms have been proposed [7][1][17]. After a comparison of their
performance, we implemented the fractal graph traversal algorithm
[1] on Berkeley motes. This algorithm stores only some of thein-
termediate numbers, called pebbles, of an OHC, and uses themto
compute other numbers. If the size of an OHC isn (there are to-
tal n numbers in this OHC), the algorithm performs approximately
1

2
log2 n one-way function operations to compute the next OHC

number, and requires a little more thanlog2 n units of memory to
save pebbles.

Another important factor is the length of an OHC that is needed
for a source node. The typical length is between211 to 222. If

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 10 100 1000 10000 100000 1e+06

E
xt

ra
 B

yt
es

 p
er

 P
ac

ke
t

#Packets for each Bootstrap

10 packets/refresh
160 packets/refresh

5120 packets/refresh
40960 packets/refresh

Figure 7: Average extra bytes of overhead per packet for OHC
bootstrapping and refresh.

the length of an OHC is222 and a node uses one OHC number per
second, it will take more than a month to exhaust all numbers from
this chain. Figure 5 shows the storage requirements for storing
pebbles for different lengths of an OHC. This includes a skipjack-
based one-way function and OHC generation based on [1]. We see
that a node needs about 930 bytes to maintain an OHC of length
222. This includes 256 bytes lookup table for skipjack, which can
be shared with other applications.

Figure 6 shows the average time and maximum time required to
generate one OHC number. The average time was measured as the
total time for computing a complete OHC with the fractal traversal
algorithm, and then averaged for generating a single number. As
analyzed in [7], the maximum time for generating an OHC number
is approximately equal toδ × 0.5 × log2 n, wheren is the size
of the OHC, andδ is the time for performing a one-way function.
Here we choseδ as 1.49ms. When the size of the OHC is222, the
implementation shows that a Berkeley mote MICA2 requires about
10.3ms on average to generate an OHC, and about 16.5ms in the
worst case. Considering that it takes about 40 to 50ms to send a
36-byte packet on motes, we believe that this computing timefor
generating an OHC number is practical.

6.3 Simulation of Additional Overhead
In our solution, every data packet contains aOHC number,

which is 8 bytes of overhead compared with the no anti-PDOS at-
tack solution. In addition, the re-setup ofOHCs with theµTESLA
protocol, and refreshing broken OHCs also costs extra overhead.
We simulated the total data overhead. We simulatedOHC set up
for from every 10 messages to every106 messages, and we simu-
lated refreshing theOHC for every 10 messages to every4×105

messages. Figure 7 illustrates that when we performOHC setup
and refreshment very frequently, e.g, for every 10 messages, the
total data overhead is about 14 bytes per packet, which is thesame
as the SEF algorithm. However, if we perform these operations
infrequently, e.g. set upOHC every 10000 messages and refresh
OHC every 160 messages, the amortized overhead of our scheme
will reduce to about 8 bytes per packet.

6.4 Simulation of Multi-hop Data Transmis-
sion Delay Overhead

Using the OHC generation and verification times, we simulated
the data transmission overhead of our scheme. In this experiment,
a sensor node sends data to a base station via a path whose length
varies from 1 to 10 hops. Data transmission time of each hop is
randomly set between 30ms and 40ms. We simulated this ex-
periment without our scheme and with our scheme. When our

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4 5 6 7 8 9 10

T
ot

al
 T

im
e

(m
s)

Number of Hops

without OHC
OHC withiout loss rate

loss rate 0.05
loss rate 0.1

loss rate 0.15
loss rate 0.2

loss rate 0.25
loss rate 0.3

Figure 8: Delay Overhead of OHC verification.

scheme was used, we experimented with different packet lossrates
ranging from 0 to 0.3 at each hop. Our scheme adds overhead
in data transmission by performing OHC generation at the source
node and OHC verification at the intermediate nodes. We chose
1

2
×log2 222×1.5 = 16.5ms as the overhead ofOHC generation,

which is almost the maximum time to generate aOHC number in
a 222 long OHC. The time needed for verification depends on the
packet loss rate. In the presence of packet loss, intermediate nodes
need to apply the one-way functionF several times to validate a
received packet. We manually introduce packet loss rates oneach
hop, ranging from 0 to 0.3. Note that the total end-to-end packet
loss rate is adversely affected by multi-hop transmission.For ex-
ample, if each hop has a loss rate of 0.3, then with97% possibility
a packet won’t reach the base station via a 10-hop path. If each
hop has a loss rate of 0.05, a packet only has a probability of 0.7 to
reach the base station via a 7-hop path.

