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Abstract— Group communication to and from sets of sensor
nodes is an important paradigm in wireless sensor networks
(WSNs). Securing this group communication is a difficult chal-
lenge given the energy-efficiency constraints posed by WSNs. In
this paper, we introduce the protocol SLIMCAST, i.e. Secure
Level key Infrastructure for MultiCAST and group communi-
cation, which uses level keys to provide an infrastructure that
dramatically lowers the cost of nodes joining and leaving sensor
groups. This level key infrastructure is shown to achieve energy-
efficient key updates that are localized for group multicast 1→N
communication, and can be further leveraged to achieve se-
cure group aggregation N→1 communication. Simulation results
comparing the performance of SLIMCAST to traditional secure
group communication protocols are presented to demonstrate
SLIMCAST’s energy efficiency and flexibility.

I. I NTRODUCTION

Group communication in wireless sensor networks (WSNs)
is emerging as an important communication paradigm. A WSN
is typically organized as a hierarchical tree network, with leaf
sensor nodes sending data to a root base station collection
point via a multi-hop wireless routing network. Each micro
sensor node is resource-constrained, with severe limitations
on its energy lifetime, memory, CPU, and radio bandwidth.
It is often important for the base station to communicate
to groups of resource-constrained sensor nodes, e.g. all the
temperature nodes in a given region. The base station may
wish to dynamically reprogram or retask [19], [1] groups of
sensor nodes, namely reset their trigger thresholds, recalibrate
the sensors, etc. Similarly, groups of sensor nodes may need
to be awakened to track targets moving through the sensor
network [18].

Multicast 1→N communication and aggregation N→1 com-
munication are two especially attractive forms of group com-
munication for WSNs because they are both bandwidth-
efficient and energy-efficient. A multicast routing tree routes
a packet the minimum number of times needed on each link.
For example, Figure 1 illustrates three multicast trees in the
same WSN based on the sensor types temperature, humidity,
and smoke. Each multicast tree is organized efficiently, so
that packets are never sent along links that do not eventually
lead to an interested sensor node. Aggregation reverses the
direction of communication to be towards the base station up
the tree. Aggregation efficiently uses bandwidth in that a node
aggregates the sensor data reported by its N children before

forwarding the compressed aggregate onto its parent for further
aggregation[30], [15], [32].

Security is an important issue in WSN research. Appli-
cations of WSNs often include military deployments [2]. In
such scenarios, in-situ WSNs face many security risks. First,
wireless communication between sensor nodes is suscepti-
ble to eavesdropping, jamming, spoofing, and DoS attacks.
Second, the resource constraints limit the type of security
countermeasures that may be employed. For example, these re-
source constraints severely limit the applicability of compute-
intensive public key approaches[20], such that sensor network
security primarily focuses on symmetric key techniques. Third,
in-situ sensor nodes and base stations are at risk of physical
discovery. In this case, sensor nodes may be destroyed or
worse, compromised.

This paper focuses on developing an infrastructure to
support secure and energy-efficient group communication in
WSNs for both multicast and data aggregation. Traditional
secure multicast protocols such as LKH [11] and logical stars
[12] incur heavy overhead for key update or rekeying events
whenever a node wishes to join or leave the multicast tree,
and as a result are largely unsuitable for WSNs. Members of
a multicast tree typically have a key that is used to decrypt
the data sent from a source. Normally, when a new node
wishes to join a secure multicast tree, it is necessary to update
this key with a new key to maintainbackward secrecy[22].
The idea is to prevent a node with the new key from going
backwards in time to decipher previous content encrypted with
prior keys. Likewise, when a node leaves, it is necessary to
update the key to maintainforward secrecy[22]. The idea is
to prevent a node from using an old key to continue to decrypt
new content. Traditional multicast protocols suffer heavy key
update overhead since every node in the multicast group needs
to be updated on every join and leave event.

To achieve more lightweight operation for key updates,
SLIMCAST employs an approach based on subdividing the
group routing tree into levels and branches. Each level in each
branch of the group tree uses its ownlevel keyfor decrypting
or encrypting group data packets. When a node joins or leaves,
only the local level key needs to be changed, rather than all or
a large fraction of keys, resulting in dramatic energy savings
compared to traditional key management methods.

SLIMCAST fits within the class of geographically-rooted
cluster basedkey management frameworks. We explain in the
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Fig. 1. Three multicast trees residing in
one sensor network.
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Fig. 2. Sensor network running SLIM-
CAST, 3 levelsare formed

following how SLIMCAST improves upon two representative
cluster-based key management frameworks, namely the Iolus
framework developed for wired multicast networks[23], and
the LEAP framework for WSNs[32]. When compared with a
protocol family that builds logical key trees, e.g. LKH, LKH+
[4], OFT [3], [21], and ELK [25], SLIMCAST differs by con-
structing keys to closely adhere to the physical tree structure
of a WSN, which ultimately enables reduced bandwidth for
key update events.

In Iolus, nodes are grouped into clusters with a clusterhead
(IOLUS uses the term GSA) controlling the cluster key for
each cluster. The clusters are arranged hierarchically with a
top-level cluster and parent-child relationships between clus-
ters on down the hierarchy. A key update event is confined
to a given cluster, thereby significantly reducing key update
overhead. Iolus largely bypasses the critical issue of how to
assign the clusterheads as well as the initial cluster keys.
Instead, the backbone hierarchy of clusterheads is assumed
to exist, and the focus is on key management thereafter. In
WSNs that are deployed in-situ, it is crucial to provide a
secure mechanism for building this hierarchy of clusterheads
from scratch, so that the WSN is able to self-configure
during/after deployment. SLIMCAST provides such a general
framework for dynamically building this cluster key hierarchy
from scratch in a secure and efficient manner.

