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Abstract
Deployments of wireless LANs consisting of hundreds of
802.11 access points with a large number of users have been
reported in enterprises as well as college campuses. How-
ever, due to the unreliable nature of wireless links, users
frequently encounter degraded performance and lack of cov-
erage. This problem is even worse in unplanned networks,
such as the numerous access points deployed by homeown-
ers. Existing approaches that aim to diagnose these prob-
lems are inefficient because they troubleshoot at too high a
level, and are unable to distinguish among the root causes
of degradation. This paper designs, implements, and tests
fine-grained detection algorithms that are capable of distin-
guishing between root causes of wireless anomalies at the
depth of the physical layer. An important property that
emerges from our system is that diagnostic observations are
combined from multiple sources over multiple time instances
for improved accuracy and efficiency.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

General Terms
Algorithms, Measurement, Performance

Keywords
Anomaly detection, wireless networks, self-healing

1. INTRODUCTION
The reduction in cost and ease of installation of 802.11

based wireless LAN (WLAN) hardware has resulted in a
surge of large scale planned and small scale chaotic deploy-
ments. Planned WLAN deployments consisting of a large
number of access points with hundreds of associated clients
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have been reported in enterprises [6] as well as college cam-
puses [15]. Recent studies like [9] and [4] have shown that it
is also common to have dense and unplanned deployments of
access points consisting of 30-40 APs in range of each other
in residential settings.

With this growing adoption of the technology and in-
creasing dependence on WLANs by mission critical app-
lications, users are beginning to demand reliability, perfor-
mance, scalability and ubiquitous coverage from the wireless
networks. However, existing 802.11 deployments provide
inadequate coverage and unpredictable performance. The
reasons leading to the degraded performance include dense
deployment, noise and interference, RF effects such as hid-
den terminals and capture effects, and limitations in the
802.11 MAC layer. Existing tools for diagnosing WLANs
are unable to distinguish between root causes of perfor-
mance degradation because they employ packet metrics at
the MAC layer and above. These metrics tend to aggre-
gate the effects of multiple physical (PHY) layer anomalies,
which can result in a misdiagnosis and/or the application of
an inappropriate or inefficient remedy.

In this paper, we design, implement, and evaluate detec-
tion algorithms for commonly observed problems/faults in
WLANs. These detection algorithms are able to distinguish
between root causes of performance degradation at the gran-
ularity of PHY layer phenomena. As we will demonstrate,
gaining a more precise understanding of the root causes of
an anomaly at the depth of the PHY layer enables more
informed remediation. In particular, we devise detection
algorithms that detect hidden terminals in the network and
differentiate that activity from terminals experiencing cap-
ture effect. We also devise algorithms that detect noise due
to non-802.11 devices and detect anomalous signal strength
variations at the AP and determine if those signal variations
are caused by environmental conditions or actions by the ac-
cess point. An important property that emerges from our
system is that diagnostic observations are combined from
multiple sources over multiple time instances for improved
accuracy and efficiency. This property leads us to entitle
our tool as Mutual Observation with Joint Optimization
(Mojo).

The key contributions of our work are:

• As far as we know, this is the first body of work which
looks at building a unified framework to be able to
detect underlying physical layer anomalies,

• We quantify the effect of different faults on a real net-

191



work and measure the impact at different layers of the
stack,

• We build statistical detection algorithms for each phys-
ical effect and test the accuracy of the detection algo-
rithm on a real testbed,

• And lastly, we use commodity off-the-shelf hardware
to build the entire system.

The rest of the paper is structured as follows. In the next
section, we give a longer overview of the problems encoun-
tered in wireless networks and possible solutions. Section 3
presents the architecture of the system and the challenges in
building a client-side monitoring framework. In Section 4 we
present the details of the detection algorithms. Section 5
describes our remediation strategies. Section 6 discusses the
related work and Section 7 concludes the paper.

2. OVERVIEW
Performance degradation in 802.11 WLANs arises from

a variety of common sources, including 802.11-based inter-
ference, non-802.11 interference [7, 19], RF effects like hid-
den terminals and the capture effect [12, 17], heterogeneity,
and limitations of the 802.11 MAC itself [16, 14]. First,
802.11 deployments are becoming denser and it is common
to have 10-15 APs in range of each other in residential en-
vironments [4]. Due to only three non-overlapping channels
for the 802.11b protocol and significant signal power spillage
in the adjacent channels, performance is degraded due to
adjacent channel interference [9]. Second, the 2.4 GHz ra-
dio spectrum is shared with a host of other communication
protocols and devices like Bluetooth devices and microwave
ovens. The lack of a common media access protocol leads
to a significant amount of degradation and unpredictable
performance. Third, due to the non-isotropic nature of the
wireless transmission range, dense deployments are plagued
by the well known hidden terminal problem and capture ef-
fects. Figure 1 illustrates the difference between these two
effects. Station C is isolated by an RF barrier from sta-
tions A and B, resulting in the classical “hidden terminal”
problem. Stations A and B cannot sense transmissions by
station C; simultaneous transmissions by C and B would
cause corrupted packets at the access point, AP. However,
not all simultaneous transmissions lead to corruption. For
example, due to aspects of the 802.11 media acquisition, sta-
tions A and B may simultaneously transmit; however, the
transmission from station B is likely to “capture” the AP re-
ceiver, leading to a successful reception. The standard rem-
edy for hidden terminals would be to have station C use the
RTS/CTS mechanism when communicating with the access
point. This would inform stations A and B that the media
is busy. Likewise, the problem of the “capture effect” can
be remedied either by having station A increase its transmit
power or by adjusting the media acquisition mechanisms.

Heterogeneous transmit power leads to asymmetric trans-
mission ranges, which exacerbates the problem of the hidden
terminals and capture effect in the network. Table 1 lists the
specifications of the transmit power and receive sensitivity of
a heterogeneous collection of common 802.11 client adapters.
We observe that each client adapter has a different transmit
power and rate sensitivity.

Heterogeneous receiver sensitivities can further lead to un-
fairness in performance. Table 1 lists the receive sensitiv-
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Figure 1: Network organizations leading to hidden
terminals and capture effect

Tx. 1M 2M 5.5M 11M
Cisco 350 20 -94 -91 -89 -85
Orinoco Gold 15 -94 -91 -87 -82
Dlink DWLG650 15 -89 -86 -85 -82
Compaq WL110 15 -94 -91 -87 -82
Linksys WPC11 18 -91 -89 -85 -82
Linksys WPC55AG 17 -93 -91 -88 -86

Table 1: Transmit power and receive sensitivity in
dBm. Uniformly, receivers are less susceptible to
noise when using the slower data rates and there
is significant variance between different receivers.
Transmission power can reach as high as 300 mW
(25 dBm).

ity for the four data rates supported by 802.11b protocol.
With each client adapter having a different receive sensi-
tivity and variations in signal strength at the access point,
client adapters select different data rates to communicate
with the AP under identical conditions. Since the 802.11 me-
dia access control mechanism promotes “station fairness”,
different receive sensitivity can lead to a large portion of the
medium being used by the lower data rate stations in the
network, and hence effectively slowing down the higher data
rate clients in the network [16, 14].

The limitations of the 802.11 protocol itself can further
degrade performance. The two main problems consistently
addressed by the research community are the collision avoid-
ance mechanism of 802.11 [12, 29, 30] and the breakdown of
CSMA under periods of heavy contention.