Figure 8 illustrates the overhead of our scheme for various packet
loss rates. We see that when the packet loss rate is 0, our scheme
requires an additional 16ms in a 1-hop path and about 30ms in
a 10-hop path. If the packet loss rate is 0.05 and there are 7 hops
from the source to the base station, our scheme adds only about
22 ms overhead (16ms forOHC generation and 6ms forOHC
verification). We believe that this overhead is quite reasonable for
current WSNs.

7. DISCUSSION
Our OHC-based mechanism is applicable not just to unicast

paths, but also can be extended to counteract PDoS attacks against
a reliable end-to-end connection and multipath routing in WSNs.
A reliable protocol would be useful for sending commands or even
dynamic code updates to a sensor node from a base station. A typ-
ical reliable ARQ protocol will send and/or retransmit dataand ac-
knowledgements. Such a protocol is highly susceptible to a PDoS
attack, since replaying data and/or duplicate acks is considered a
legitimate part of the protocol. PDoS attacks can be inhibited if
the two end points share twoOHCs, one for (re)transmitting data
packets in one direction and the other for (re)transmittingack/nack
packets in the reverse direction. Every packet sent by one end point
contains a uniqueOHC number. Even if a packet is retransmitted,
the retransmitted version of the packet has a new distinctOHC

number. This allows an intermediate node to distinguish between
a packet retransmitted by the source and a retransmitted packet re-
played by an adversary, because the adversary cannot attacha valid
OHC number in the replayed packet.

Multipath routing [8][5][21][3] improves the robustness and reli-
ability of data communications in WSNs. Bootstrapping proceeds
as before, except along multiple paths. If the multiple paths are

disjoint, maintenance ofOHC is similar to single path routing. An
intermediate node forwards a packet only once. In addition,dif-
ferent paths can use different OHCs. But in interleaved multiple
paths, an intermediate node may receive the same packet fromdif-
ferent nodes, and may forward them more than once. In this case,
every node only forwards a packet containing the sameOHC num-
ber a limited number of times equal to the number of paths, thereby
forestalling a PDoS attack.

8. CONCLUSION
In WSNs, an adversary can launch with little effort a path-based

denial of service (PDoS) attack that will have a severe widespread
effect on the WSN, disabling nodes on all branches downstream of
the path, due to the tree-structured topology of WSNs. In this paper,
we have proposed a lightweight and efficient mechanism usingone-
way hash chains that allows intermediate nodes to defend against
PDoS attacks by detecting replayed and spurious packets. Wehave
proposed a novel and robust set of mechanisms to maintain one-
way hash chains given packet loss and topology changes. Our
implementations show that our scheme is feasible in currentsensor
network platforms, and incurs modest overhead.

9. ACKNOWLEDGEMENTS
We would like to thank Dr. Helger Lipmaa for providing us the

implementation of fractal graph traversal algorithm, and thank Dr.
Marco Gruteser for his helpful suggestions. We also would like to
thank anonymous reviewers for their valuable comments.

10. REFERENCES
[1] D. Coppersmith and M. Jakobsson. Almost optimal hash

sequence traversal. In6th International Financial
Cryptography 2002 (FC’02), Bermuda, March 2002.

[2] H. Dai and R. Han. Elf: An efficient log-structured flash file
system for micro sensor nodes. In2nd International
Conference on Embedded Networked Sensor Systems,
Baltimore, MD, USA, Novemeber 2004.

[3] J. Deng, R. Han, and S. Mishra. The performance evaluation
of intrusion-tolerant routing in wireless sensor networks. In
IEEE 2nd International Workshop on Information
Processing in Sensor Networks (IPSN’03), Palo Alto, CA,
USA, April 2003.