In LEAP, cluster keys are built from randomly pre-
distributed pairwise keys. Each node acts as the center of its
own cluster, and chooses a cluster key, which is unicast to
each neighbor with which it shares a pairwise key, encrypted
by that pairwise key. LEAP provides these low-level primitives
but does not address how to securely form multicast routing or

aggregation trees from local cluster keys. SLIMCAST hierar-
chically organizes cluster keys via levels. Another difference
is that LEAP’s cluster key is formed only with immediate
neighbors with whom a pairwise key is shared. Two interested
parties in a multicast tree may be separated by multiple hops
of uninterested nodes whose only duty is to forward multicast
data between member nodes. SLIMCAST’s level keys provide
a more general framework for accommodating both member
and non-member nodes. A third difference is that in LEAP
compromise of a node’s pool of pairwise keys allows an
adversary to join anywhere in the network where at least one
compromised key from the pool is shared with another node,
say Y . This will also reveal the cluster key ofY to X. In
contrast, SLIMCAST makes a more restrictive assumption to
protect against node compromise, namely that each node starts
out by sharing only a pairwise key with the base station. Level
(cluster) keys are securely bootstrapped from this starting
point. Compromise of a node does not allow an adversary
to go elsewhere in the network and join because neither the
compromised pairwise key nor the compromised cluster keys
are immediately trusted by nodes elsewhere in the network,
unlike pool keys. In this way, SLIMCAST trades off a longer
setup process for more resiliency against node compromise.

In summary, SLIMCAST is distinguished by the following
features:

• secure support for the different roles of member nodes
and non-member forwarding nodes in group communica-
tion trees

• secure support for both 1→N multicast and N→1 aggre-
gation

• secure support for both periodic joining and on-demand
joining and leaving

• its lightweight overhead, accomplished through the use
of level keys

The remainder of the paper begins with a high-level
overview of levels and level keys in Section II. Section III
addresses the core of the protocol including how nodes join a
multicast group, how level keys are bootstrapped, and how
SLIMCAST can flexibly support upstream aggregation/in-
network processing in addition to downstream multicast. Sec-
tion IV describes how SLIMCAST supports dynamic On-
Demand Joins and Leaves. Section V explores other security
issues with SLIMCAST. In Section VI, we analyze SLIM-
CAST’s performance in simulation compared to LKH and
Iolus in terms of overhead and energy consumption. Related
works and conclusion can be found in section VII and VIII
respectively.

II. D EFINING THE LEVEL KEY INFRASTRUCTURE

SLIMCAST’s level keyinfrastructure enables secure and ef-
ficient group communication in WSNs. As shown in Figure 2,
a multicast tree naturally divides into branches and levels.
A level is roughly defined in terms of hop count along a
particular branch. Suppose all nodes in a WSN participate in a
multicast tree. In this case, a level is defined as a parent and all
of its immediate children nodes on a specific branch. However,
SLIMCAST makes the additional distinction betweenmember
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nodes and non-memberforwarding nodes. These forwarding
nodes are not interested in the contents of the packets sent
along the multicast tree, but must be part of the routing of the
tree in order to provide connectivity between member nodes.
Given both member and forwarding nodes, a level is defined
as a parent member node and all of its children member nodes,
including possibly intervening non-member forwarding nodes.
Forwarding nodes can route data, but cannot decrypt the data,
since forwarding nodes will not have access to the level keys.
Level keys are only established between member nodes.

Figure 2 illustrates three such levels. Level one consists of a
parent node B, member nodes C1, C2, and C8, and forwarding
nodes F1 and F2. Though F3 and F4 are also candidates for
level one, they are not chosen for the multicast tree because
SLIMCAST constructs a shortest path multicast tree. Level
two consists of a parent node C1 and member nodes C4
and C3. Note that level-2 member nodes can be more than
two hops away from the base station B, but are exactly two
hops from B in terms of the number of “members-only” hops,
i.e. C3 must go one hop to member node C1 and a second
“members-only” hop from C1 to reach B.

To accomplish the goal of ensuring that key updates are
localized in their impact, SLIMCAST assigns alevel keyto
each level and branch. For example, in Figure 2, C1, C2, and
C8 all share the same level-1 key along with their parent B.
C3 and C4 share the same level-2 key, along with their parent
C1. C5 shares the same level-3 key with its parent C3. Note
that a level key is specific to a branch. Thus, the level-3 key
on one branch is completely independent of the level-3 key
on another disjoint branch.

Because alevel keyis the only key shared within alevel,
key update events, include joining and leaving, will only affect
one level under the SLIMCAST structure. This reduces the
overhead and energy caused by key update events.

III. SECURETOPOLOGYDISCOVERY AND LEVEL KEY

BOOTSTRAPPING

This section describes the setup of the level key tree-
structured hierarchy enabling secure group routing and data
aggregation. We begin with a set of assumptions concerning
the topology and shared security inherent in the WSN:

• The network contains one or more base stations, where a
base station is significantly more powerful than the other
nodes in the network.

• The routing structure is a shortest path tree rooted in each
base station. Sensor nodes forward their data along this
tree towards the base station, while the base station can
send messages along this tree towards one or more sensor
nodes.

• The network wishes to support dynamically created
groups of sensor nodes organized into trees. These trees
should support both aggregation and multicast.

• The dynamic formation of these groups must be both
secure and efficient for WSNs.

• Base stations are the only nodes that can initiate a
broadcast control message to construct group-based trees,
called a Join Query.

• Base stations cannot be compromised, while sensor nodes
can be compromised.

• Each base stationB shares two unique secret keys with
each nodeN in the network,KBNa and KBNb. Key
a is always used for encryption while keyb is always
used for MACing. Initially sharing only a pairwise key
with each base station improves resiliency against node
compromise over the pairwise key pool approach.

• Each node must store at least two cryptographic keys and
an initial one-way hash chain value per base station when
it is deployed.

Given these assumptions, the basic structure of SLIMCAST
consists of athree-way handshakeprocess that allows new
nodes to securely join the WSN tree for a given group and
base station and set up their level keys:

1) JOIN QUERY: A given base station will broadcast a Join
Query message to solicit interest in a given group. This
sets up an initial tree structure.

2) JOIN REPLY: Interested nodes will reply to this so-
licitation, providing proof to authenticate their identity,
and issuing a challenge. This pares the tree structure to
interested and authenticated nodes.

3) JOIN CONFIRM: The network will reply to the au-
thenticated node with the appropriate response to the
challenge, so that the node can complete mutual au-
thentication of the network and obtain its level key. This
completes the secure tree hierarchy.

A summary of the complete process is illustrated in Figure 3
and Figure 4. A variety of higher-level considerations guided
the development of this three-way handshake approach. The
tree needs to be constructed in a manner that is secure,
efficient, and dynamic. Mutual authentication is an important
feature to support, as is resiliency against node compromise.
The Join Query broadcast is required as the first step in
dynamic topology discovery, i.e. setting up the initial routing
tree for this group and providing a path for replies. A one-way
hash chain number is included in this Join Query to limit the
ability of an adversary to arbitrarily flood the network with a
spoofed Query.