Thus, even with careful network planning and assignment
of AP parameters, the irregularities of the transmission range
and receiver sensitivity, the shared 802.11 spectrum and ad-
hoc location of clients in the network can cause degradation
in the performance of the network. These problems are ex-
acerbated in an unplanned network, which in addition is
prone to adhoc deployment of APs and interference caused
by neighboring APs.

2.1 Performance Diagnostic Tools and Their
Limitations

To address the performance degradation due to an un-
planned WLAN network deployment, there are a number
of open source as well as commercial tools [1, 2] available
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Figure 2: Pyramid structure of how faults propagate
up the network stack

that perform network planning. With exhaustive site sur-
veys and detailed information about the characteristics of
the environment, these tools allow the network administra-
tor to set the frequency channel, power and location of the
APs to optimize the performance and coverage of the net-
work.

However, these tools are incomplete because they capture
the behavior and organization of the network at a single
point in time; wireless networks encounter sufficient time-
varying conditions that inexpensive dynamic monitoring is
useful. Moreover, many of the problems experienced in a
network occur because of the stations in the network; most
site-planning tools only focus on the placement and perfor-
mance of access points.

Diagnostic tools that only collect packet statistics at the
MAC layer and above will also suffer from a masking ef-
fect such that a single higher-layer network statistic will ag-
gregate the effects of more fundamental lower-layer causes,
thereby masking the individual root causes. Figure 2 de-
picts the common faults observed in a wireless network and
the manifestation of the faults at the higher layers of the
network stack. The root causes of the faults are shown by
solid boxes and the dashed boxes denote the effect of the
root cause. As seen in the figure, faults that originate at
the PHY layer converge at higher layers of the stack. At the
higher layers, all the faults manifest themselves as degraded
performance. It is this convergence of the manifestation of
the root causes that makes diagnosis and troubleshooting
faults in a wireless network a challenging task. Faults like
hidden terminals, capture effect, signal strength variations
and noise in the network all cause retransmissions at the
MAC and degraded throughput at the network layer. With-
out adequate visibility into the PHY layer, it is not possi-
ble to differentiate a retransmission caused due to hidden
terminals and a retransmission caused due to noise in the
network.

For example, both hidden terminals and the capture ef-
fect cause collisions and retransmissions of the MAC frames.
Even though hidden terminals and the capture effect have a
similar “cause” (simultaneous transmission of packets), the
remedies are different. The remedy for hidden terminals
(RTS/CTS) would do little to counter the problem causing

the capture effect while still decreasing channel utilization.
In Figure 1, initiating RTS/CTS on nodes A and B would
do little to counter the capture effect while degrading the
throughput of A and B.

Having the ability to diagnose the root cause fault of in-
creased retransmissions at the MAC and degraded through-
put at the network layer facilitates efficient remediation of
the problems. Existing 802.11 drivers perform rudimentary
remediation by performing rate fallback. For example, in the
presence of excessive retransmissions at the MAC layer, the
encoding rate is dropped to make the transmission resilient.
However, with some visibility into the PHY and knowledge
of the root cause fault, more efficient remediation could be
enabled. Noise in the network could be remedied by switch-
ing the frequency channel to a less noisy channel and hidden
terminals could be remediated by stepping up the transmit
power such that both the colliding stations are not hidden
from each other. Both the above remediations bypass the
rudimentary remediation performed by the MAC layer, and
thereby improve the performance of the network as com-
pared to the default 802.11 based remediation.

2.2 Root Causes Targeted
Table 2 provides a summary of the different faults that

our diagnostic framework focuses upon and their propaga-
tion effects on different layers of the network stack. From
the table we make a couple of key observations: First, faults
originating at the physical layer manifest themselves in the
same way at higher layers of the network, and hence requir-
ing detection at the physical layer. Second, detection at the
physical layer requires combining observations from multiple
distributed sniffers as compared to single point observation
Lastly, based on our experiments we observe that the default
802.11 remediation for each fault is to initiate rate fallback.
In some cases, this can rapidly degrade the network per-
formance because an inappropriate remedy is applied and
stations are forced to lower data rates, leading to poor net-
work performance [16, 14]. In other cases, this rate fallback
helps only to partially circumvent the problem. With com-
plete knowledge about the root cause of the fault efficient
remediation procedures can be performed which improve the
performance of the network.

Our focus is on diagnosing at the granularity of root causes
because this provides sufficient information to suggest reme-
dies that can meaningfully improve performance. Our ap-
proach provides a design point upon which even finer gran-
ularity diagnosis can be based.

3. SYSTEM ARCHITECTURE
Our system architecture is based on an iterative design

process. Our hypothesis was that faults in a wireless net-
work require visibility into the underlying PHY layer and
that with correct diagnosis these faults can be efficiently
remedied.

To initially test this hypothesis, we first artificially repli-
cated these faults in a testbed and measured the impact of
the fault at each layer of the network stack. Based on our
experiments we determined that it is important to observe
faults at multiple sensors.

For example, hidden terminals are diagnosed by detect-
ing concurrent transmission by the stations followed by a
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Anomaly Effect on PHY Effect on MAC Effect on NET Existing 802.11
remediation

Informed remedi-
ation

Hidden termi-
nals

Collisions
throughout the
length of the
packet

ReTx. due to col-
lisions.

Degraded
throughput

Rate fallback Increase trans-
mit power or
enable collision
avoidance

Capture effect Collisions mostly
during the pream-
ble

ReTx. due to col-
lisions. Stronger
frame is received

Degraded
throughput
and unfairness

Rate fallback Increase or de-
crease tx. power

Noise Rise in calibrated
noise floor

ReTx. due to cor-
ruption of frames
and high backoff

Degraded
throughput

Rate fallback Switch channel or
associate with al-
ternate AP

Signal
strength
variations

Correlated in-
crease or decrease
in RSSI

ReTx. due to
dropped packets

Degraded
throughput

Rate fallback Associate with al-
ternate AP

Table 2: Propagation of faults at different layers of the stack. The faults converge to degraded performance at
higher layers of the stack. Table also shows the existing 802.11 based remediation and informed remediation
based on root cause analysis.

retransmission by atleast one of the stations. This would
require correlating information from distributed sniffers as
compared to looking at the observations from a single sniffer.

This process lead to the design of Mojo. When designing
Mojo, we desired the framework to be: (a) flexible so that
sniffers can be deployed anywhere in the network; (b) in-
expensive to deploy; (c) accurate in diagnosing root causes
of wireless performance degradation at the PHY layer for
the previously described physical effects; (d) capable of im-
plementing efficient remedies for each of the diagnosed root
causes; (e) efficient in terms of communication overhead;
and, (f) able to perform near-real-time online diagnosis and
remediation.

The three main components of the system are the wire-
less sniffers, the data collection mechanism and the inference
engine used to diagnose problems and suggest remedies. In
our initial design, the data collection and diagnosis opera-
tions are centralized at a single server. The wireless sniffers
sense the underlying physical layer parameters and periodi-
cally transmit a summary of the information to the inference
engine via the AP. The inference engine collects this infor-
mation from the sniffers and runs the detection algorithms.

We first describe the sniffer placement and then describe
how the data is sent to the central server. Section 4 describes
the various detection algorithms that analyze the data from
the sniffers, and assesses the detection algorithms’ accuracy.
Section 5 discusses remedies.

3.1 Sniffer Placement and Function
Sniffer placement is an important factor for wireless net-

work monitoring, as it determines the coverage of the net-
work. Due to the unreliable nature of the broadcast medium,
wireless traces are inherently lossy; hence, a sub-optimal
placement of these sniffers could leave parts of the network
un-monitored.

