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ABSTRACT
Remote reprogramming of in situ wireless sensor networks
(WSNs) via the wireless link is an important capability. Se-
curing the process of reprogramming allows each sensor node
to authenticate each received code image. Due to the re-
source constraints of WSNs, public key schemes must be
used sparingly. This paper introduces a mechanism for se-
cure and efficient code distribution that employs public key
cryptography only to sign the root of a combined structure
consisting of both hash chains and hash trees. The chain
based scheme works best when packets are received in the
order they are sent with very few losses. Our hash tree based
scheme allows nodes to authenticate packets and verify their
integrity quickly, even when the packets may arrive out of
order, but can result in too many public key operations. In-
tegrating hash chains and hash trees produces a mechanism
that is both resilient to losses and lightweight in terms of re-
ducing memory consumption and the number of public key
operations that a node has to perform. Simulation shows
that the proposed secure reprogramming schemes add only
a modest amount of overhead to a conventional non-secure
reprogramming scheme, namely Deluge, and are therefore
feasible and practical in a wireless sensor network.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing
and Information Systems—Security and Protection; I.2.9
[Sensors]

General Terms
Security
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1. INTRODUCTION
Many applications of wireless sensor networks (WSNs) can

benefit from remote reprogramming of sensor nodes through
the wireless channel. For example, deployed sensor nodes
with buggy code can be patched with new code images or up-
dated with new applications and/or unanticipated features.
In these cases, remote wireless reprogramming of deployed
sensor nodes that may be spread out over rugged terrain is
far more practical than manual intervention.

In certain cases, securing the process of dynamic repro-
gramming is critical. In military deployments, distribution
of false or viral code images by an adversary can cripple
the WSN and/or deceive the deployer. In commercial ap-
plications such as monitoring of semiconductor fabrication
labs or oil tankers [3], code updates must be verified to en-
sure that catastrophic damage is not caused to industrial
processes. In certain applications, privacy and anonymity
of communicating parties can be compromised by installing
code updates that snoop on targets without permission. For
all of these cases, it is important that the sensor nodes be
able to efficiently verify that code originates from a trusted
source.

The goal of this paper is to build a secure and efficient
mechanism for distributing code images in dynamically re-
programmable WSNs. This mechanism helps sensor nodes
to securely verify the authenticity and integrity of code im-
age. The challenge is to achieve this goal given the severe
resource constraints of WSNs, namely the limited memory,
energy, bandwidth, and processing. Prior work on this im-
portant emerging problem is relatively scant. Existing code
propagation protocols developed for WSNs, e.g. Deluge [12],
MNP [21], MOAP [22], and Aqueduct [20], focus on real-
izing reprogramming features and optimizing performance,
and are not designed to be secure. The first work that we are
aware of on secure code distribution is a two-page poster [14]
that describes a scheme using public key cryptography for
signing of a chain of cryptographic hashes. A similar scheme
is proposed and implemented in Deluge by P. Dutta et al. [6].
As we will describe later, this chain-based scheme brings
heavy traffic in lossy wireless communications.

A simple solution for verifying code images at each node is
to employ a single global secret key shared by a base station
and all sensor nodes to protect the integrity and authenticity
of disseminated code. However, if an adversary can compro-
mise a sensor node and capture the key, he can still inject
malicious code. Compromising a sensor node mote has been
shown to be relatively quick and easy [4], allowing all inter-
nal information such as TinySec keys to be revealed. Sensor
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Figure 1: Code Propagation in WSNs. The code im-
age is divided into multiple pages, which are reliably
distributed hop-by-hop to nodes for reprogramming.

nodes are at high risk of compromise due to their in situ de-
ployment, placing them within proximity of an adversary. In
addition, cost constraints for resource-poor nodes limit the
hardware security protections that can be integrated into a
node.

Another symmetric key-based approach is for the base
station to share a distinct pairwise key with each sensor
node, and use this pairwise key to compute a keyed message
authentication code based on a given code image. Unfortu-
nately, this pairwise approach does not scale well and results
in significant overhead in a large WSN, as each MAC needs
to be sent at least to its destination node. Using randomly
distributed pairwise keys [7, 15, 5] may improve the effi-
ciency of the MAC based approach, but is still susceptible
to code injection attacks from a compromised node.

