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Abstract

Typical packet traffic in a sensor network reveals pronouncedpatterns that allow an adversary analyzing
packet traffic to deduce the location of a base station. Once discovered, the base station can be destroyed,
rendering the entire sensor network inoperative, since a base station is a central point of data collection
and hence failure. This paper investigates a suite of decorrelation countermeasures aimed at disguising
the location of a base station against traffic analysis attacks. A set of basic countermeasures is described,
including hop-by-hop reencryption of the packet to change its appearance, imposition of a uniform packet
sending rate, and removal of correlation between a packet’sreceipt time and its forwarding time. More
sophisticated countermeasures are described that introduce randomness into the path taken by a packet.
Packets may also fork into multiple fake paths to further confuse an adversary. A technique is introduced
to create multiple random areas of high communication activity called hot spots to deceive an adversary as
to the true location of the base station. The effectiveness of these countermeasures against traffic analysis
attacks is demonstrated analytically and via simulation using three evaluation criteria: total entropy of the
network, total overhead/energy consumed, and the ability to frustrate heuristic-based search techniques to
locate a base station.

Keywords: Sensor Network Security, Traffic Analysis

1 Introduction

In wireless sensor networks, sensor data is typically routed along relatively fixed paths from sensor nodes
towards the base station. This produces quite pronounced traffic patterns that reveal the direction towards and
hence the location of the base station. Figure 1 illustratesthe packet traffic volume forwarded by each node
in the network with the shortest path routing scheme (which we term the SP scheme). The nodes near the
base station clearly forward a significantly greater volumeof packets than nodes further away from the base
station, in the same manner that a river grows wider as it collects more water from its tributaries. Aggregator
nodes that compress the data from multiple child nodes before forwarding upstream towards the base station
can mitigate the pronounced increase in traffic volume towards the base station. However, the data traffic still
accumulates towards the base station, if the aggregators send their data through multiple hops.

An adversary can analyze the traffic patterns revealed in Figure 1 to deduce the location of the base station
within the WSN’s topology. For example,
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(a) 3-D graph of data traffic. (b) Contour map of data traffic.

Figure 1: Pronounced data traffic patterns in a WSN using SP routing scheme reveal the location of the base
station.

1. If the contents of a packet being transmitted are in plain text, an adversary can determine which packets
are being forwarded towards the base station. This allows the adversary to follow the direction of these
packets towards the base station.

2. If there is a correlation in time between the instant a nodeX receives a packet (a neighbor transmits
that packet toX) and when nodeX forwards that packet, an adversary can use this time correlation to
identify the same packet as it is relayed hop by hop, and thereby trace the direction towards the base
station.

3. Given that there is higher communication activity near the base station, an adversary can move closer
to the base station by moving towards areas of higher packet traffic.

Since the base station is a central point of failure, once thelocation of the base station is discovered, an
adversary can disable or destroy the base station, thereby rendering ineffective the data-gathering duties of
the entire sensor network.

A simple defense against plaintext observation is to encrypt each packet. However, if data packets are en-
crypted, but do not change hop by hop, then an adversary can still follow a given encrypted packet pattern
towards its destination, which will often wind up at the basestation. Following the path of encrypted packets
can be defeated if each data packet is reencrypted at each hop, thereby changing the appearance of each packet
at each hop, e.g. by employing pair-wise key schemes [8, 3, 7,14, 25].

Even with hop-by-hop reencrypted packets, an adversary canstill deduce significant information that can
reveal the base station’s location by monitoring traffic volume, or by looking at time correlations. The act of
transmitting itself reveals information to the attacker, regardless of whether packet contents can be inspected.
In the case of rate monitoring, the volume of transmissions can be exploited. In the case of time correlation,
an adversary can listen to a transmission and also the next-hop forwarding transmission along a relay path and
infer some path relationship between two neighboring nodesregardless of whether the packet is redisguised
at each hop.