Existing wireless network monitoring work has mainly fo-
cused on performance monitoring and security monitoring to
detect rogue APs [10]. As we will show, a key requirement
of diagnosing root cause faults at the physical layer is that
along with adequate coverage, multiple sniffer observations
are required. Existing work only focuses on placement of
sniffers to ensure complete coverage of the wireless network.

A number of traffic measurement studies have been done
that collect traffic statistics by monitoring the traffic flowing
on the wired end of the network by using tools like SNMP
and syslog (AP system logs) [15, 11]. Although these tools
provide complete information of the traffic flowing on the
wired end of the network, it provides limited visibility into
the wireless end of the network. These tools cannot record
fine grained information at the MAC and PHY layer and
usually only provide aggregate statistics maintained by the
AP.

To address the limitations of wired side monitoring, re-
searchers have proposed wireless monitoring based on fixed
sniffers. These sniffers are carefully placed relative to the
client positions in the wireless network. However, the au-
thors in [31] observe that even with careful placement of
wireless sniffers, multiple wireless sniffer traces are required
to be merged so as to account for data missed by one or more
sniffers. Furthermore, often client locations are not known
a priori or these may change over time, requiring sniffers
locations to be changed frequently.

An additional constraint of our fault diagnosis system is
that most faults are localized in the network. Hence, sniffers
should be collocated with the client stations. For example,
only the client station that is close to a microwave oven is
subject to noise/interference, but even the closest sniffer to
the client may not be able to sense the noise in the network.

To extract this fine grained information, we propose in-
strumenting the client side driver to collect information about
the underlying physical layer. To collect information about
the physical layer we have instrumented the Atheros based
Madwifi driver [3]. This information is then aggregated at
the AP, and based on these distributed client side observa-
tions faults are diagnosed. However, there are no constraints
in our design that require sniffers to be implemented only in
the client. In general, the sniffers are allowed to be placed
anywhere in the network, with the recognition that non-
client-side placement of sniffers results in a suboptimal pic-
ture of the network.

3.2 Physical layer diagnosis information
In this subsection we give the details of the PHY layer di-

agnosis information collected and the overhead in collecting
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this information. In order to diagnose the root causes of the
anomalies listed in Table 2, we need to capture three sources
of information: network interference, signal strength varia-
tions in access points and concurrent transmissions. This
information is aggregated over an interval of
EPOCH INTERVAL, which could be adjusted to get fine
grained data series of different physical layer metrics. For all
our experiments we set the EPOCH INTERVAL to 10 sec.

The Atheros Madwifi driver periodically calibrates the
noise floor of the network. This noise floor is used as a
benchmark for the PHY clear channel assessment (CCA)
i.e. before a frame is transmitted, the noise floor is sam-
pled and only if the sampled noise floor is less than a preset
threshold is the transmission initiated. By examining the
the open source version of the hardware abstraction layer
(HAL) used in the OpenBSD project we were able to identify
the hardware register that the driver queries for the noise
floor. Thus, once every EPOCH INTERVAL, the noise floor
register is sampled and the sampled noise floor is transmit-
ted to the central server. The sampled noise floor value is 4
bytes long.

To detect long term anomalous signal strength variations
at the AP, the sniffer extracts the signal strength field from
the Prism header for every beacon frame received from the
associated AP. The sniffer computes the average of the re-
ceived signal strength over 10 consecutive beacon frames
received from the AP over a period of EPOCH INTERVAL.
These signal strength aggregates along with the start and
end sequence numbers of every aggregate are transmitted
to the AP. Assuming a default of a 100 ms beacon interval,
and each record being 8 bytes long (4 bytes signal strength,
2 byte start sequence no, 2 bytes end sequence number),
only 80 bytes of information are transmitted every
EPOCH INTERVAL to detect signal strength variations.

Hidden terminals are diagnosed by detecting concurrent
transmissions in the network. To detect concurrent trans-
missions the exact time at which data frames are transmit-
ted over the air are recorded by each client station. By com-
paring the starting transmission time and duration of each
packet transmission, the central inference engine could iden-
tify concurrent transmissions. However, due to limitations
of the existing Atheros driver, we are not able to extract
the exact time at which the data frame was transmitted.1

However, the Atheros driver timestamps every frame that
is received over the interface using an on-board 64-bit mi-
crosecond resolution timer. By subtracting the duration of
the packet transmission and the length of the preamble we
can recover the exact time at which the frame was transmit-
ted. Thus, to prototype our implementation of detection of
hidden terminals, we used two wireless interfaces on each
station in the network. The secondary radio used to record
the timestamps is placed in monitor mode, and hence does
not interfere with the primary client radio. Also, the prox-
imity of the two radios ensures that the secondary radio
receives every frame transmitted by the primary radio due

1This is because after the driver prepends the 802.11 header
to the sk buff, the sk buff is placed at the end of the hard-
ware transmit queue and an interrupt is generated stating
completion of transmission to allow the driver to process
the next frame. Based on the length of the transmit queue,
a variable delay is introduced before the frame is actually
transmitted. Hence, it is not possible based on the current
driver design to accurately timestamp the frame.

Figure 3: Spectral mask for OFDM and DSSS

to capture effect. For each data frame transmitted by the
primary radio, the monitoring radio collects the timestamp
(8 bytes) and sequence number (2 bytes) of the data frame
and transmits this aggregated information to the central
server once every EPOCH INTERVAL. Assuming a max-
imum throughout of 1 Mbps per client in the network with
an average payload of 768 bytes per packet, each client ag-
gregates approximately 1.3 KB of data every 10 secs.

Since the aggregate reporting rate of each client is less
than about 200 bytes/sec, then our goal of low overhead
communication for diagnostic information is met. In addi-
tion, the lightweight data rate can be easily processed online
by the inference engine to provide near real-time diagnosis
and remediation of faults.

4. DETECTION ALGORITHMS
In this section we present the detection algorithms that

are used to detect hidden terminals and capture effect, noise
and long term signal strength variations at the AP. The
faults are artificially replicated on a testbed and the perfor-
mance degradation caused by the fault is analyzed at the
physical layer, link layer and at the network layer. Based
on the analysis of the fault at the different layers of the net-
work stack, we propose detection algorithms using informa-
tion from the underlying physical layer, and finally measure
the effectiveness of the detection algorithm.

4.1 Noise or non-802.11 interference
Based on recent studies [9], dense deployment of 802.11

networks consisting of 10-15 APs in range of each other are
common. Not only are these deployments dense, but it is
also common to have mixed-mode 802.11b and 802.11g de-
ployments. The 802.11 protocol specifies a listen-before-talk
based CSMA channel access mechanism, wherein a trans-
mitter would defer transmission until the channel has been
sensed free for a duration of (50 µsec). The noise floor
threshold against which the sampled noise floor is compared
against ranges from -85 dBm to -90 dBm.