Interested nodes will reply along paths established by the
Query. The Reply contains a MAC signature verifying the
joining node to the base station. This Reply must propagate
to the base station for verification because, initially, the inter-
mediate nodes do not share any secrets with the joining node.
SLIMCAST employs rate-limiting on Join Replies to prevent
denial of service (DOS) Reply floods. Since SLIMCAST
builds its secure group tree from the inside out, then the
location of reply floods can also be detected by the base
station as the point of entry into the already constructed tree.
SLIMCAST uses this property to block Reply floods from the
suspect entry point. To further complement this Reply filtering,
we can assume the existence of pairwise key pools, though not
for level/cluster key construction. In this approach, similar to
SEF[30], pairwise keys are used for filtering not construction,
i.e. bogus Replies are filtered if they don’t have the appropriate
MAC pairwise signatures. This is effective against malicious
outsiders, and against compromised nodes seeking to launch
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Fig. 3. (a) Base station floods out Join Query (b) Interested nodeC6 sends Join Reply with Challenge to base station.
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Sybil attacks by inventing many identities. Replies from a
compromised node that retains its identity will not be filtered
by this technique alone.

The Reply also needs to contain a challenge to complete
mutual authentication. The joining node generates a challenge
that is encrypted by its pairwise key with the base station. This
challenge is decrypted by the base station, and the confirma-
tion response key is generated, which is some function of the
challenge.

The third step is to securely add this new node to the
existing group tree, now that it has been authenticated by the
network. The Confirm message is unicast to themembernode
in the tree that is aparent of the joining node. This Confirm
message informs the parent member node that it has a valid
child that wants to join and also gives that parent member
node the response so it can provide proof to the joining node
of the network’s validity.

SLIMCAST then allows the parent member to select the
new local level key and propagate it both to the joining node
and existing child members. In effect, the parent member node
has been delegated authority to act as a clusterhead. The base
station is thus involved only in verifying the new node on
joins, not in selecting new level keys. This design choice is
especially efficient when nodes are leaving, because all level
key update activity is local and the base station is not involved
at all. The new level key is unicast to the joining node from the
parent encrypted by the response key, thereby authenticating

the network to the joining node. The new level key is also
unicast to each existing node, encrypted by the response keys
used by the respective member nodes when they joined earlier.
Unicasting the level key ensures backward secrecy.

A. Secure Setup: Join Query Broadcast

This section provides details on the first phase, namely
the ”JOIN QUERY” broadcast by a base station to the
network so that all interested nodes can join the multicast
group by replying to the Join Query. The packet format is

JoinQuery + GroupID + BaseID + OWS + LastHop

In our notation, the plus sign+ denotes concatenation. Also
throughout this paper we will useGroupID to identify
the particular multicast group, andBaseID to identify the
base station setting up the multicast group. Using both the
GroupID and BaseID identifiers enables support for net-
works with more than one base station and provides the
opportunity for each base station to set up several multicast
groups. TheLastHop field is overwritten at each hop with the
current node’s ID before the packet is forwarded. This field is
then stored by receiving nodes to indicate who the receiving
node’s parent is and is also used to construct a reverse path
for unicasting packets back to the base station.

The OWS field is a one way sequence number based on a
one way hash chain, and is used for verifying the legitimacy
of this JOIN QUERY. The idea of one way sequence numbers
is described in [24] and [7]. By using OWSs, an arbitrary node
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will not be able to flood a Join Query to our WSN because we
check the authenticity of each packet before further processing
occurs. Additionally, the OWS prevents a replay attack in
much the same way standard sequence numbers do. All nodes
in the WSN will be pre-programmed with the one way hash
function Fows that is used to compute and verify the OWS.
Therefore, our sensor nodes will not waste energy replying to
and forwarding adversary-forged Join Queries. The usage of
OWS can be simplified and presented in this pseudocode
On receiving OWSNEW
if (Fows(OWSnew) == OWSold) then

OWSold = OWSnew
forward JOIN QUERY packet

else drop JOIN QUERY packet

This scheme is still able to authenticate a packet even when
some packets have been lost if the pseudocode is modified
to loop whenFows(OWSnew) is not equal toOWSold,
instead of dropping the packet immediately. The one way hash
function can be appliedN times whereN is some number of
packets that can reasonably be tolerated as lost. After each
successive application of the hash function, we can again
check it against theOWSold value. If it is ever found to
be equal, we have authenticated the packet and can forward
it. If it is not equal within N steps, then we can drop the
packet.

It is important that the value ofN be chosen wisely.
Choosing a value that is too low will cause packets to
be dropped even when they contain a legitimate OWS, but
choosing a value that is too high will enable an OWS sync
attack. An OWS sync attack is an attack mounted to waste a
node’s limited energy. Therefore, we suggestN should be a
reasonable number between 3 to 5, a value that a link with
reasonable quality should be able to satisfy by not losing that
many consecutive packets.

An attacker is still limited even though the Join Query
packet is not protected with a MAC. The Join Query packets
will be flooded out rapidly regardless of what an attacker does.
If an attacker modifies a particular Join Query packet and
floods it out, the attack will only affect the small portion of the
network that is downstream from the attacker, at downstream
nodes that the attacker’s modified packet is able to reach before
the legitimate packets do. Also, the attacker can only modify
the GroupID field, which will cause false unsolicited replies
to the base station, which will drop them. The attacker cannot
change the OWS of the Join Query because it will invalidate
the packet and everyone will drop it. Likewise, he cannot
modify theBaseID value because the OWS will only verify
based on the associated base station (since each OWS value
is associated with a particular base station).