We therefore identify two classes of traffic analysis attacks in wireless sensor networks, arate monitoring
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attack and atime correlationattack. In arate monitoringattack, an adversary monitors the packet sending
rate of nodes near the adversary, and moves closer to the nodes that have a higher packet sending rate. In atime
correlationattack, an adversary observes the correlation in sending time between a node and its neighboring
node that is assumed to be forwarding the same packet, and infers the path by following the “sound” of each
forwarding operation as the packet propagates towards the base station.

In this paper, we focus on developing countermeasures against traffic analysis attacks that seek to locate the
base station, particularly against the rate monitoring andtime correlation attacks. Given an adversary who
is analyzing packet transmissions within its range, the overall objective is to significantly delay an adversary
from locating a base station. In particular, our goals are:

• An adversary cannot determine a packet destination by inspecting the contents of the packet.

• An adversary cannot find the data flow direction by analyzing the time correlation between the packets
sent by children nodes and packets sent by their parent nodes.

• An adversary cannot find the data transmission direction by employing statistical analysis of the packet
transmission rate of every node within its range.

One way to defend against traffic analysis is to control the packet sending rate of every node in the network
in such a way that every node sends packets with the same rate.In Section 3, we describe two methods to
control the packet sending rate and packet sending time of each sensor node. These two methods can be used
to defend against the rate monitoring and time correlation attacks. However, there are some limitations to
these rate control methods. For example, they may delay datareports, or introduce too much traffic to the
network.

To address these limitations, we propose four improved techniques in Section 4 that introduce randomized
traffic volumes throughout the sensor network to deceive or misdirect an adversary from discovering the true
location of the base station. First, a multiple parent routing scheme is introduced that allows a sensor node to
forward a packet to one of its parents. This makes the patterns less pronounced in terms of routing packets
towards the base station. Second, a controlled random walk is introduced into the multi-hop path traversed
by a packet through the WSN towards the base station. This distributes packet traffic, thereby rendering
less effective rate monitoring attacks. Third, random fakepaths are introduced to confuse an adversary from
tracking a packet as it moves towards a base station. This mitigates the effectiveness of time correlation
attacks. Finally, multiple, random areas of high communication activity are created to deceive an adversary
as to the true location of the base station, which further increases the difficulty of rate monitoring attacks.

In Section 5, we analyze our decorrelation techniques to determine their effectiveness in thwarting rate mon-
itoring and time correlation attacks, and assess the costs of these countermeasures. The general issue is
whether employing the set of decorrelation techniques outlined above is worth the cost incurred in additional
messaging and hence energy expenditure, e.g. for multiple random fake paths. Consider that the lifetime of
the network is actually theminimumof two quantities: the time to destroy the base station, which will disable
the WSN; and the time until most nodes in the sensor network are depleted of energy, which will also disable
the WSN. In the absence of any randomization, let us define thetime to destroy the base station asTb, the time
that most leaf sensor nodes will be exhausted by typical dutycycling to beTn, and the lifetime of the network
T = min(Tb, Tn). With randomization, defineT

′

b as the time to destroy the base station whereT
′

b > Tb,
andT

′

n as the reduced energy lifetime whereT
′

n < Tn, andT
′

= min(T
′

b , T
′

n). In general, randomization is
worth it only if we can increase the lifetime of the network, i.e. only ifT

′

> T .
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Let us consider a simple example to provide an idea of the tradeoffs in employing randomization. The energy
lifetime of each MICA2 sensor mote is typicallyTn ≈ (2 to 3 months) assuming two AA batteries and a
low duty cycle. Tb is approximately the average number of search steps by an adversary multiplied by the
average time/search step. As shown later, under certain assumptions like shortest path routing, no randomizing
defenses, and a specific search method, the number of search steps to find the base station is on the order of
tens of steps. If the sensor reporting rate is sufficiently high, and each step takes say ten minutes to physically
move from one hop to the next, thenTb ≈ (2 to 3 hours). The unprotected WSN will only survive two to
three hours when under a concerted traffic analysis attack, so we desire the introduction of randomization
techniques that will improve the network’s survival time. As shown later, under certain assumptions, our
results demonstrate that our randomization techniques significantly delay (up to 19X) an adversary from
finding a base station, at the cost of introducing additionaloverhead and energy consumption (2-3X). In
this case,T