Public key-based authentication of sensor code images
represents another option. Suppose a base station has a
private key, and each sensor node has the base station’s cor-
responding public key. The base station signs every packet
with the private key, so a sensor node can verify every packet
with its public key. However, this simple per-packet scheme
is computationally expensive, and is avoided on the wired
Internet. Per-packet public key authentication would be far
worse in a resource-constrained WSN that has at least two
orders of magnitude less RAM, CPU, and bandwidth per
node. While recent work has shown that elliptic curve cryp-
tography (ECC) is feasible on MICA2-class sensor motes [16,
11], ECC-class public key authentication is still only practi-
cal if used sparingly.

We present a novel scheme for secure and efficient prop-
agation of sensor code images that combines the best fea-
tures of public key authentication, hash-based verification,
hash chains, and hash trees. Public key schemes have the
advantage of simplifying key distribution while ensuring au-
thentication even if a node is compromised, i.e. the public
key does not allow a compromised node to spoof the base
station. Hashed verification schemes have the advantage of

fast execution time and small memory footprint. We first
describe the signed hash chain scheme, which incurs very
little overhead of computing and requires nodes to perform
only one public key operation. However, this approach does
not tolerate packets arriving out of order, as would be the
case due to collisions in typical wireless networks. We fur-
ther investigate a hash tree based scheme that allows nodes
to authenticate packets out of order, thereby addressing the
weakness introduced by chains. Hash trees allow the in-
tegrity to be verified quickly. However, hash trees incur a
relatively larger memory overhead or require nodes to per-
form more public key operations when a large code image
has to be fragmented into many pages. We propose a novel
hybrid scheme that judiciously combines the best aspects
of hash trees and hash chains, overcoming the individual
weaknesses of each approach to achieve robust, efficient, and
secure code reprogramming in WSNs.

The paper is organized as follows. In Section 2, we dis-
cuss the security requirements for dynamic reprogramming
of WSNs. In Section 3, we present three schemes for secure
dynamic reprogramming of WSNs. Section 4 analyzes key
properties of the proposed approaches, including overhead
and security against DOS attacks. Section 5 presents the
simulation results of our schemes, highlighting the modest
overhead of our approach. Section 6 summarizes related
work. Section 7 concludes the paper.

2. SYSTEM ASSUMPTIONS AND SECURITY
REQUIREMENTS

2.1 System Model
We assume our security scheme is targeted for today’s

standard sensor node platforms, such as the Berkeley mica2
node [1] or the Moteiv Telos Tmote [2]. A mica2 mote has
4K bytes of SRAM, 4KB internal EEPROM, and 128KB
flash memory for program. The standard packet size pro-
vided by the TinyOS operating system is 29 bytes. The
Tmote sky of moteiv company has an 8MHz CPU, which
contains 10KB RAM and 48KB flash memory. It employs a
250 kbps Chipcon wireless transceiver which supports IEEE
802.15.4, and the maxmum packet size is 128 bytes.

In this paper we make the standard assumption of proto-
cols like Deluge protocol developed by J. Hui et al. [12], in
which the code images are propagated from a base station
to every node in the network, as shown in Figure 1. The
whole code image is split into a sequence of pages, and each
page contains a number of data packets. Each page is dis-
seminated sequentially: a node must get all pages from 1
to k − 1 before it begins to receive packets in page k. A
sending node broadcasts all packets of a page to its neigh-
boring nodes which haven’t received that page yet. The
sender sends packets round-robin; it broadcasts all packets
one by one, and then waits for ACK or NACK messages
back from receivers. Each feedback message tells the sender
which packets are missing at a receiver. The sender resends
all missed packets one by one, until every packet is received
by every receiver. The goal of the above transmission scheme
is to provide efficient and reliable program code image dis-
semination, since the data transmission in a wireless sensor
network is unstable and the packet loss rate is high.

Several groups of researchers have implemented RSA and
Elliptic Curve (ECC) on mica2 motes [11, 16, 23, 10, 17,
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9]. Up to now, the best result reported by N.Gura et.al
shows that the public key encryption/decryption runs hun-
dreds or thousands milliseconds, and consume hundreds of
bytes of SRAM [11]. P. Ning et.al provide source code of
ECC which runs 12 to 16 seconds to verify a signature on
MICAz motes [17]. We assume that a sensor node can run
public key cryptographic algorithms such as RSA and ECC.
In addition, the base station has a private key Ks, and all
sensor nodes are pre-configured with its corresponded public
key Kp. For ECC with 168 bits of key, the size of a signa-
ture on a 4-byte hash is about 168×2 = 336 bits = 42 bytes,
which can be fit into a Tmote packet.