Figure 3 shows the transmit spectral mask for OFDM
and spread spectrum (DSSS) encoding as specified by the
IEEE 802.11b and 802.11g specification respectively. The
spectral mask includes the energy that is radiated into the
adjacent channels of the spectrum. From the figure we ob-
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serve that OFDM has much higher energy radiation as com-
pared to spread spectrum. Even at 22 MHz from the cen-
ter frequency (Fc + 22 MHz), the energy radiation of a
spread spectrum transmission is -50 dBr and that of OFDM
is -30 dBr. Thus, assuming the typical transmit power of
an AP of 20 dBm and a path loss of -60 dBm for a dense
deployment of APs, an OFDM transmission on channel 6
(2.437 GHz) would radiate approximately -70 dBm power in
channel 11 (2.452 GHz). This radiated energy that cannot
be decoded is sensed as noise by the transmitter on channel
11, and causes the transmitter to defer until the transmis-
sion of the OFDM transmission on channel 6 is completed.
Hence, even with careful planning of the network, the wide
spectral mask of OFDM transmissions cause interference in
non-overlapping channels. This noise level increases with
multiple access points operating in mixed mode and inter-
fering with each other.

An alternate source of noise/interference in the network
is the energy radiated by the non-802.11 devices like mi-
crowave ovens and cordless phones, which also operate in
2.4 GHz ISM band. Most non-802.11 devices like microwave
ovens and cordless phones operating in the ISM band do not
follow a channel access protocol. Due to the lack of a com-
mon channel access protocol, there is significant interference
caused by these devices.

To overcome the above problems, it is important to be able
to sense/measure the level of noise/interference on the chan-
nel. With detailed knowledge of the noise level, adaptive
channel selection algorithms could be implemented which
could reduce the degradation in performance.

4.1.1 Impact of noise at MAC and NET layer
To measure the impact of noise/non-802.11 interference

on the network stack we conduct controlled experiments us-
ing the Agilent 4438C signal generator as a calibrated noise
source. A frequency modulated signal, similar to the in-
terference caused by microwave ovens and cordless phones,
was generated. The experiment setup consisted of node A
associated with the AP. The signal generator was only con-
nected to node A using a RF splitter. The other port of the
RF splitter was connected to the sniffer, which logged the
timestamp of the frames received and transmitted by node
A.

We measured the round trip time (RTT) at the network
layer. The power of the signal generator was increased from
-90 dBm to -50 dBm and the packet payload was increased
from 256 bytes to 1024 bytes in steps of 256 bytes. For each
setting of the power and payload size, 1000 frames were
transmitted by station A, the experiments were repeated 10
times. The graphs show the mean and the 95% confidence
intervals. Figure 4 shows the increase in the round trip time
as the power of the signal generator is increased. The RTT
does not change until the signal power is around -65 dBm.
However, beyond -65 dBm, there is a sharp increase in the
RTT. Beyond -50 dBm there was 100% packet loss.

Looking deeper at the MAC layer traces we observed that
there are two main reasons which contribute to the increased
RTT at the network layer: channel interference and exces-
sive backoff at the MAC layer.

Due to the interference on the channel, a significant per-
centage of the frames are corrupted and have to be retrans-
mitted at the MAC layer. At a power level of -60 dBm,
around 20-30% of the frames received at the MAC layer

Figure 4: Measured RTT increases as the power
of the signal generator is increased. Payload is
768 bytes (Bars show 95% confidence interval).

Figure 5: Percentage of data frames re-transmitted
by node. Signal power set at -60 dBm.

are corrupted and have to be retransmitted. Figure 5 plots
the percentage of data frames that are retransmitted for
different payload sizes at a power level of -60 dBm. We ob-
serve that as the payload of the MAC frame is increased, the
frame is more likely to be corrupted. Hence at the maximum
payload of 1280 bytes, the percentage of retransmissions in-
creases to around 35%. Figure 5 also shows the percentage
of frames being retransmitted in the absence of any noise in
the network.

Figure 6: DCF mechanism of 802.11 protocol

Figure 6 provides a high level overview of the 802.11 DCF
protocol. The transmitting station needs to sense the medium
to be free for a DIFS interval (50 µsec) and then select a ran-
dom backoff (TBackoff ) before initiating transmission. The
random backoff is chosen from a collision window which is
exponentially doubled on an ACK timeout and set to min-
imum on successfully receiving an ACK. TBusy is the time
interval spent sensing the medium to become free. We an-
alyzed the packet trace collected at the MAC layer by the
monitoring station to calculate precisely the amount of time
the stations spends in backoff and busy sensing (TBackoff +
TBusy). This is calculated by measuring the amount of
time spent after receiving an ACK and the initiation of
the next data frame from station A. This is calculated as
TBackoff + TBusy = T2 −DATA−Preamble−DIFS− T1.
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Power (dBm) Mean (µsec) Std.Dev. (µsec)

-90 96.28 160.17
-80 96.71 168.60
-70 105.37 224.88
-65 212.60 876.19
-60 286.35 716.97
-50 960.28 1978.08

Table 3: Mean and std. dev. of the time spent in
backoff and busy sensing the medium

Figure 7: Mean and 95% conf. interval noise floor
calibration for the Atheros chipset.

Table 3 shows the mean and the standard deviation of
the amount of time spent in backoff and busy sensing the
medium for different power levels of the signal generator.
The payload was fixed at 768 bytes. Clearly, at higher trans-
mit power levels, a significant amount of the RTT is spent in
backoff and busy sensing. While increasing the contention
window reduces contention between cooperating stations, it
does not reduce interference from a noise source.

4.1.2 Impact of Noise at PHY layer and Detection
Algorithm

Figure 7 shows the mean and 95% confidence interval
of the noise floor values reported by the HAL for differ-
ent power levels of the input signal generator.2 We observe
that the noise floor does not change until around -70 dBm;
beyond -70 dBm there is a linear increase in the calibrated
noise floor. The maximum standard deviation that was ob-
served at any power level was 0.6 units and the average
standard deviation across all the power levels was 0.2 units.

Since the Atheros chipset has precise noise detection, the
detection algorithm is simplified. We change the sampling
rate of the noise floor from 30 sec to EPOCH INTERVAL.
Every EPOCH INTERVAL the noise floor is sampled and
transmitted to the central server. The central server main-
tains a sliding window average of the mean and monitors
the noise floor sampled by the sniffer to detect a change in
mean.

Figure 8 shows the noise floor sampled once every 5 mins
by a sniffer over a period of 5 days in a typical residential set-
ting. The residential setting is representative of a collection
of unplanned networks with APs installed by the home own-
ers. The sniffer’s frequency channel was set at 2.437 GHz

2The units on the Y-axis are specific to the Atheros chipset
and their meaning is not known.

Figure 8: Noise floor sampled every 5 mins for a pe-
riod of 5 days in a residential environment. On an
average, there were 8 APs in range of each other
on channel 6. The detection threshold is set at
-65 dBm.

(Channel 6). Based on the beacon frames recorded by the
sniffer, we observed that on average there were 8 APs in
range of the sniffer operating on the same channel. The
graph shows a long term increase and decrease in the sam-
pled noise floor across the five days. As seen in Figure 5,
the RTT begins to increase only beyond -65 dBm. Hence,
Mojo sets the noise floor threshold to -65 dBm and trig-
gers a fault when the sliding window average is above the
threshold. From figure 8 we observe that the noise floor of-
ten increases above the threshold for long time periods. By
detecting the increase in noise floor, the client can either
switch the channel of the AP or associate with an alternate
AP.

4.2 Hidden Terminal and Capture Effect
It is important to note that both capture effect and hidden

terminals are caused due to concurrent transmissions and
collisions at the receiver. However, the important differenti-
ation between the two is that the transmitting stations that
are causing capture at the receiver are not necessarily hid-
den from each other. For example, through our experiments
we observed that even though both stations A and B are
within range of each other, they still transmit concurrently.