B. Secure Setup: Join Reply and Confirm

This section provides a detailed explanation of phases two
and three. Now, suppose a node C6 shown as a dotted node in
Figure 3 wishes to join the multicast group after hearing the
Join Query. In SLIMCAST, the new node will send a request
to join the multicast tree, called a JOIN REPLY message. The
format of the JOIN REPLY message sent by C6 will look like
this packet below

Join + GroupID + BaseID + MEMBER + NodeID+

{GenKey}KB Nodea + MAC(packet)KB Nodeb
+ LastHop + NextHop

“Join” identifies the message as a JOIN REPLY message;
“MEMBER” identifies the new node as interested in mem-
bership, as distinguished from a forwarding node which will
be described later; andNodeID denotes the joining node.
At this point, the node generates a new random key value,
GenKey, and encrypts it. This key value will later be used
to communicate with the node’s logical parent. Next a MAC
of the packet is calculated and encrypted using theb key
that is shared between the node and the base station. In our
notation,MAC(packet)KB Nodeb

, the term ”packet” indicates
the portion of the packet up to where the associated MAC
begins. Finally, as the node is sent back to the base station,
the fields “LastHop” and ”NextHop” are updated. LastHop
identifies the node currently forwarding the packet, while
NextHop identifies the next node that should receive the
packet. Note that the NextHop value is already known and
was stored locally in each node’s routing table when the initial
Join Query message was flooded throughout the network.

After the base station receives and verifies this Join Reply,
it will generate a CONFIRM CHILD message. The Confirm
Child packet looks like

ConfirmChild + GroupID + BaseID + MEMBER + LogicalParent+

{JoiningNode + PhysicalParent + GenKey}KB LP Nodea+

MAC(packet)KB LP Nodeb

The Confirm Child packet is going to be unicast to the
logical parent of the joining node, rather than directly to the
new node. The termlogical parentdenotes the first node that
is upstream from a given node and is already a member of
the multicast group. In this case,LogicalParent represents
the logical parent of the joining node.Physical parent, on the
other hand, is the node that is exactly one hop upstream from
a given node. The physical parent and the logical parent will
often be the same, but that will not always be the case. In
Figure 4, C1 is both the physical and logical parent of C4
since C1 is a member of the group. However, node F2 is the
physical parent of C1, while B is the logical parent of C1
since neither F2 nor F1 are members of the group.

The base station decrypts theGenKey field from the
Join Reply packet that was just received and then appends
it to this Confirm Child packet. The dataJoiningNode +
PhysicalParent + Response is encrypted and MAC’d with
the appropriate keys shared between the base station and the
logical parent of the joining node.

C. Localized Joining

After the parent has received, verified, and decrypted the
Confirm Child packet, the parent will compute new level keys.
It will then send a PARENT CONFIRM message to the new
child that looks like

ParentConfirm + GroupID + BaseID + JoiningNode+

{LogicalParent + KC1′LEV ELa + KC1′LEV ELb}GenKeya

+MAC(packet)GenKeyb

The unicast includes sending the two new level keys,
LEV ELa and LEV ELb, one for encryption and one for
MACing. For the new child node,JoiningNode, the new
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level key will be encrypted and MAC’ed by theGenKey
value received in the Confirm Child packet (hereGenKeya

is the same key asGenKeyb). A node can also generate
two separate keys,GenKeya and GenKeyb, and send them
both in the Join Reply. We includeLogicalParent in this
transmission because the node will need to know its logical
parent for data aggregation purposes which will be discussed
later in Section III-E. Upon receiving this packet, the newly
joining child knows that the packet is valid by verifying the
attached MAC.

For all existing member children, the parent unicasts the
new level key to each member child, encrypted and MAC’ed
using the pairwise key(s) already established between the
parent and that child. Unicasting preserves backward secrecy.
The pairwise key(s) used could be the original response
value(s), or the original response value(s) could have been
used to bootstrap new pairwise key(s). This new level key is
sent to all member children (except the newly added child) in
a packet format similar to the Parent Confirm message.

D. Secure Data Multicasting

Now that the multicast trees have been securely set up,
there are two different ways to multicast data to the group
members in SLIMCAST, namely hop-by-hop encryption and
SLIMCAST-Hybrid. In hop-by-hop encryption, the base sta-
tion first multicasts by encrypting an entire packet with its
level key. Each member node that is a logical child of the
base station will then decrypt the message. If the member node
receiving the packet is a parent of a subsequent level, the node
will re-encrypt the message using its parent level key and send
the message onto each of its children. The packet format looks
like

Normal + GroupID + BaseID + {Msg}KBLEV ELa
+ OWS+

MAC(packet)KBLEV ELb

At each level the packet will be decrypted and re-encrypted
with the next level’s keys before being sent on. An alternative
would be to have the base station generate a random key,K,
and encrypt the message with this key. At each level, the parent
decrypts and re-encryptsK, but not the entire message. This
would speed propagation of the message by saving us from
having to decrypt and reencrypt the entire message at every
level during packet forwarding. According to [24], sensor
nodes typically send very small messages around 30 bytes
or so. If we added an encrypted 128 bit (16 byte) key to every
message, this would significantly increase the length of each
packet. For a packet of 50 bytes, a 16 byte key would comprise
about 24% of the packet. Additionally, in WSNs, transmission
is much more expensive than computation. We thus chose not
to add a random key to each packet.

The second scheme is SLIMCAST-Hybrid. We use one
global key for the multicast group and use the SLIMCAST
structure to update the global key when there is a joining
or leaving event. The global key update event should be
initialized by the parent who has the level key update event
and notifies the base station of that. After the level key update
is done, the base station can then distribute the new global
key via the level key structure, which will decrypt and re-
encrypt the global key at each level and exclude the leaving

member from this key updating event because it doesn’t know
the new level key. Hybrid eliminates the energy overhead for
hop-by-hop re-encryption but affects all multicast nodes when
there is a key update event. Still Hybrid uses less energy in
key update events compared with Star, LKH, and Iolus. In a
leaving event, LKH will send a large multicast packet (Length
LogN) to the entire group, while Star will have to unicast to
every single member. SLIMCAST-Hybrid will send a small
multicast packet (new group key with length 1). The choice
between hop-by-hop and Hybrid configurations will depend
on how frequently key update events occur.

E. Support for In-Network Processing and Data Aggregation

In WSNs, in-network processing, most commonly in the
form of secure data aggregation, is important for the network
to efficiently gather data while eliminating redundancy and
thus saving energy [30], [15]. By the nature of sensor net-
works, it is much more efficient if the network can aggregate
similar data locally before sending it through the network
to the base station. Additionally, protocols that perform data
aggregation have to ensure security against an attacker who
injects bad data to maliciously affect the aggregated report
sent to the base station. In our protocol, we assume that groups
of nodes that will gather data that should be aggregated will
join the same multicast groups. As stated previously, the level
key infrastructure will likely vary from multicast group to
multicast group depending on the group members, and this
feature potentially adds some benefits for data aggregation.