[4] J. Deng, R. Han, and S. Mishra. Insens: Intrusion-tolerant
routing for wireless sensor networks.Elsevier Journal on
Computer Communications, Special Issue on Dependable
Wireless Sensor Networks, 2005, to appear.

[5] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly
resilient, energy efficient multipath routing in wireless sensor
networks.Mobile Computing and Communica-tion Review
(MC2R), 1(2), 2002.

[6] Y. Hu, A. Perrig, and D. Johnson. Ariadne: A secure
on-demand routing protocol for ad hoc networks. In8th
Annual International Conference on Mobile Computing and
Networking (MobiCom’02), 2002.

[7] M. Jakobsson. Fractal hash sequence representation and
traversal. In2002 IEEE International Symposium on
Information Theory (ISIT’02), Switzerland, July 2002.

[8] C. Karlof, Y. Li, and J. Polastre. Arrive: Algorithm for robust
routing in volatile environments. Technical Report Technical
Report UCBCSD-02-1233, Computer Science Department,
University of California at Berkeley, May 2002.

[9] C. Karlof, N. Sastry, and D. Wagner. Tinysec website.
http://www.cs.berkeley.edu/˜ nks/tinysec/.

[10] C. Karlof and D. Wagner. Secure routing in wireless sensor
networks: Attacks and countermeasures.Ad Hoc Networks,
1(2-3), September 2003.

[11] L. Lamport. Constructing digital signatures from one-way
function. Intechnical report SRI-CSL-98, SRI International,
October 1979.

[12] D. Liu and P. Ning. Efficient distribution of key chain
commitments for broadcast authentication in distributed
sensor networks. In10th Annual Network and Distributed
System Security Symposium, San Diego, CA, USA, February
2003.

[13] D. J. Malan, M. Welsh, and M. D. Smith. A public-key
infrastructure for key distribution in tinyos based on elliptic
curve cryptography. In1st IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and
Networks(SECON’04), Santa Clara, CA, USA, October
2004.

[14] A. Perrig, R. Canetti, J. Tygar, and D. X. Song. Efficient
authentication and signing of multicast streams over lossy
channels. InIEEE Symposium on Security and Privacy,
pages 56–73, May 2000.

[15] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar.
Spins: Security protocols for sensor networks.Wireless
Networks Journal(WINET), 8(5):521–534, September 2002.

[16] B. Przydatek, D. Song, and A. Perrig. Sia: Secure
information aggregation in sensor networks. InACM
SenSys’03, Los Angeles, CA, USA, November 2003.

[17] Y. Sella. On the computation-storage trade-offs of hash chain
traversal. In7th International Financial Cryptography
Conference, Le Gosier, Guadeloupe, January 2003.

[18] A. Woo, T. Tong, and D. Culler. Taming the underlining
challenges of reliable multihop routing in sensor networks.
In SenSys’03, Los Angeles, CA, USA, November 2003.

[19] A. Wood and J. Stankovic. Denial of service in sensor
networks.IEEE Computer, 35(10):54–62, October 2002.

[20] A. D. Wood, J. A. Stankovic, and S. H. Son. Jam: A
jammed-area mapping service for sensor networks. In24th
IEEE Real-time Systems Symposium (RTSS’03), Cancun,
Mexico, December 2003.

[21] F. Ye, H. Luo, S. Lu, and L. Zhang. Gradient broadcast: A
robust data delivery protocol for large scale sensor networks.
to appear in ACM Wireless Networks (WINET), Vol. 11,
No.2, March 2005.

[22] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route
detection and filtering of injected false data in sensor
networks. In IEEE INFOCOM 2004.

[23] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In
SenSys’03, Los Angeles, CA, USA, November 2003.

[24] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic.
Impact of radio irregularity on wireless sensor networks. In
the 2nd International Conference on Mobile Systems,
Applications, and Services (MobiSys’04), Boston, MA, USA,
June 2004.

[25] S. Zhu, S. Setia, and S. Jajodia. Leap: Efficient security
mechanisms for large-scale distributed sensor networks. In
CCS’03, Washington D.C, USA, October 2003.

[26] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved
hop-by-hop authentication scheme for filtering of injected
false data in sensor networks. In2004 IEEE Symposium on
Security and Privacy, Oakland, CA, USA, May 2004.