′

b ≈ 19 × Tb ≈ 2 to 3 days, whileT
′

n ≈ (1
2 to 1

3) × Tn ≈ 1 month. In this simple example,
randomization is able to extend the lifetime of the WSN by a factor of 19, while keeping the energy/overhead
costs affordable sinceT

′

n > T
′

b .

A natural extension of this approach is to broadcast every packet, which achieves maximum decorrelation at
maximum cost. The methods proposed in this paper, e.g. DEFP defined later, achieve close to broadcast’s
maximal decorrelation, as signified by maximizing the number of search steps by an adversary, at a fraction
of the cost, namely about two orders of magnitude less overhead than flooding.

The proposed countermeasures are specially adapted for wireless sensor networks and exhibit several desirable
properties. First, all four techniques are distributed in nature. There is no single initialization or coordination
point involved to setup these mechanisms. Second, memory and computation requirements in each sensor
node are relatively low, and can easily be met by modern sensors such as the MICA2 mote. Third, any
compromise of one or a small number of sensor nodes by an adversary is easily tolerated. If an adversary
compromises some nodes, the damage it can inflict upon the WSNis limited. Fourth, our techniques don’t
require a node to delay sending packets, as would be the case in the simple decorrelation approaches discussed
in Section 3. A node can send/forward its packet as soon as it is ready. This aids in reducing the time
delay introduced by countermeasures against traffic analysis attacks. Finally, the cost of these techniques is
moderate and the techniques are applicable to large sensor networks. This is confirmed by simulation results
presented in Section 5.

2 Network Traffic and Threat Model

We assume a standard wireless sensor network consisting of at least one base station collecting sensor data
over multiple hops from a wireless network of sensor nodes. These nodes form a tree-structured WSN routing
topology rooted in the base station, forwarding data to the base station thereby creating the pronounced traffic
patterns in Figure 1. The nodes are severely resource-constrained in terms of limited memory, bandwidth,
CPU, and energy. Aggregator nodes are permitted and processdata from their local sensor nodes before
sending the aggregated result to the base station through multiple hops. We assume that the number of base
stations in a WSN is relatively small, so that the pronounceddata traffic pattern shown in Figure 1 is not likely
to be mitigated in any significant way by introducing multiple base stations. So, even if there are multiple base
stations, an adversary can employ the same traffic analysis techniques to locate and destroy each base station
one by one. We assume that the data reporting rate of the nodesgenerates sufficient packet traffic such that
an adversary has some advantage in employing traffic analysis to discover the base station, i.e. traffic analysis
gives an adversary an opportunity to reduce the network lifetime rather than waiting for energy exhaustion of
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the WSN.

For the capabilities of an adversary, we assume that an adversary can monitor network traffic, and perform
a rate monitoring attackand atime correlation attack. An adversary can capture sensor nodes, compromise
them and obtain all information, e.g. encryption keys and routing tables, inside a node. A compromised
node can be reprogrammed and converted into a malicious node. However, we assume that the adversary
requires some non-trivial amount of time to compromise a node. We also assume that an adversary can
physically move from one location to another in the network.However, the adversary doesn’t have global
information about the whole network, and cannot jam the entire network. Our solutions are designed for a
large sensor network, in which an adversary cannot find the base station unless it is close by. We term the
area within which an adversary can immediately identify a base station as thebase station area. The threat
of traffic analysis from the adversary is assumed to be imminent, i.e. the adversary will be present some time
during the network’s lifetime. In other scenarios, attacksmay be infrequent or rare, so that traffic analysis
countermeasures, rather than extending the lifetime, could decrease the lifetime when the probability of an
attacker being present is small. We do not consider such scenarios.