Nodes must send observed data towards the base stationin a
manner that allows upstream nodes to view the data. By doing
this, the upstream nodes will be able to combine the data with
other gathered data if the observed values are similar enough.
Therefore, the network must support communication among
nodes that are physically located near one another if we hope
to perform aggregation. Protocols that encrypt data with a key
shared only with the base station prohibit aggregation because
no nodes along the path back to the base station will be able
to decrypt the message and aggregate it.

With the level-key network already established by our
protocol, several aggregation possibilities exist. When an event
is observed, each node that observes the event should send
a data packet to its logical parent encrypted with either the
level key or the unicast key that it shares with the parent.
Encrypting with the level key allows for passive participation
which will be addressed below. At this point, several possible
options for aggregation exist. First, if a node’s parent,P0,
receives at leastN reports of the event, whereN is some
number of packets deemed large enough to securely aggregate
data, the parent can aggregate the data itself and then send it
directly to the base station using the key that it shares only
with the base station. Note that the parent must have at least
N children to receiveN different reports. If the parentP0
does not receive at leastN similar reports within a specified
time limit, instead of aggregating the data it can re-encrypt
each data packet that it receivedwith a key it shares with its
parent (again this can either be the level key or unicast key
depending on the needs of the aggregation protocol),GP1, and
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forward the data unchanged up one level. At this point,GP1
will presumably have children other than justP0. Additionally,
since P0’s siblings are likely located physically near one
another, the probability of these siblings and their children
gathering similar data is high. We can therefore assume that
GP1 will also receive several data reports from each of of its
children, enabling it to aggregate all of the data, and then send
it directly to the base station.

The process of re-encrypting the data packets with the
key that a node shares with its parent and sending the data
upstream can repeat indefinitely until enough data accumulates
that it is aggregated or all of the data reaches the base station
unaggregated. With each hop that the data moves towards
the base station, the likelihood that the data will ever get
aggregated is reduced because nodes that are physically near
one another will most likely share a parent or a grandparent.
Regardless of the network density, for any two nodes we
can always identify aleast common parent,i.e. the first node
that two nodes have in common when we only travel in the
upstream direction. We can then determine a valueH for
the network, such that if the least common parent of two
nodes is more thanH hops away from one of the nodes
the likelihood of these two nodes sharing any children nodes
that are located near one another is very small. Therefore,
based on this premise, the aggregation protocol mentioned
above could be modified to only re-encrypt and propagate
the data up one levelH times before giving up hope that
the data will ever be aggregated and then unicasting each data
packet directly to the base station. By aborting the propagation
upward one level at a time afterH hops, the network saves the
energy of continuously decrypting and re-encrypting the data
at each level as it progresses upward towards the base station.
Depending on the density of the network,H will likely have
a value somewhere between 2-4.

This aggregation scheme is only one possible way of ag-
gregating data within the SLIMCAST infrastructure. Security
could be added to this protocol in much the same way it has
been added in Secure Information Aggregation [26]. It should
be noted that our level key infrastructure as it stands fully
supports certain existing aggregation schemes such as SIA.
SIA assumes that each node shares a unique key with the
base station and a separate key with the aggregator nodes. SIA
could be run on top of the SLIMCAST network by defining
certain nodes to be aggregator nodes, such as each level parent
or only certain level parents, because each child node already
shares both a unicast key and a level key with its parent. Each
node also shares a unicast key with the base station, as required
by SIA, so SLIMCAST can support data aggregation with SIA.

Another form of in-network processing ispassive partici-
pation and is described in [32]. The idea with passive partic-
ipation is that nodes overhear data transmissions and notice
that other nodes are already reporting the same data. Upon
overhearing such messages, other nodes do not report their
same data. While data aggregation and passive participation
are mutually exclusive, the SLIMCAST network is able to
support either. Passive participation is possible because of the
use of level keys in SLIMCAST, so nodes can encrypt their
data using their parent’s level key and many of their sibling

nodes can overhear the message and not send their data packet
if it is very similar.

F. Other Issues

Due to lack of space, some details of SLIMCAST will not
be able to be described in this paper. SLIMCAST provides a
procedure for secure integration of forwarding nodes into the
group tree and for handling on-demand joining of forwarding
nodes. In addition, unicast routing tables for each downstream
node must be constructed by SLIMCAST during the setup
phase.

IV. ON-DEMAND JOIN AND LEAVE

A protocol that allows for efficient joins and leaves is
most beneficial when multicast group membership is likely to
change frequently. SLIMCAST ensures thaton-demandjoins
and leaves are fully and efficiently supported.

A. Joins for Newly Deployed Nodes

For new nodes that wish to join a previously existing
multicast group, these nodes first need to establish a path
back to the base station, obtain information about existing
multicast groups, and then send the appropriate Join Reply
messages. We assume that a new node share keys with the
base station. When a newly deployed node first boots up, it
will send a neighbor request message out. The packet format
is trivial and only has to include the sending node’s ID. All
of the neighbors will reply to the node, and the node can pick
any of these neighbors as its physical parent. It then sends a
GROUP QUERY message to the base station that looks like

GroupQuery + BaseID + NodeID+

{Count + PropertiesList}KB NodeIDa + MAC(packet)KB NodeIDb

TheCount field is the number of properties that the node is
sending to the base station. ThePropertiesList is used by the
base station to determine which multicast groups the new node
should join. We encrypt both of these fields to minimize the
amount of information an attacker can gather about particular
nodes in the network. The values inPropertiesList will come
from some predetermined list of possible properties, and might
include data that indicates the node has a temperature sensor
and a light sensor. In this case theCount field would be 2.
Upon receiving a GroupQuery packet, the base station replies
with a QUERY RESPONSE packet that looks like

QueryResponse + BaseID + NodeID + MostRecentOWS

{Count + GroupIDList}KB NodeIDa + MAC(packet)KB NodeIDb

The most recent OWS value is sent with this packet so that
the node will be able to update its OWSold value and verify
future Join Query packets. TheCount field is used to indicate
the number of groups in the group ID list. TheGroupIDList
will contain all groups that the node can actually join. As in
the GroupQuery packet we encrypt this data. Once the node
has decided which groups it wants to join, it will send one Join
Reply message for each group, and the level key bootstrapping
process will proceed normally.