The first question that needs to be answered is why would
two stations that are in range of each other transmit con-
currently. There are two key features that cause the above
anomaly. One is that the 802.11 protocol sets the contention
window to CWmin on receiving a successful ACK and a
backoff interval is selected from this contention window. The
second is the time required to sense the channel. The 802.11
specification states that the total Clear Channel Assessment
(CCA) time including the turnaround time is 25 µsec (Sec-
tion 15.4.8.4 of the IEEE 802.11 specification [5]).

Consider two competing stations A and B as shown in
Figure 1 that are in range of each other and have their con-
tention window set to the minimum CWmin. If station B
initiates transmission at time TB and the backoff timer of
station A expires within the interval TB + 25 µsec, station
A would not have correctly sensed the medium to be busy
and would initiate the transmission causing a collision at the
receiver. The 25 µsec interval is calculated as 15 µsec for
energy detection time and 10 µsec for the Tx-Rx turnaround
time. Variability in both the energy detection time as well
as the turnaround time for different chipsets would affect
the time difference between the collisions.
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Metric Capture
(11 Mbps)

Capture
(5.5 Mbps)

Hidden Terminal
(11 Mbps)

Hidden Terminal
(5.5 Mbps)

Degradation in goodput
1− Goodput with anomaly

Goodput with no anomaly

0.03 0.05 0.39 0.48

Avg. transmission per data
frame

Total frames Tx.
No. of unique frames Tx

1.3
A(1.42,±0.14)
B(1.18,±0.09)

1.56
A(1.87,±0.23)
B(1.25,±0.05)

1.97
B(1.57,±0.17)
C(2.37,±0.11)

2.06
B(1.78,±0.33)
C(2.34,±0.07)

% of data frame that collided 5.3 5.9 40.46 41.19
% of data frame collisions af-
ter preamble

2.29 2.44 13.36 19.89

Table 4: Metrics extracted from trace collected for TCP stream tests

In the case of hidden terminals in the network, the nodes
are not in range of each other and hence can collide at any
point in a transmission.

To measure the impact of capture effect and hidden ter-
minals at the different layers of the network stack, we artifi-
cially set up the faults on a testbed similar to layout shown
in Figure 1. To set up capture effect, node B was placed
closer to the AP as compared to node A. The SNR of node
B at the AP was measured to be -50 dBm and that of node
A was measured to be -65 dBm. Rate fallback was turned
off and the rate at both the stations was fixed.

To measure the impact of hidden terminals, we set up
asymmetric hidden terminals. In this case, the transmit
power of node C was attenuated such that it had a per-
fect link to the AP, but it was hidden from node A. We
term this example of hidden terminals as asymmetric hid-
den terminals, in which only a single station is hidden from
the other. Due to the asymmetric transmission ranges and
heterogeneity of client interface specifications, we observed
that asymmetric hidden terminals are more common as com-
pared to the classic example of hidden terminals where both
stations are hidden from each other.

Note that for the capture effect, node B has a higher SNR
at the AP as compared to node A. For the asymmetric hid-
den terminal example, the transmit power at node C was
attenuated such that it is hidden from node A, and hence
node A has a higher SNR at the AP as compared to node
C.

Table 4 provides a summary of the experimental results
comparing the performance degradation caused by capture
effect and hidden terminals. The experimental setup con-
sisted of two nodes (either A and B or A and C) generat-
ing TCP traffic to the destination node connected on the
100 Mbps Ethernet backbone. Netperf was used as a traffic
generator and the payload of the TCP packets was varied
from 256 bytes to 1024 bytes in steps of 256 bytes. The
experiments were performed with the rate fallback disabled
as well as the data rate fixed at 5.5 Mbps and 11 Mbps. For
each payload size the experiments were carried out 10 times.
The results shown in the table are averages over the all the
payload sizes.

From the table we observe that in a network consisting of
only two nodes, capture effect leads to approximately 5-6%
of frames colliding and hidden terminals result in 40-42%
of frame colliding. By increasing the number of nodes in
the network, the number of collisions would increase, and
hence further degrading the performance of the network.
In [17], the authors present an analytical model to measure

the overhead of 802.11 due to collisions and contention in
presence of capture effect. Based on the model and the
default 802.11 DCF parameters, the authors conclude that
the throughput achieved of the stock 802.11 protocol is sub-
optimal beyond 3 to 4 nodes in the network. This sub-
optimality is due to capture effect and time spent in backoff.

To measure the impact at the network layer, we measure
the degradation in goodput caused by the anomaly. Cap-
ture effect only causes about 3-5% degradation in goodput.
However, hidden terminals have a significant effect on the
overall performance of the network. This degradation in
performance is aggravated at lower data rates because trans-
missions are longer at lower data rates, increasing the prob-
ability of collision. We see approximately 9% drop in per-
formance for the hidden terminal anomaly by changing the
data rate from 11 Mbps to 5.5 Mbps. Looking closer at the
packet traces, we observe an increase in the retransmissions
at the MAC layer. As a metric to measure the number of
retransmissions at the MAC layer, we compute the ratio be-
tween the total number of data frames transmitted by a sta-
tion (including retransmissions) and the number of unique
frames transmitted. The number of unique frames trans-
mitted are calculated by computing the difference between
the start and end sequence number of the trace collected at
the MAC layer. We observe a sharp increase in the number
of retransmissions at the MAC layer in the hidden terminal
case. Along with the increase in retransmission, there is also
unfairness involved. For the capture effect, node A (which
has a lower SNR at the AP) has a higher number of retrans-
missions as compared to node B. For the hidden terminal
anomaly, node C (which is the low power node and hidden
from node A) has a much higher retransmission ratio.

4.2.1 Distribution of overlap between colliding
frames

As discussed above, both hidden terminals and capture ef-
fect are caused due to concurrent transmissions by the sta-
tions. Table 4 shows the percentage of data frames that
collide at the AP due to capture effect and hidden termi-
nals. Based on the analysis at the start of this section, our
hypothesis is that collisions due to capture effect should only
occur during the first 25-40 µsec, whereas collisions due to
hidden terminals should not be restricted to this time in-
terval. To test the above hypothesis, we measure the time
difference between the start of the two concurrently trans-
mitted frames. To account for variability in the firmware,
we extend the interval to the first 100 µsec.

Figure 9 shows a histogram of the difference between the
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Figure 9: Histogram of time difference between the
start times of colliding frames

start times of the concurrent frames for hidden terminals
and capture effect. The payload was 256 bytes and the data
rate was set at 5.5 Mbps. From the histogram we observe
that for capture effect 85% of the concurrent transmissions
have a time difference less than 20 µsec, whereas for hidden
terminals this is not the case. The distribution for hidden
terminals has a heavier tail due to collisions occurring during
the entire length of the packet as compared to only during
the first 25 µsec. Table 4 also states that for capture effect
only 2% of the frames transmitted collided after the 100 µsec
interval, whereas for hidden terminals a larger percentage of
the frames are transmitted after the 100 µsec interval.