2.2 Threat Model and Security Goals
The goal of an adversary is to reprogram its own code into

sensor nodes or launch denial of service attacks against the
large number of sensor nodes in the network. He is able to
eavesdrop on any communication in the network, to com-
promise individual sensor nodes and capture all information
inside it, and to inject fake packets to sensor nodes nearby.
However, we assume the base station is rich in computing
resources and is securely projected. An adversary cannot
compromise the base station. Although an adversary can
attack the privacy of a code image by eavesdropping on or
compromising a node, we don’t protect the confidentiality
of program code in this paper. If the adversary cannot com-
promise a node, confidentiality can easily be protected by a
global key. However, if the adversary is capable of compro-
mising a node, protecting confidentiality will be very diffi-
cult.

The goal of this paper is to efficiently protect the authen-
ticity and integrity of propagated code images. Ideally, we
hope that

1. Node-compromise resilience. Every sensor node
can authenticate and verify the integrity of the pro-
gram code disseminated from a base station. An ad-
versary cannot spoof the base station or change the
contents of a code image without being detected by
other nodes.

2. DoS-attack resilience. Every node can verify the
code image as soon as it receives it. Otherwise an
adversary can potentially launch denial of services at-
tacks against the sensor network due to delayed au-
thentication, For example, if an adversary injects fake
packets to a node and that node cannot verify those
packets immediately, then either those packets will
consume memory or the computing time of this node
and eventually exhaust its resources, or this node has
to drop packets without verification, potentially drop-
ping valid data packets.

3. Low cost. The resource consumption of the proposed
security mechanism must be light weight in terms of
communication, computing and memory usage.

3. DESCRIPTION OF THE ALGORITHMS

3.1 Chain-based Scheme
Figure 2 illustrates the first method of secure code prop-

agation, the chain based scheme. We examine this scheme
more formally using the following notation. The base station
divides the code image to be distributed into N fragments of

sign(H1) H1 data1 H2

packet 0

H1=Hash(P1)

data2 H3

packet 1 packet 2

datan

packet n

H2=Hash(P2) Hn=Hash(Pn)

Figure 2: Signed Hash Chain Scheme.

data datai, i = 1..N . A packet Pi is composed of both datai

and a cryptographic hash Hi+1 to verify the next packet. We
use Hi+1 to denote the hash value of packet Pi+1. In gen-
eral, Hash(M) is the hash value of message M , and Ek(M)
is the encrypted value of message M with key k.

Thus, each packet has format of

Pi = datai||Hi+1, i = 1..N.

Each cryptographic hash Hi is calculated over the full packet
i, not just the data portion, thereby establishing a chain of
hashes,

Hi = Hash(Pi) = Hash(datai||Hi+1), i − 1..N.

Furthermore, the entire chain of hashes is verified by signing
the first hash H1 with the private key of the base station.
That is, packet P0 contains the signature S of H1,

P0 = signature(H1)||H1 = EKs(H1)||H1,

and the signature S = EKs(H1) is computed using the pri-
vate key Ks of the base station.

The code image is transmitted as a sequence of packets
(P0 ... PN ). On receiving P0, a node decrypts the signature
S using the public key Kp of the base station and verifies
H1. On receiving Pk, this node verifies the authenticity and
integrity of Pk with the previously received and verified Hk.
This process continues until the final code fragment dataN

is received in packet PN .
Because S is generated by encrypting H1 using the private

key of the base station, and only the base station knows this
key, an adversary cannot generate a valid S containing H ′

1

(hash of a fake packet P ′
1). As a result, a node can detect

any tampering with packet P1. In particular, if an adversary
attempts to replace H2 in P1 with H ′

2 (hash of a fake packet
P ′

2), a node will detect this tampering. In turn, a node can
detect any tampering with P2, and so on.

In the absence of any packet losses and assuming that all
packets arrive in the order they are sent, the chain based
scheme performs very well. Public key encryption is used
only once on a small-sized value (H1) and a node needs to
use public key decryption only once. Furthermore, a node
only needs to save one hash value in SRAM and can verify
the integrity of a packet as soon as it is received.

Referring back to Section 2.2, we see that this chain scheme
satisfies security goals 1 and 3, but not adequately goal 2.
In fact, the chain scheme meets the second goal only in a
limited manner, as follows:

2a. Limited DoS-attack resilience. Suppose the data
packets are disseminated as sequence from 1 to n. Only
when a node X has received all packets from 1 to k−1
can it verify packet k immediately when X receives it.