In a dynamically changing multicast group, nodes may
change their membership status in the multicast group at any
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Fig. 5. Three different cases of Leaving and the corresponding update event

time. Nodes that are neither members nor forwarding nodes
can easily join any group at a later time by simply sending a
Join Reply as they normally would.

B. Node Leaving

Nodes can leave a group in a variety of ways. The most
straightforward case is when a node wants to leave and it
does not have any member children. Let’s assume member
node C2 in Figure 5 is now leaving the group. As the figure
shows, there are three different ways a leave can occur.
Active Leaving: A node notifies its parent of leaving before
it moves or runs out of battery power.
Passive Leaving: A node fails silently due to hardware failure
or physical damage and does not notify its parent.
Deleting Malicious Node: A base station detects a misbe-
having node and deletes it explicitly from the group. This is
discussed in Section V.

In all three cases, the local parent node generates a new level
key and unicasts it to its member children. After this update,
the node that just left can no longer decrypt group messages
and this guarantees forward secrecy for SLIMCAST. In the
case of active leaving, if the leaving node has no children, it
can simply leave the group without any other issues. However,
when a member node that has children leaves the group, this
leaves a gap in the level structure and physical tree path. To
repair the tree structure, we want the leaving node’s logical
parent to become the parent of the leaving node’s children, as
shown in Figure 6. Once we bridge this gap, nothing should be
effected above the leaving node’s parent or below the leaving
node’s children.

Figure 6 illustrates the active leaving case. The leaving node
first unicasts a message to the base station indicating that
it is leaving. This informs the base station of the network’s
topology change. Next, the node unicasts a message to its
logical parent notifying that it is leaving. This allows the parent
to generate a new level key. Finally, if the node has children, it
notifies them that it is leaving using the level key that they all
share. This tells the children that they no longer have a parent
and that they must rejoin the group. These children nodes
then probe the neighbors and send a new Join Reply message
through a new path to the base station as if they were joining
the group for the first time. The tree structure thus is repaired.

In the case of passive leaving, the following approach is
used to achieve fault tolerance. ACKnowledgements are used
to confirm the existence of every link. A node with children
will hear its children forward messages in a wireless broadcast
medium, which will act as passive ACKs. If a node has no
children, it will have to send an explicit ACK to its parent. If a
parent doesn’t hear from a faulty child node within a timeout
period, k, which should be application dependent, it prunes
that child and perform the same procedure as in the active
leaving case. A blackmail attack could occur here, in which a
compromised node reports to a base station that all its children
are not responding and thus should be pruned. However, this
is no worse than if the compromised node simply blocked
all downstream nodes. If there are children nodes downstream
of a faulty node, then SLIMCAST employs a simple solution
that requires these children to wait until the next Join Query
from the base station to rejoin the tree. A variety of other
strategies were considered. For example, a child could timeout
after absence of data from the parent and initiate a probe of
neighbors plus a Join Reply. However, absence of data from a
parent is not a sufficient indicator that a parent has failed,
because downstream data could be communicated sporadi-
cally. A parent could transmit a heartbeat whose absence could
be used as a definitive trigger, but this adds overhead. Other
strategies also had limitations, so SLIMCAST chose a simple
and lightweight solution of having children wait until the next
Join Query. This Join Query flood is inherently fault-tolerant,
and will build new routes around the faulty node.

V. SECURITY ANALYSIS

Our analysis of the security of the Join Query broadcast
was completed in Section III-A, where we described how the
OWS effectively prevented Join Query flooding and replay
attack from adversaries. Hence, we focus on the security of
the Join Reply packets in this section. A discussion of the
security of Confirm packets is omitted due to lack of space,
though we mention that spoofed Confirm packets are limited
in the damage they can cause, primarily being confined to
unicast downstream nodes.

A primary concern is to limit Join Reply packets from
flooding the base station. This is accomplished by imple-
menting rate control as the SLIMCAST tree is constructed.
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Nodes keep a sliding window average of the number of Join
Reply packets they have seen within some time window. If this
number exceeds a threshold, then further Join Reply’s are not
forwarded until the sliding window average falls well below
the threshold.

If over time the base station notices that an abnormally
high flood of Join Replies is emanating from a particular
branch in the tree, then the base station can choose to actively
block Replies from that area. We borrow and modify the idea
of nested MAC’s [8] to enable the base station to identify
where bogus Join Replies are emanating from. Recall that
each Join Reply must have a MAC. As Join Replies propagate
up the tree, each node will recompute the Join Reply’s MAC
using its own keyed MAC function computed over the current
packet, including the current MAC. The new MAC is then
appended to the Join Reply, along with the current node’s ID.
When the packet reaches the base station, the base station
can identify the last node in the chain of nested MACs that
computed correctly. No node can tamper with any part of
the path without the base station’s detection. Although nested
MACs add some overhead to the Join Reply, the nested
MAC serves two purposes. First it gives the base station full
knowledge of the network’s topology. Combining knowledge
of existing multicast group members with the nested MACs,
the base station can identify every node’s physical parent and
logical parent. Additionally, nested MACs provide us with the
capability of pinpointing intrusion detection.

After exceeding a certain threshold of bad MACs, the
base station will react by deleting a node from the topology.
When there areN bad MACs immediately downstream of a
malicious node, e.g. C5 in Figure 3, the base station should
always assume the compromised node is C5. If we delete
C5, it means that C3 will not forward any message whose
last hop is C5, but C5 could still make up phantom sibling
nodes and send the packets upstream through C3, subsequently
causing the base station to think that C3 is now compromised.
Instead of dealing with this problem in two phases, we suggest
deleting C3 when we think that C5 is compromised, although
in some cases C3 might not really be compromised and we
might sacrifice it. In most cases, immediately deleting C3 will
save enough energy to make this potential mistake worthwhile.
So in this case, the base station will send a packet to C1,
asking it to delete C3 and not forward any packet from C3
upstream. This will totally stop the possibility of C5 flooding
the tunnel upstream to the base station. Also when we send
out the deletion packet, we need to include all the phantom
nodes and the deleted node in the deletion packet. This is
because for every phantom node that C5 created, C1 will have
an associated entry in its routing table. The deletion packet
will be unicast from the base station to each node upstream
of the deleted node and encrypted by the pairwise key shared
between the sensor node and the base station. By reading the
black list in the deletion packet, a node can clean up its routing
table appropriately.