We assume that sensor nodes use the key framework proposed inLEAP [25] to protect hop-by-hop commu-
nication. Nodes can set up pair-wise keys using existing protocols [8, 3, 7, 14, 25]. Every node can also set
up a single cluster key [25] shared with all of its neighboring nodes. As described in [5], when a node sends a
packet, it protects and encrypts the packet with its clusterkey. An adversary who has not obtained the cluster
key via compromise cannot decrypt the contents of a packet. At the same time, other nodes in the cluster can
easily understand the type of packet and process it accordingly.

3 Basic Decorrelation Countermeasures

3.1 Hidden Packet Destination Address

The first countermeasure is to ensure that the external appearance of a packet changes as it moves forward
through a multi-hop sensor network. To do this, a cluster keyis established among each set of neighboring
nodes. The packet destination address, packet type, and packet contents are encrypted by a node using its
cluster key. As a packet moves forward, each node first decrypts the packet and then reencrypts it using the
cluster key. The current sender’s address remains in plaintext so that the receiver can choose the correct cluster
key to decrypt the packet. The format of a packet is

IDsrc||EKCsrc(type||IDdst||data)

When a node receives this packet, it checksIDsrc and decides which cluster key to use to decrypt the packet.
After decrypting the rest of the packet, a node checks if it isthe destination of the packet. Integrity can be
added via a MAC based on the cluster key.

The net effect is that the packet’s entire appearance is transformed at every hop along its path, making it
difficult for an eavesdropper to trace the path of the packet.Hop-by-hop reencryption spatially decorrelates
the packet’s appearance. Unless an attacker can compromisea sender’s neighboring node and obtain the
cluster key, it won’t know the contents of the packet. If an attacker compromises a nodes and obtains all the
keys inside the node, it will be able to decrypt the packets sent by s’s parent node, and can then track two
hops towards the base station, but cannot track beyond that.
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(a) Without Random Delay (b) With Time Slot Allocation and Random Delay
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Figure 2: Decorrelating packet send times via random delays.

3.2 Decorrelating Packet Sending Times

Packet encryption can hide a packet destination, but cannothide its sender. By carefully monitoring the packet
sending time of every node, an adversary may obtain some information about data traffic flows. For example,
if a parent nodes receives a packet from its child nodec and forwards that packet immediately, an adversary
can observe the short time interval betweens and c and eventually infer the parent-child hierarchy given
sufficiently long observations.

To prevent this, we decorrelate the packet sending times between a parent node and its child nodes. Here we
only consider the situation that every node sends data at thesame rate. This situation occurs when every node
regularly aggregates data from its children nodes and sendsa result to its parent node. Suppose all child nodes
and parent nodes report their data during time periodT . Let’s denote the time interval between two child
nodes sending packets as∆tc (we assume sensor nodes use a MAC layer protocol to avoid packet collisions),
the time interval from the last child node sending data to theparent node sending data as∆tp, and the time
between a parent node sending data and its grandparent forwarding data as∆tr. We denote∆tc, ∆tp, ∆tr
as the average value of∆tc, ∆tp, and∆tr. If the differences between∆tc, ∆tp and∆tr are observable, an
adversary may be able to extract which node is the parent nodeafter monitoring the network for an extended
period of time.