In general, out-of-order packet arrivals are an important
issue in WSNs, and arise from a variety of causes. Gaps in
packet arrivals are commonly caused by packet losses due to
wireless collisions at the medium access control layer, and/or
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Figure 3: Signed Hash Tree Scheme. This hash tree
structure has only 5 levels (m = 4), and every index
packet contains 2 hash values (w = 2).

by overflowed buffers at any intermediate nodes in the path.
A minor problem of hash chain scheme is it does not fit with
efficient code dissemination protocol such as Deluge. Del-
uge sends a sequence of packets, then waits for ACK/NACK
message back. However, chain scheme requires reliable de-
livery of every previous message, so the sender has to wait
for feedback message from receiver and decides whether to
re-send a packet or send next one. The hash chain scheme
prevents the receiver from verifying a packet if its previous
one is lost.

3.2 Hash Tree based Scheme
To achieve DoS-attack resilience and allow immediate ver-

ification of out-of-order packets, we propose another method
for secure code propagation based on a signed hash tree. We
assume an underlying code distribution mechanism like Del-
uge: a node sends a group of packets to its neighbor nodes,
and after a certain time, each neighbor node sends back a
NACK message to tell the sender which packets it missed.
Then the sender retransmits missed packets. For example,
if the sender transmits packet P1, P2, P3, and P4, and the
receiver gets P1 and P4, but missed P2 and P3, then the
receiver sends a NACK message to inform the sender. The
sender then retransmits P2 and P3. This process saves traffic
since the receiver doesn’t have to acknowledge every packet.
To simplify the algorithm description, we just assume that
the sender transmits all packets from 1 to n to its neighbor
nodes.

To enable nodes to authenticate and verify the integrity
of code image packets quickly, even when the packets may
arrive out of order, it is important to propagate the hash
values of those packets a priori. This can of course be done
by sending index packets containing only the hash values of
code image packets in advance. The key challenge here is
to make sure that only a small number (preferably one) of
public key operations have to be performed by nodes.

Figure 3 illustrates our basic hash tree scheme. The code
image is divided into packets at the base station, and a se-
cure hash is computed on each packet. These hash values
are themselves input to create a new level of hashes, and
so on up the tree. A packet at level i contains hash val-
ues of w packets in level i + 1. For example, a packet Pi,j

contains hash value Hash(Pi+1,j∗w), Hash(Pi+1,j∗w+1), . . . ,

Hash(Pi+1,j∗w+w−1). If the hash tree has m+1 levels (from
0 to m), the packets in level m are data packets that con-
tain the code image. Concretely, for a packet in level i where
1 < i < m,

Pi,j = Hash(Pi+1,j∗w)||. . .||Hash(Pi+1,j∗w+w−1)||other info

All packets at level m contain their respective data frag-
ments of the code image (packets Pm,0 to Pm,n−1 correspond
to the n data packets). Thus the hash value of every data
packet is included in one of the packets in level m − 1, and
the hash value of every packet in level m − 1 is included in
one of the packets in level m − 2, and so on. This tree is
built in such a way that there is exactly one packet at level
1. Note that the hash tree proposed here is different from a
Merkle Hash tree.

The root value at the top of the tree, level 0, is a signature
that is obtained by encrypting the hash value of the packet
at level 1 using the private key (Ks) of the base station, i.e

P0,0 = EKs(Hash(P1,0))||Hash(P1,0)||other info

This signature can be used to authenticate the source of P1,0

as well as verify the integrity of P1,0. Furthermore, since our
hash tree links all packets at one level with the packets at the
next level, this single signature in turn provides support for
authentication and integrity verification of all packets in the
hash tree. This is because if an adversary tampers with the
contents of a packet, the hash of the original (untampered)
packet received in a packet in the previous level can be used
to detect this tampering.

When a node sends a code image to its neighbor nodes, it
sends packets from the low levels to the high levels. First,
the root packet that contains the signature is sent, then the
packet in level 1 is sent, then packets at level 2 are sent,
and so on. For each level, the receiver sends back an ac-
knowledgement message to inform the local sender whether
it received all packets in this level, or which packets were
missed. When a node receives the root packet, it saves the
signature. It uses this signature to authenticate/verify the
data in the level 1 packet, it uses the hash values in that
level 1 packet to verify the integrity of packets in level 2,
and so on. Eventually, this node can authenticate/verify
every packet in level m (code image) using the hash values
received in packets at level m − 1.