Another reason we need nested MACs is if we do not
require every single node on the path to attach their MAC,
any intermediate node can tamper with the path and redirect
the path wherever it chooses. F2 can claim that the packet
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Fig. 6. An example of active leaving when
there are children and repairing the tree.

went through F3 and F4 and then forward it the F1, then
when the base station receives it the WSN’s topology saved
in base station will be wrong.

In short, most nodes in WSNs running SLIMCAST will
easily survive during DoS attack, and only the specific branch
downstream of the malicious node will be sacrificed, but even
these nodes can still preserve most of their energy in the hope
that the malicious node will be detected and removed from
the group so that they can rejoin the group.

VI. SIMULATION AND PERFORMANCE

We have simulated SLIMCAST in ns-2.26 on a AMD
P2400+ box running SuSE Linux. For the joining overhead,
we compare our protocol to the traditional star protocol and to
LKH. While there several optimized versions of LKH, listed in
Section VII, their key update event bandwidths are multiples
of logN , and their differences are small in comparison to
SLIMCAST’s much lower key update event bandwidth. We
thus choose to implement only LKH because its behavior is
representive of the LKH family. The Star protocol is simply
a logical topology where all nodes are logically viewed to
be one hop from the base station and all the key update
events are by unicast. During a join, LKH behaves exactly
the same as the Star protocol, i.e. they unicast a key to the
new member and update all existing members. Iolus has too
many factors that make it hard to define the joining overhead
such as the overhead of setting up secure channels between
cluster heads, how they are synchronized, etc., so we only
include comparisons to Iolus for leaving events. We use two
topologies for our simulation - grid sparse and grid dense. In
sparse mode each sensor node can hear four other neighbors,
while in dense mode we double the range of sensor radio so
each sensor should be able to hear on average 12 neighbors.
In our simulations, nodes are randomly chosen to join the
group. In each case we run the simulation ten times and our
result is the average. Our simulation analyzes the overhead of
SLIMCAST in two aspects: totalpackets sentfor (1)Member
Joining and (2)Member Leaving events.

A. Join Overhead

In the left Figure 7, the ratio of member nodes is fixed at
50%. The x-axis stands for total number of nodes and the y-



10

Fig. 7. Left: Total packets sent when 50% of nodes are assigned as member in network size from 40 to 400, Right: Total packets sent when different ratio
of member nodes join 200 nodes group

axis stands for the number of total packets sent to set up the
secure multicast group from the first member sending out a
reply until the last joining member gets its level key and the
local update is finished. We did not take the number of Join
Query’s sent into account here because this part, which floods
the network to gather interest in group membership, is identical
for all sender-initiated group communication protocols.

As the size of the network grows, the number of level
members in SLIMCAST will not change. The number that
will change is the average hop count from a newly joined
node to the base station, and this only affects Star, Iolus and
LKH dramatically. As mentioned earlier, the LKH behavior
is identical to Star during joins, so only Star performance is
plotted. In Star, in addition to increasing average hop count, we
also have to count the increased number of multicast packets
sent for group key update events to achieve backward secrecy.
This is why the number of packets sent in Star grows much
more rapidly than SLIMCAST. In the same figure we can see
that both SLIMCAST and Star perform better in dense mode
than in sparse mode, and this is because the hop count to
the base station will be smaller in dense mode than in sparse
mode. In dense mode, a node can be reach in about half the
hop count of sparse mode.

In the Figure 7 on the right, we fix the number of total
nodes to 200, and we show along the x-axis the percent of
nodes that have joined the network (the joining nodes are
randomly picked). Since the size of network is fixed and
we pick member nodes randomly, the hop count will be
approximately the same at each point on the x-axis. The only
factor that changes is the number of members notified, so
the packets sent grow linearly in SLIMCAST as a percentage
of the multicast members. We also observe significant packet
collision in the Star protocol when more than 50% of the nodes
are members, which we attribute to frequent collisions with
Join Replies going upstream. The packet count for Star doesn’t
grow perfectly as a linear or exponential function because of
the random collisions and retransmissions.

B. Leave Overhead

In the simulation for leaving events, we pick one random
member node and delete it from the group. As before, we
ran the simulation ten times for each different member ratio
and computed the average values. The topology is grid sparse

and we use Iolus and LKH for comparison. Also notice that
we use a logarithmic scale for the y-axis. In the left Figure 8
Star has to notify each member by unicast so packets sent
grows linearly as member number increases. Iolus also uses
unicast to update keys so it should perform identically to Star
except that it is divided into five clusters, so the hop count and
members to be notified will both be 1/5 of Star. LKH sends
out one big message for leaving events, and this message has
to reach all member nodes, so the number of packets sent is
actually identical to one multicast event. While leaving update
packets have the same size for Star, Iolus, and SLIMCAST, it
is a lot bigger for LKH. LKH needs to send a O(logn) long
packet for the leaving update event in an member group. If
group key is 128-bits long, for a 200 member node group,
LKH will have to send 2048 bits. Compared with 128 bits for
all three other protocols, LKH is sending a packet 16 times
larger than the others. In the right Figure 8, we fix the ratio
of member nodes to 50% and change the size of WSNs, so
two variables will change in each of these simulations, the
number of members and the hop counts. For SLIMCAST, the
number of nodes to be updated only changes with the density
of the WSNs, not with the number of members, so the increase
will only grows linearly with hop count. For LKH, because the
multicast characteristic, the increase in packets sent is close to
linear growth as well. In Star and Iolus, hop count and member
number multiply together to form an exponential growth in the
number of packets sent.