4.2.2 Detection Algorithm
Due to the limitations of the current driver design, we

use a secondary radio set in monitor mode to record the
timestamps of the frames that are transmitted by the pri-
mary radio which is associated with the access point. Along
with the timestamp, the sequence number, the size of the
MAC frame, the transmit data rate and the destination
MAC address are also recorded. We assume that the sec-
ondary radio knows the length of the preamble used by the
primary radio. We present the algorithm first for a sim-
ple case where there are only two users associated with the
AP. Tend1 being the timestamp of the data frame at the
end of the transmission from station 1 and Tend2 being the
same for frame 2. Using the information about the length of
the frame, rate and preamble length we calculate the time
at which the frame was transmitted Tstart1 and Tstart2 as
Tstart1 = Tend1 − (Length1 ∗ 8/DataRate1) − Preamble1,
and similarly for Tstart2. Thus based on the start and end
times of the two adjacent data frames we can check whether
these are concurrent transmissions or not by using the fol-
lowing simple check; if Tstart1 ≤ Tstart2 ≤ Tend1 then frame
2 was transmitted (Tstart2 − Tstart1)µsec after frame 1 was
initiated and vice versa.

The detection algorithm is executed at a central server
that maintains a sliding window buffer for the record frames
that are received from the the clients in the network. The
buffer size is scaled with the number of clients in the net-
work, and is set so as to accommodate 1000 data frames
records per client. Since the algorithm is executed period-
ically, there could be a case where the central server has
not received data records from a client in the network. The
buffer of records maintained by the central server helps to
maintain history information, such that client records that
are transmitted after the algorithm is run can still be used

Algorithm 1 Detection algorithm for hidden terminals and
capture effect

1: For each record i in the buffer, calculate the start time
Tstart i

2: Sort the buffer list based on the start times
3: For every pair of adjacent data frames, check for con-

current transmission
4: If overlap, record the time difference and MAC addresses

of the frames under collision
5: If more than 10% of frames collide beyond the 100 µsec

time interval, then hidden terminals, else capture effect

in the next iteration of the algorithm. A limitation of the
above algorithm is that we are only able to detect collisions
between clients that are associated with the same access
point, i.e., frames that have the same destination MAC ad-
dress.

4.2.3 Detection Accuracy
Detecting concurrent transmissions requires recording the

timestamps of transmitted frames and a global time syn-
chronization protocol across the distributed clients in the
network. As discussed in section 3.2, due to the limitations
of the driver design, we use a secondary radio to timestamp
the frame transmitted by the primary radio. To synchro-
nize the clocks across the distributed secondary radios, we
use the time synchronization protocol specified by the 802.11
protocol [5] and implemented by the Atheros driver. As part
of the protocol, the AP embeds a 64-bit micro second gran-
ularity time stamp in every beacon frame, and the nodes
associated with the AP adjust their local clock based on
this broadcasted timestamp. To measure the accuracy of
the time synchronization protocol, we measured the error
in the timestamps recorded by the distributed clients in our
testbed. We measured an error of ±4µsec. This error is suf-
ficient to accurately detect concurrent transmissions. The
measured error in the 802.11 time synchronization protocol
is consistent with the results presented in [22].

4.3 Long term signal strength variations of AP
In this section we study the impact of long term signal

strength variations of the AP and measure the impact of
the fault at the MAC and network layer. In the next sub-
section we present the details of the detection algorithm.
The detection algorithm is based on detecting correlated in-
crease/decrease in signal strengths observed at distributed
client stations.

Table 1 gives a list of different client interfaces that were
observed in the trace collected from a planned network. As
seen from the table, each client interface has a different re-
ceive sensitivity for a given data rate. For example, in a
802.11b network, at a SNR of -85 dBm from the AP, there
would be client interfaces operating at 2, 5.5 and 11 Mbps
data rates in the network. With variations in signal strength
at the AP and varying BER, rate diversity is aggravated due
to variations in data rate at each client. From observations
we describe later, we seen high signal strength variations as
well as frequent changes in data rate at a given station.

Unfairness due to rate diversity is a well known problem
of the CSMA based channel reservation [28, 14, 16]. Since
equal transmission guarantees are given to each client in the
network, clients operating at a lower data rate slow down the
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Figure 10: Comparison of rate fallback algorithms

entire network. As an effect, the throughput of the higher
data rate clients approaches that of the slower data rate
client. This problem is exacerbated in mixed mode networks
consisting of 802.11b and 802.11g clients, where clients that
manage to communicate at 54 Mbps are significantly slowed
down.

Another observation we make from the traces collected are
that the SNR of the clients at the AP vary over a wide range,
and a large percentage of the clients that are associated
with the AP are in the -70 dBm and -85 dBm range. Thus
with clients located at the edge of the communication range,
variations in signal strength at the client would cause the
network interface to automatically start probing the network
for alternate APs.

In this paper we only focus on detecting long term vari-
ations in signal strength of the access points. Although,
transient variations due to multipath and fading does lead
to rate diversity, the effective long term performance is not
degraded. A large number of factors could lead to long term
variations in signal strength. These factors could be an ob-
struction placed on the AP, fading due to a large object
placed near the AP, change in transmit power of the AP,
antenna of the AP changed/damaged, etc.

To measure the impact of signal strength variations at
the network layer, we set up the testbed such that node A
is associated with the AP and is at the fringe of the trans-
mission rage of the AP at 5mW. Node A is initiating TCP
traffic through the AP to the destination node located on a
100 Mbps Ethernet. The TCP payload was increased from
256 bytes to 1280 bytes in steps of 256 bytes. Note that un-
like previous experiments, in this experiment the link was
not being saturated. This explains the increase in through-
put as the payload size increases.

Figure 10 shows the degradation in performance as the
transmit power of the AP is dropped from 100 mW to 5 mW.
When the AP is operating at 100 mW (legend 100 mW-
NoRF), node A is well within range of the AP and can
communicate at the maximum 11 Mbps with the AP. How-
ever, when the transmit power of the AP is stepped down
to 5 mW, the client is on the fringe of the transmission
range of the AP. In absence of rate fallback (legend NoRF)
i.e. the client data rate fixed at 11 Mbps, a large percent-
age of the ACK from the AP are lost, causing the client to
retransmit a large percentage of the data frames. This is be-
cause the ACKs are transmitted at the same rate at which
the AP received the data frame. Hence, due to the drop
in transmit power ACKs transmitted at 11 Mbps are not
decoded by the client, causing retransmissions. With rate
fallback enabled (legend ARF and AARF), the throughput

Figure 11: Correlated Sensor Observations

at the client improves. Data frames transmitted at the lower
rate are ACKed by the AP at the same rate, and hence the
client can receive the ACKs. This decreases the percentage
of frames that are being retransmitted.

4.3.1 Detection Algorithm
In this section we present the details of the algorithm to

diagnose anomalous signal strength variations. The algo-
rithm is based on detecting correlated increase or decrease
in signal strength of the AP at distributed sniffer locations.

Figure 11 shows a time slice of the signal strength observa-
tions of an AP measured at three distributed sniffers. From
the trace we observe that between time interval 350-600,
sniffer 1 measured a drop in signal strength, whereas sniffer
2 and 3 do not measure the same drop in signal strength.
This drop in signal strength was caused due to localized
fading at sniffer 1. However at time 750, all the sniffers
measure a concurrent drop of 3 dB in signal strength. This
was caused due to a power control event at the AP, and
hence is observed by the distributed sniffers. Thus, signal
strength variations observed at a single sniffer is not suffi-
cient to differentiate between localized events like fading and
global events like change in transmit power at the AP. We
argue that to reduce the number of false positives caused
due to localized events, multiple distributed sniffer observa-
tions are required to detect anomalous variations in signal
strength at the AP.