Referring back to requirement 2a, we see the hash tree
scheme satisfies a weaker statement, i.e. applies more broadly:

2b. DoS-attack resilience. When a node received all
packets from 1 to k− 1, it can verify any packets from
k to m with any order, where m − k > k.

Concretely, if there are w hash values in an index packet,
there are wl packets in level l. If a node receives all wl

packets in level l, it can receives the next wl+1 packets in
level l + 1 with any order. Thus, this hash tree scheme can
be applied to current reliable data delivery schemes of sensor
networks with little extra cost.

The hash tree scheme exhibits several advantages that ad-
dress the security goals outlined in Section 2. First, signing
the root of the hash tree with the private key prevents an
adversary from spoofing the base station or tampering with
code images without detection. This addresses the security
goal of node-compromise resilience. Second, the receiver
only needs to execute the public key verification operation
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once, upon receipt of the initial signature packet. All sub-
sequent verification operations are performed quickly using
hashes in the tree. Third, the hash tree enables every node
to verify each data packet immediately. When a data packet
arrives, a quick hash of its contents can be compared to the
previously saved hash to verify authenticity and integrity.
These two points address the DoS-resilience goal. For ex-
ample, if data packet Pm,2 is lost, all subsequent packets can
still be authenticated, e.g. data packets Pm,3 and Pm,4.

One cost of the hash tree scheme is the extra index packets
that need to be transmitted. This overhead is relatively
small compared to the total number of data packets. For
example, suppose a code image to be downloaded is 32 KB
in size. Assuming that each packet can hold 29 bytes of
data, the code image amounts to about 1,070 data packets.
Assuming a 4-byte hash, we can pack in 7 hashes in a packet.
This implies that there will be 181 index packets (153 in
level 4, 22 in level 3, 4 in level 2, 1 in level 1, and 1 in level
0). Furthermore, there is a tradeoff because the underlying
reliabilty mechanism saves many acknowledgment messages.

Another cost of the tree-based scheme is its memory con-
sumption. Roughly, if a node wants to verify each packet in
level i, it should save the hash value of level i − 1 packets
in its SRAM, that means it should save all packets in level
m − 1 in its SRAM. For a large code image, this could be-
come a concern. One way to solve this problem is to save
these packets in EEPROM. However, as tested in [4], while
reading data from EEPROM is fast, writing data into EEP-
ROM is relatively slow.

Deluge segments the whole program code into pages, and
each page contains a fixed number of packets. To receive
packets in page k, a node has to reliably receive all packets
in page 1 through k − 1. Deluge uses the NACK message
to transmit all packets in a page as we described previously.
In this way, a node can temporally save all packets within
a page into SRAM. For example, if it uses 1 KB SRAM
memory, the size of a page is also 1 KB, and it contains
about 36 packets.

To adapt our hash tree scheme to Deluge, we can build a
hash tree structure for each page, and the root node of each
hash tree is a signature signed by the base station with its
private key. We term this variation the multiple public key
based hash tree scheme. However, this approach introduces
more public key operations (one per page of code image).
The later experiments show that these public key operations
introduce significant delay.

3.3 Hybrid Scheme
To reduce the tree-based scheme’s number of public key

operations, we propose an improved hybrid scheme. As the
name suggests, this scheme is a combination of the chain
based and tree based scheme. This hybrid scheme has been
designed to provide authentication and integrity support in
code propagation, and also adapt to the Deluge protocol.
In Deluge, a code image is first divided in a sequence of
m pages, C1, C2, ..., Cm, and each page is further divided
into a sequence of a fixed number of packet. A node must
have received all packets in pages C1, ..., Ck−1 before it can
accept packets from page Ck. However, within page Ck, the
NACK-based design allows out-of-order arrival. Thus, all
pages of the code image must be received in a sequential
order, while packets within a page may be received in any
order.

Figure 4 illustrates our hybrid scheme. At the granularity
of pages, our approach is to employ a chain-based scheme for
authentication and integrity. At the granularity of packets,
our hybrid approach employs our hash tree based design to
allow rapid and out-of-order authentication. The key obser-
vation is that chain-based authentication of pages reduces
the number of public key operations that a node has to per-
form to only one, in comparison with the multiple public key
based hash tree scheme of the previous subsection. At the
same time, the chain-based page authentication imposes no
additional cost in terms of susceptibility to disorder. Del-
uge already requires order at the page granularity, so the
chain-based approach of requiring order does not impose
any additional penalty.