C. Energy Consumption and Threshold

An overhead SLIMCAST has to pay is for hop-by-hop
reencryption. Since we claim that SLIMCAST saves tremen-
dous energy for key update events, we are interested in if it
is worth of it for doing hop-by-hop reencryption rather than
spending tremendous energy for key update events and have
a global key, no reencryption like Star and LKH. Note that
the overhead of Star and LKH occurs during the setup phase
and is not taken into account here. In this section we compare
the energy cost for one leaving key update event of Star and
LKH with energy cost for reencrypting a multicast message
in SLIMCAST. The sensor node bandwidth is assumed to
be 19200bps, key size 128bits, encryption scheme is AES,
hardware platform is Mica2 with 7.3MHz CPU.
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Fig. 8. Left: Total packets sent when one member leaves the group in different ratio of member in a size 200 sensor nodes group. Right: Total packets sent
when one member leaves the group in different WSNs size when member ratio fixed at 50%

Fig. 9. Energy Comparison for SLIMCAST hop-by-hop Encryption and One Leaving Key Update Event

In the rest of this section we will try to find out thenumber
of multicast packets SLIMCAST can send until the hop-by-hop
reencryption energy cost overhead hits the energy overhead
LKH and Star have over SLIMCAST for one leaving eventin
the same network topology. The total number of transmissions
when unicasting to every single node in a network where
each node has k children, and there is a total of j hops is
NumUnicast(k, j) =

∑j
i=1 iki. This will be the transmis-

sion time needed by Star for one leaving key update event.
The transmission times in one multicast event, i.e. for LKH
key update even, isNumUnicast(k, j) =

∑j−1
i=1 ki = kj−1.

The number of encryption computations that SLIMCAST
requires for hop-by-hop reencryption isNumReEnc(k, j) =∑j−1

i=1 ki = kj − 1. In the Hybrid scheme, the number
of reencryptions will be identical to number in level mul-
ticast, so the energy cost of Hybrid for one key update
event will be (kj − 1)(EnergyforTransmissionnbytes +
EnergyforReEncryptingnbytes).

The transmission power consumption for the Mica2 is
8.5mAh. Assuming a bandwidth of 19200 bps, transmitting 50
bytes will take 0.02083 seconds and will consume 0.000049
mA. For computation power, the CPU on the Mica2 is 7.3MHz
ATmega128L with active mode current of 8.0mAh, so encrypt-
ing 50 bytes requires 51877 CPU cycles. Thus the encryption
will require 0.0071 secs and 0.000016 mA[28]. That gives us
the ratio of (Power for Tx n bytes)/(Power for Encrypt n bytes)
= 3.12.

We then can then calculate the threshhold given that each
node has an average ofk children and hop counts ofj for the
SLIMCAST hop-by-hop reencryption scheme and Star. The
equation below indicates the number of multicasts SLIMCAST

can do before it reaches the threshold of energy spent for one
key update event in Star

ThresholdMcastNumStar(k, j) = (
∑j

i=1
iki) ∗ 3.12/kj − 1

When k=2 and j=5 this number will be 26. For LKH,
the packet multicasted for key update event for leaving will
have log2(kj+1 − 1) ∗ (KeyLength) ∗ 2 extra bytes than
a key update packet for Star. So the equation to calculate
SLIMCAST’s threshold with LKH will be

ThresholdMcastNumLKH(k, j) = (((kj − 1) ∗ log2 (kj+1 − 1)∗
(KeyLength) ∗ 2/50) + 1) ∗ 3.12/kj − 1

When k=2 and j=5 this number will be 9. If, however, the
Hybrid scheme is used, there will be no limitation on the
multicast number, and the energy cost for one key update
event is much lower than Star and LKH. The threshold
for SLIMCAST and SLIMCAST-Hybrid is always 3.12, and
SLIMCAST-Hybrid is always cheaper updating the global key
than Star and LKH regardless of the network topology.

D. Future Work

As part of future work, we would like to study the per-
formance under massive evictions for SLIMCAST and other
protocols. Here, we will need to consider many variables,
i.e. how is the batching executed and with what frequency.
The LKH family may benefit more from batching key update
events than SLIMCAST, but we can batch local key update
events in SLIMCAST as well.

VII. R ELATED WORK

Canetti et al. proposed LKH+[4]. LKH+ halves the size
of the key update message of LKH. One-way Function Tree
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protocol(OFT)[3], [21] proposed by Balenson et al. derives
parent key from two children keys, also halves the size of
LKH. ELK[25] proposed by A Perrig et al. is a variant of
OFT and uses hints to provide FEC. A. Eskicioglu. provides
a complete survey of recent progress on secure multicast
protocols[10]. For multicast routing over an Ad Hoc network,
sender initiated ODMRP by S.J. Lee[16] inspired the QUERY-
REPLY design in our protocol. J. Jetcheva and D. Johnson
designed ADMR which is receiver initiated and provide a good
method for on-demand join. VLM2 by A. Sheth et. al[27] is
one of the earliest attempts for multicast over sensor networks.

R. Canetti and B. Pinkas describe requirements of secure
multicast protocols for key updating events in membership
changes[5], and more evaluation strategy can be found in [22]
by S. Mishra. Performance comparisons of multicast protocols
over Ad Hoc wireless network is provided by S.J Lee et.
al[17]. A. Wood and J. Stankovic list various DoS attacks
against wireless sensor networks in [29]. Works of group
communication, namely content-based multicast, or content-
based routing under wireless sensor networks can be found in
CBM by H. Zhou and S. Singh[31] and Directed Diffusion by
C. Intanagonwiwat, R. Govindan and D. Estrin[14].

There are also attempts to secure group communication
in the form of content based routing for wireless sensor
networks by B. Przydatek, D. Song and A. Perrig[26] and
Secure Aggregation for Wireless Networks by L. Hu and D.
Evans[13]. In [9], [6], authors proposed a scheme that does
not need a base station to construct and manage level keys.
The advantage is that the joining event will not have to travel
all the way back to base station, but the disadvantage is that
a reverse path and downstream routing table cannot be set
up, and the trust between nodes is only level by level, which
seems to be less secure than centralized authentication.

VIII. C ONCLUSION

We have described SLIMCAST, the design and implementa-
tion of a level key infrastructure for secure and efficient group
communication in wireless sensor networks. SLIMCAST em-
ploys level keys to delegate trust throughout each level and
each branch of the WSN multicast tree. This delegation of
trust localizes the overhead cost of key updates due to joins
and leaves resulting in highly energy-efficient key updates.
SLIMCAST provides a complete security solution from the
setup phase to key update events. SLIMCAST protects data
confidentiality via hop-by-hop encryption based on level keys
and also tolerates the compromise of parent nodes. SLIM-
CAST further implements intrusion detection and deletion to
limit the damage from DoS-based flooding attacks. Finally,
the SLIMCAST infrastructure supports data aggregation to
efficiently send gathered data back to the base station. Our
simulations of SLIMCAST in NS2 demonstrate that SLIM-
CAST achieves dramatically lower overhead than traditional
secure multicast protocols.
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