Based on extensive experiments carried out in a typical of-
fice environment, we observed that three distributed sensors
observations are sufficient to detect correlated changes in
signal strength. We use the standard Pearson’s Product Mo-
ment correlation coefficient (ρ) as the statistical tool to de-
tect concurrent changes in signal strength. The correlation
coefficient can take on any values in the range −1 ≤ ρ ≤ +1.
A ρ close to +1 indicates that a concurrent drop/increase in
signal strength was observed simultaneously at all sensors,
and a ρ close to -1 indicates that there was a drop at one
sensor and an increase in signal strength at the other. Any
variation in signal strength of the AP would result in a high
positive ρ.

As discussed in section 3, each sniffer computes the aver-
age of 10 consecutive beacon frames over a period of
EPOCH INTERVAL and transmits the information to a
central server. On receiving this time series data from mul-
tiple sniffers in the network, the central server computes an
intersection of the time series data received from a subset
of these sniffers. The intersection of the time series ensures
that ρ is computed over observations of the same set of bea-
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Figure 12: Averaged correlation coefficient. Aver-
aging eliminates the spurious peaks and magnifies
only the peak that is observed across all the pairs of
sniffers

con frames. The server calculates the pair-wise ρ between
each pair, over a sliding window of size 20.

With three sniffers in the network, we have three pairs of
ρ. To reduce the chance of a spurious peak in the correlation
coefficient due to identical multipath observed at a pair of
sniffer, we compute the average of the correlation coefficients
from the different sniffers.

Averaging the correlation coefficients has the same ef-
fect as a low pass filter which filters out spurious peaks
in the correlation coefficient. Thus, only correlated signal
strength variations that are globally observed across all the
distributed sensors would be magnified and all the other
spurious peaks are suppressed. Figure 12 shows the average
correlation coefficient computed for the signal strength trace
in Figure 11. As seen from Figure 12, at about the same
time at which the transmit power of the AP was reduced,
the average correlation coefficient rails high and approaches
1. Mojo uses a fixed threshold of 0.8 to detect an anomalous
signal strength increase/decrease at the AP.

The final part of the algorithm is the selection of snif-
fers to compute the pairwise correlation coefficients. If the
selected sniffers are collocated next to each other, it is pos-
sible that each sniffer observes the same local variations in
signal strength, and hence falsely triggering an anomalous
signal strength fault. Hence, it is desirable to select sniffers
such that they are spatially spread out over the network. As
compared to random selection of sniffers from the network,
Mojo sorts the clients based on the average SNR that is
reported by them. This sorted list is divided into N equal
sublists (N = number of sniffers) and a sniffer is randomly
selected from each sublist. This cluster-sampling of sniffer
stations reduces the possibility of selecting sniffers that are
co-located next to each other, and hence reduces possibility
of a false positive.

4.3.2 Detection Accuracy
To test the accuracy of the detection algorithm presented

above, we carried out controlled experiments in a typical
office environment as well as an open lobby. Distributed
sniffers were deployed to measure the signal strength of the
beacons transmitted by the AP. Using the six different power
levels of the Cisco Aironet AP’s (20, 17, 15, 13, 7 and 0 dBm)
the transmit power was changed once every 5 minutes in
steps of 2, 3, 4, 5, 6, 8, and 10 dBm. Correlating the signal
strength observations at the distributed sniffers, we calcu-
lated the false positives and negatives of the detection al-

Power
(dBm)

Threshold True
Positive

False
Positive

False
Negative

2 0.6 16 12 72
0.7 11 7 82
0.8 0 0 100
0.9 0 0 100

3 0.6 50.3 10 39.7
0.7 33.33 4 62.67
0.8 16 0 84
0.9 4.5 0 95.5

6 0.6 100 0 0
0.7 100 0 0
0.8 100 0 0
0.9 51 0 49

7 0.6 100 0 0
0.7 100 0 0
0.8 100 0 0
0.9 83.33 0 16.67

Table 5: Detection accuracy of signal strength vari-
ations at the AP. A correlation threshold of 0.8 is
selected.

gorithm. Table 5 shows the true positives, false positives
and false negatives as a percentage of the total number of
events triggered by the detector. The detection threshold
was increased from 0.6 to 0.9. For sake of brevity, the table
shows the results for two low power changes (2 and 3 dBm),
and two high power changes (6, 7 dBm).

A high true positive rate indicates that the algorithm is
able to correctly detect the faults in the network, and cor-
rect the fault by applying the remedy. A high false positive
rate indicates that there are spurious alerts generated. This
could cause the network to become unstable by having the
clients to constantly switch between APs. A high false neg-
ative rate indicates that the detection algorithm is unable
to detect the underlying faults in the network. As discussed
above, not detecting the signal strength variations of the AP
leads to performance degradation.

We make a number of key observations from the above
table. First, we observe that the detector is able to detect
changes in transmit power only when the change is greater
than the variations in signal strength due to multipath and
fading. Hence, the detection accuracy is low for low power
changes of 2 and 3 dBm. However, for higher power changes
the detection accuracy increases. Second, the correlation co-
efficient is dependent on the magnitude of change in power.
For example, as the change in power is increased, the number
of true positives detected at a threshold of 0.9 also increases.
Third, the smallest threshold that results in no false posi-
tives and negatives is 0.8. Hence Mojo sets the detection
threshold to 0.8 by trading off detection of small changes in
power to accuracy of detection.

4.4 Summary of detection algorithms
A key feature of Mojo is to be able to distinguish between

the root causes. It is important to note that the metrics used
at the PHY layer to diagnose the faults are independent
of each other; this means that each detection algorithm is
uniquely attributed to a unique PHY layer metric, and each
PHY layer metric triggers a single detection algorithm. For
example, the presence of hidden terminals in the network
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would not lead to a long term increase in the noise floor
or change the signal strength at the AP. Hence, each fault
can be independently diagnosed and does not depend on the
presence/absence of the others. No specific ordering is re-
quired to detect the faults, and the faults could be diagnosed
in parallel.

To summarize, in this section we presented the design, im-
plementation and evaluation of the most commonly observed
faults in 802.11 based wireless networks. Mojo was imple-
mented on a small scale testbed, and the default Atheros
driver was modified to collect fine-grained diagnostic in-
formation from the PHY layer. Based on the information
collected, threshold based detection algorithms were imple-
mented to detect noise/interference, hidden and capture ef-
fect and signal strength variations at the AP. Noise in the
network is diagnosed by detecting an increase in the noise
floor. Based on the calibration of the Atheros chipset noise
floor register, we set the interference detection threshold to
-65 dBm. Hidden terminals/capture effect are diagnosed by
detecting concurrent transmissions by the clients in the net-
work. By measuring the overlap between two simultaneously
transmitted frames, we are able to differentiate between hid-
den terminals and capture effect. Signal strength variations
at the AP are diagnosed by detecting concurrent changes in
signal strength recorded at the distributed sniffers. Based
on experiments carried out in a typical office environment
and open lobby, the algorithm is able to accurately detect
signal strength changes greater than 4 dBm using a correla-
tion threshold of 0.8.

Although the list of faults presented in this paper is not
exhaustive, Mojo addresses the most commonly observed
faults in wireless networks that are addressed by the research
community. As part of future work, we plan to extend the
list of faults and categorize the faults and detection tech-
niques.

5. REMEDIES FOR NETWORK
PROBLEMS

Table 2 in section 2 provides a summary of the remedia-
tion performed by the stock 802.11 drivers and the remedies
proposed by Mojo. Due to the lack of visibility of the under-
lying physical layer, existing 802.11 drivers perform rate fall-
back as the default remedy for every fault. Existing 802.11
drivers trigger rate fallback when an excessive number of re-
tries are caused at the MAC layer. However, applying rate
fallback as the default remedy to troubleshoot every fault
leads to significant degradation of the performance of the
network3.