A hash tree is constructed for each page. This hash tree
is similar to the one described in Section 3.2, except for
the packet at level 0. For each page Ci, the packet gi at
level 0 is called the page index packet of Ci. This packet
contains information about this page and the next page in
the sequence:

gi = HLi||HCi||other page info

Where 1 < i < m. A page index packet gi contains two hash
values, HLi, and HCi (1 < i ≤ m). HLi is the hash value
of the single packet at level 1 in the hash tree of page Ci.
HCi is the hash value of Gi+1. For page C0, the page in-
dex packet is a signature created by encrypting (HL1||HC1)
using the private key Ks of the base station, i.e.

g0 = EKs(HC0||other info)||HC0||other info

Notice that the public key operation has been used in only
one packet (g0) in our hybrid scheme.

The hybrid scheme retains the principal advantage of the
hash tree based scheme. It allows nodes to authenticate
packets and verify their integrity quickly, even when the
packets arrive out of order. Theoretically, the hybrid scheme
satisfies a weaker DoS-attack resilience requirement than 2b.
It satisfies that:

2c. DoS-attack resilience. For all n packets in a page,
when a node received all packets from 1 to k − 1, it
can verify any packets from k to MIN(m, n− (k− 1))
with any order, where m − k > k.

Overall, the security goals of Section 2 are mainly satisfied,
and in a manner that is more efficient than the pure hash
tree. Signing the first value of the chain satisfies the goal
of node-compromise resilience, because an adversary can-
not modify any index packets or data packets nor spoof the
base station without being detected. DoS-attack resilience
is preserved since packets can be verified immediately. This
is achieved at a low cost since the public key operation is
performed but once, and disorder is tolerated. The hybrid
solution scales well, owing to the tree structure, yet is more
efficient than the pure hash tree thanks to the chain because
public key operations don’t have to be performed on each
page.

4. ANALYSIS

4.1 Index packets in a hash tree
We would like to estimate the number of index pack-

ets needed for a hash tree. Let I(n) to denote the num-
ber of index packets in a hash tree (excluding packet P0,0).
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Figure 4: Hybrid Signed Scheme, combines hash chain structure for inter-page authentication and hash tree
structure for internal page authentication.

Suppose there are n data packets. The height of the hash
tree is �logwn� (let’s don’t consider root node). If �logwn�
is an integer k, the number of index packets are I(n) =
(wk − 1)/(w − 1)≈n/(w − 1). Otherwise, the number of

index packets are less than I(n)≤(w�logwn� − 1)/(w − 1).
Suppose �logwn� = k where k is an integer. Let’s denote

n as that

n =
kX

i=0

ai×wk−i

Where 0≤ai < w (0 < i≤k) and 1≤a0 < w.
For each group of packets wk−i, they can form a hash tree

with level of k − i. And, the ai hash forests with level k − i
can form a hash tree with level k − i − 1 by adding a new
packet, and this packet can be used to form a tree with less
k − i − 2 with ai−1 forests. By this way, we can build one
hash tree for all packets. The number of index packets of
this tree is

I(n) ≤
kX

i=0

ai×wk−i − 1

w − 1
+ k

=

Pk
i=0 ai×wk − Pk−1

i=0 ai + (w − 1)k

w − 1

≈ n

w − 1

We see that the number of index packets is still within a
factor of 1

w−1
of the number of data packets.

4.2 Estimation of f(k) in hash tree scheme
After a node has received k packets in the hash tree based

scheme, it can authenticate and verify integrity of several
new packets it receives next. We use function f(x) to denote
the number of new packets a node can verify immediately
on receiving after it has already received the first x packets.
Our goal is to estimate f(x). We have f(1) = 1, since the
first packet P0,0 contains the signature of the hash value of
next packet P1,0. Suppose each index packet contains w hash
values and a node has already receives k packets. To simplify
the problem, let’s assume that all k packets and next f(k)

packets are index packets. Since each packet contains w
hash values, when this node receives k + 1th, it can verify
an additional w upcoming packets. So we have f(k + 1) =
f(k) − 1 + w. Based on this, we get the following recursive
equation

f(x) =

j
1 if x = 1
f(x − 1) − 1 + w if x > 1

Solve this equation, we get that

f(x) = (x − 1)(w − 1) + 1

Now, lets consider data packets. Suppose there are N pack-
ets in total. We have

f(x) = min((x − 1)(w − 1) + 1), N − x)

where N≈n× w
w−1

.
However, sometimes an index packet may contain less

than w hash values, so the actual value of f(x) may be
slightly less.

4.3 DoS attacks and countermeasures
An adversary can launch a DoS attack on a node by con-

tinually sending a fake signature. Although the scope of
damage due to this attack is limited, we can defend against
it if the size of the root packet is large enough. When the
base station disseminates a root packet, it attaches a one-
way hash chain (OHC) number Hi in the packet. Suppose
every node is pre-configured with the inital number H0 of
the OHC. When a node receives a root packet, it verifies the
OHC number by applying a one-way function with its saved
OHC number. Only after this verification does the node
verify the signature by running the public key algorithm.
Because an attacker doesn’t have the OHC, (s)he cannot
make a node run public key algorithm by sending fake sig-
natures to that node. In this way, the heavyweight public
key verification is protected by a lightweight preceding step
of OHC verification.

Another kind of DoS attack to our scheme is that an ad-
versary continues to transmit ACK or NACK messages to
the sender so that the sender will continue to retransmit
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packets and exhaust its battery and/or bandwidth. One
countermeasure against such an exhaustion attack is to es-
tablish a shared secret key between a sender and all its re-
ceivers, called a cluster key. This cluster key is used to gen-
erate a MAC for each acknowledgment packets. The sender
can verify the authenticity of each packet if the intruder
cannot compromise a node. Notice that even though the in-
truder can compromise a node and launch an attack, it still
has limited impact, as with the above DoS attack.

5. EXPERIMENTS
The goal of this experiment is to understand the costs of

our security mechanism, and see if it is feasible for sensor
network applications. Since prior work has already tested
the memory and computational costs of public key algo-
rithms and hash-based algorithms on sensor motes, we focus
on comparing the communication overhead and delay of our
hybrid scheme to the Deluge non-secure code propagation
scheme as well as the hash tree and hash chain approaches.
For the signed hash tree, we simulated the case that every
page contains a single hard tree.

5.1 Overhead vs. Packet Loss Rate
Our first experiment was to measure the extra overhead

cost of our secure reprogramming schemes compared with
Deluge. In this experiment, we set the packet loss rate to
range from 0% to 15%. The size of program code is 32 KB,
which is usual for real applications, and the size of hash
value is 4 bytes.

We run tests based on two types of sensor node configu-
rations. The mica2 mote, which uses chipcon CC1000, has
29 bytes of packet. Each packet contains 6 hash values (re-
maining some space for other information). A node uses 1K
bytes of RAM to save data in a page. The Tmote node,
which uses chipcon CC2420, has 128 bytes of packet. Each
packet contains 30 hash values. A node uses 4K bytes of
RAM to save data in a page. We measured the total num-
ber of sent packets, and the total time to distribute code to
all sensor nodes.

Figure 5 shows the message cost, measured by the num-
ber of packets sent in the network. The number of packets
exchanged corresponds to the energy cost, since the power
used in wireless transmission dominates energy consump-
tion of a sensor node. We simulated Deluge, hash chain,
hash tree, and hybrid schemes. Looking at these figures, we
see that the overhead of hybrid and tree schemes are

From these experiments we see that both hybrid and tree
schemes cost modest message overhead coompared with Del-
uge protocol, however, the cost of chain scheme is very high.
For instance, under Tmote configuration, when packet loss
rate is 5%, hybrid scheme costs extra 43% messages com-
pared with Deluge, which chain scheme costs extra 308%
messages compared with Deluge. The reason is in the NACK
mechanism used by Deluge, hybrid and tree schemes. They
send all packets in a page, and wait for one ACK/NACK
message back from each node. However, in chain scheme,
the sender has to wait for the ACK message from each node,
then it can decide whether to send next packet or repeat
the current packet, as we know that a node cannot verify
a packet if its previous packet was lost. The ACK message
based on each packet creates a large amount of traffic. On
the contrast, the extra message in the tree-structured index
packets only create modest extra traffic. We think the chain
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Figure 6: Message cost of reprogramming schemes
under different program code size
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Figure 7: Message overhead as a function of network
density.

scheme may work in the situation that the packet loss rate is
extremely low, so the sender can send a number of (suppose
m) packets and wait for a NACK message. If a packet k is
lost, the sender re-sends packets from k + 1 to m.