To measure the impact of 802.11 based remediation, we
monitored a planned network for a day. The network con-
sisted of 4 APs with an average of 14 clients associated with
each AP. The MAC and the IP headers were captured by a
single sniffer, and the traces were analyzed offline. From the
traces we observed that there is significant amount of rate
diversity as well as rate fluctuation in the network (see Fig-
ure 13). Most clients are operating at the minimum 1 Mbps
data rate, causing unfairness to the higher data rate clients.
Analyzing the data rate of the client transmissions, we ob-
served that on an average only 15% of the data frame are

3The 802.11 protocol has support for avoiding hidden termi-
nals using RTS/CTS, but this is not an adaptive mechanism
in the standard.

Figure 13: Variability in signal strength in an open
lobby

transmitted at the highest possible rate. By averaging the
received signal strength readings of the beacon frames over
a time interval of 15 mins, we observed that there are large
(10-15 dB) short term as well as long term variations in sig-
nal strength at the AP. This variation in signal strengths
leads to exacerbating the rate diversity in the network.

5.1 Joint Optimization
In this paper we propose that diagnosis of the root cause

of the fault leads to alternate efficient remediation as com-
pared to the default rate fallback based remediation cur-
rently performed. By having stations and access points in
the network to mutually share their observations of net-
work events, Mojo can then coordinate these observations
to jointly optimize network performance. These are joint
optimizations because they involve changes at multiple sta-
tions or are commanded by the AP. We address these issues
in the order presented in Table 2.

Hidden Terminals: The default 802.11 based remedi-
ation of rate fallback does not solve the hidden terminal
problem. In most cases, simply stepping up the transmit
power of the hidden terminals allows them to maintain the
data rate and avoid collisions at the receiver. Alternatively,
the hidden terminal could initiate RTS/CTS mechanisms,
but that comes at a cost of extra control messages for ev-
ery data frame. The “hidden” node can not independently
sense this condition – it must be informed of the problem
and likely remedy by the AP.

Capture Effect: The simultaneous transmissions are
caused due to the 25-30 µsec interval required to sense the
channel. Although this delay cannot be eliminated, we can
ensure that the SNR of the frames being received at the
receiver is the approximately the same, and hence elimi-
nating the unfairness caused due to capture. The default
802.11 based remediation of rate fallback does not reduce
the unfairness and further degrades the performance of the
network due to rate diversity in the network.

Noise: Having detected a rise in the noise floor, instead
of invoking rate fallback, Mojo proposes switching the fre-
quency channel to an alternate less noisy channel. If other
AP’s are nearby, the affected station can re-associate to an-
other AP using a different channel. Alternatively, the af-
fected station can request that the AP change the frequency
using a new MAC mechanism.

Signal Strength: Signal strength variations of the AP
transmissions causes excessive rate adaptations performed
by the clients in the network, and enabling rate fallback
at the client interface does not remedy the problem. On
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detecting excessive retransmissions due to signal strength
variations, Mojo proposes disassociating with the AP to
an alternate AP or requesting that the AP increase signal
strength using a new MAC mechanism.

5.2 Implementing Remedies
Using our testbed, we have shown that these individual

improvements should improve performance, but we do not
have a full system evaluation that combines all mechanisms.
Implementing some of the remedies requires modifying the
802.11 MAC protocol to implement new control messages.
We are using the SoftMAC framework [24] we have devel-
oped to implement a control mechanism to complement our
existing detection system.

The above listed remedies are some of the simplest reme-
dies that could be performed to tolerate faults in the net-
work. The remedies proposed require no explicit federation
between the multiple AP’s in the network. As part of future
work we plan to propose remedies that involve coordina-
tion between multiple AP’s and clients in the network to
troubleshoot the fault. We also plan to deploy Mojo in
a production network consisting of a large number of APs
and heterogeneous clients and measure the performance im-
provement achieved by diagnosing the faults and applying
efficient remedies.

6. RELATED WORK
A large body of work exists in fault diagnosis and trou-

bleshooting for the wired networks. Faults on the wired
network include IP link failures, Border Gateway Proto-
col (BGP) misconfiguration [23] and network intrusions and
DoS attacks [18]. A wide array of tools [21] and architec-
tures [13] have been proposed that help researchers to ex-
tract information from the network to detect these faults

However, fault diagnosis for wireless networks has to deal
with the inherent spatial and temporal nature of wireless
propagation. Unlike the wired network monitoring system,
a single sniffer is not enough to capture the state of the entire
wireless network. Yeo et al. [31, 32] were the first to explore
the feasibility of using multiple sniffers to deal with the spa-
tial and temporal variability of the wireless link. However,
as compared to ensuring complete coverage of the wireless
network, Mojo requires redundant distributed observations
at the PHY layer.

A large number of measurement based studies have been
carried out to study the usage pattern of 802.11 based wire-
less networks [19, 15, 27, 20]. The authors in [27, 20] study
the performance of 802.11 in a conference setting, where a
large number of clients are using the wireless network. The
authors observed both short term as well as long term vari-
ability in link quality and performance degradation under
heavy usage of the wireless network. The authors also point
out that the default 802.11 based remediation of rate fall-
back exacerbates the problem further, leading to a higher
number of retransmissions and dropped frames.

Existing solutions to diagnose faults in wireless networks
have limited capability to distinguish between multiple root
causes of a fault. [26] proposes an online trace driven simu-
lation tool to diagnose faults in a multi-hop adhoc network.
However the tool categorizes faults into very broad cate-
gories. One of the categories is “random packet dropping”,
which could arise due to a large number of root causes.

There are a large number of commercial tools [1, 8] avail-

able that monitor 802.11 traffic in the network using passive
probes. Based on policies defined by the network adminis-
trator, a variety of security and performance alerts are gener-
ated. Performance alerts are generated for excessive retries,
low data rate, frequent handoff of client devices, change of
AP parameters, etc. These tools only monitor the 802.11
MAC protocol and do not detect the root cause of the fault
originating at the physical layer.

Client side monitoring to diagnose root cause faults has
potential to diagnose anomalies for the wired network [25] as
well as for wireless networks [6]. In [6], the authors propose
an architecture for client side monitoring to detect unau-
thorized APs, RF holes and performance problems. How-
ever, the performance problems are only limited to detecting
whether the fault exists on the wireless network or the wired
network.

Problems like hidden terminals [30, 12], capture effect [22],
and carrier sensing in the presence of noise/interference in
the network [19] have been studied by the research com-
munity in isolation. As far as we know, Mojo is the first
unified framework which measures the impact of each fault
at different layers of the network stack and presents detec-
tion algorithms for each of the above faults.

7. CONCLUSION
In this paper we present the design, implementation and

evaluation of Mojo, a unified framework to diagnose phys-
ical layer faults that are commonly observed in existing
802.11 based wireless networks. Through detailed experi-
ments on a real testbed, we measure the impact of each fault
at the different layers of the network stack. A novel client
side monitoring framework is proposed to extract detailed
information from the underlying physical layer. Information
collected is used to build threshold based statistical detec-
tion algorithms for each fault. We claim that Mojo takes
the first step towards building truly self-healing wireless net-
works and provides detailed information for troubleshooting
faults originating at the physical layer.
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