By comparing figure 5 (a) and (b), we see that when the
size of packet increase, not only the total amount of mes-
sages decreases, the overhead of hybrid and tree scheme also
decreases. This is because each index packet can contains
more hash values.

5.2 Overhead vs. Size of Code Image
Figure 6 displays the message cost when the size of the

program code changes. In this experiment, we simulated
propagation of program code with different sizes ranging
from 1 KB to 128 KB. We fixed the packet loss rate as 5%.
For all schemes, we see that the number of messages linearly
increases as the size of code increases, and the ratio of extra
cost is about 45% for hybrid scheme. This linear increase
as a function of code size conforms with the experimental
results obtained in the Deluge paper. Hybrid scheme and
tree scheme has almost same result since the hybrid scheme
only costs a few amount packets than tree scheme does.

5.3 Overhead vs. Network Density
In this experiment, we measured the number of exchanged

messages when the density of network changes, while the
packet loss rate is set as 5%. For instance, we changed the
number of neighbor nodes from 2 to 100.

Figure 7 depicts the message cost as a function of net-
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Figure 5: Message cost of reprogramming schemes under different packet loss rates.

work density, e.g. number of neighbor nodes. We see that
when the density changes, the hybrid scheme still costs far
less amount of messages compared with chain scheme. For
example, when a base station broadcasts a code image to 19
nodes, the total messages of Deluge is about 855, the total
messages of hybrid scheme is about 1756, and chain scheme
is about 8547.

5.4 Delay vs. Packet Loss Rate
Figure 8 shows the time delay for reprogramming. We set

the packet transmission delay at about 50 milliseconds, and
the computing time of signature verification with ECC is
about 13 seconds. We see that the hybrid scheme still keeps
modest overhead compared with Deluge. The overhead of
the chain scheme is much higher than hybrid, since it needs
to send many more packets. The total delay of the tree
scheme is much higher than chain scheme, because it has
to run public key algorithms multiple times to verify pages
of packets in one code image. When the packet loss rate
is 5%. Deluge takes 2.2 minutes to send all data in mica2
motes, hybrid scheme uses 3.3 minutes, chain scheme uses
7.2 minutes, and tree schemes uses 10.6 minutes.

6. RELATED WORK
Because it is far more efficient than public key algorithms,

hash functions have been widely used to authenticate trans-
mitted data. For example, K. Fu et al. proposed a se-
cure read-only file system with hash tree [8]. A. Perrig pro-
posed the BiBa scheme which is based on one-way functions
and the birthday paradox [18]. A. Perrig et. al proposed
µTESLA [19] protocol for source authentication in data dis-
semination through lossy channel. However, µTESLA re-
quires global loose time synchronization which is difficult
to apply to reprogramming wireless sensor networks. Also
it is vulnerable to denial of services attacks due to delayed
authentication. C. Karlof et. al proposed a mechanism for
secure multicast in lossy data transmission environment [13].
A receiver can verify each packet it received and can recover
original data even though some packets are lost. But this
mechanism is too expensive for resourc-poor sensor nodes.

V. Gupta et. al implemented the SSL protocol on sen-
sor node with RSA and elliptic curve algorithms, called
Sizzle [10]. In contrast with Sizzle, our scheme works for
one-to-many data dissemination paradigms, in which a base
station broadcasts a program code image to multiple sen-

sor nodes one or more hops away. The base station doesn’t
use end-to-end data transmission scheme since that is too
expensive.

7. CONCLUSIONS AND FUTURE WORK
This paper develops a novel secure code propagation pro-

tocol for wireless sensor networks that employs private key
signing of the root of a joint structure comprised of hash
chains for inter-page authentication and hash trees for intra-
page authentication. This solution has the following advan-
tages: node-compromise resilience, since the public key and
linked chain-tree hash structures protect all packets; DoS-
attack resilience since the tree structure allows immediate
and rapid verification of packets; and low cost realization in
terms of 1) low delay due to public key authentication being
performed only once initially 2) low delay due to fast hash-
based verifications for all subsequent packets 3) low overhead
since the hash tree tolerates disorder and reduces unneces-
sary retransmissions. Our simulations confirm that our so-
lution incurs substantially less delay than the signed hash
tree scheme, and substantially less overhead than the loss-
sensitive signed hash chain. Our schemes are light weight
enough to be feasible for current sensor network platforms,
and are well-adapted to practical code propagation protocols
such as Deluge. In the future, we plan to implement the hy-
brid scheme on a multi-hop testbed of the Tmote TELOS
motes.
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