If the parent node and child nodes send packets with the same rate, sensor nodes can introduce random delay
between packet sending times. This makes the differences between∆tc, ∆tp and∆tr unobservable. To do
this, first the time periodT is divided intom slots, if there arem − 1 child nodes and 1 parent node. Every
node is assigned a slot and randomly chooses a time within itsslot to send its packet. For example, in Figure 2,
the time slot assignment algorithm is centered at the parentnode. The parent node informs each child node of
its time slot with a secure unicast message. Nodesn1 to n4 aren5’s child nodes, andn6 is n5’s parent node.
Figure 2(a) shows every node sends its packet as soon as it can. The differences between∆tc, ∆tp and∆tr
are correlated. Figure 2(b) shows thatn1 to n5 occupy different time slots and each node sends its packet
randomly within its time slot. The differences between∆tc, ∆tp and∆tr are indistinguishable. Experiments
show that a sensor node only spends about 40 to 50 milliseconds to send a 36-byte packet. Normally, a sensor
reports data once per minute or once per tens of seconds. In a connected sensor network, a sensor node may
have 10 to 20 neighboring nodes. So the time slot is big enoughfor a sensor node to successfully send its
packet.
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3.3 Controlling Packet Sending Rates

In the previous subsection, we assumed that every node sendspackets at the same rate. However, in some
cases, different sensor nodes may send packets with different rates. For example, the base station may require
that each sensor node sends its neighborhood information (which contains the IDs of its identified neighboring
nodes) back to the base station. We call this atopology report. The topology report helps a base station to
update its complete network topology picture. The end user can use this information to learn what sensor
nodes and base stations are unreachable. For the topology report messages, a parent node has to forward every
message from its children nodes, and aggregation is avoided. If every node sends a packet with the same rate,
then nodes closer to the base station will sustain larger sending rates. By monitoring packet sending rates, an
adversary can track the base station.

Our solution is to set the packet sending rate control between a parent node and its children nodes. That creates
a uniform sending rate across the entire sensor network, so that every node behaves like every other node in
terms of traffic volume. When a parent node has a packet in its buffer to send, it won’t accept any packet from
its children nodes. When the parent has sent out its packet, it accepts one packet from its children nodes and
saves that packet into its buffer. All children nodes are monitoring the packet sent out by their parent node,
because they have the parent’s cluster key. If a child node finds that its packet was just transmitted by its parent
node (that means its parent node has received its packet), orif it finds its parent beginning to send dummy
packets (that means the parent node has an empty buffer), then the child begins to accept a new packet from its
children nodes. Otherwise it will continue to send the same packet to its parent node. If a node doesn’t have
any packet to send, it just injects a dummy packet to its parent, until the whole topology reporting process
stops. The base station can send a broadcast message to startand stop the topology reporting process. This
rate control scheme is depicted in Figure 3; Figure 4 describes the algorithm. This algorithm implements rate
control, and it is robust, handling the case when the child node fails to hear the parent node forward its packet.

3.4 Limitations

There are some limitations to the prior methods. First, theyconfine the data sending pattern of the network.
They require every node to aggregate data from its downstream nodes. Second, these methods do not work
if there is urgent data that needs to be sent to the base station as quickly as possible. Third, imposing a
uniform sending rate results in dummy packets being sent forthose nodes that have less data to contribute
than the global sending rate. The dummy packets increase theenergy expenditure of such nodes. Finally,
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while (1){
sendPs to parent node
listen to packet sending of neighboring nodes
if receive packetp
if (p.sender == parent node) {

if ((p == Ps)||(p == dummy)){
Ps ← dummy
}
} else if (p.sender ∈ s.children) {

if (p 6= dummy&&Ps == dummy) {
Ps ← p
}
}
wait for next time slot
}

Figure 4: Algorithm for packet sending control. (Ps is the packet to send)
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Figure 5: Techniques to counter traffic analysis.

they introduce extra delays in forwarding packets at each hop, cumulatively increasing the time to deliver data
from source nodes to the base station. In the next section, weintroduce more advanced schemes to defend
against traffic analysis attacks.

4 Inhibiting Traffic Analysis Attacks With Randomized Traffi c

This section introduces a suite of randomized network traffic techniques that improve upon Section 3’s basic
traffic analysis countermeasures. These techniques do not impose onerous limitations such as a high uniform
sending rate throughout the network or enforced aggregation at every hop, as in the previous section. Figure 5
summarizes each of the major randomization techniques thatwe introduce in this section.
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probabilitypr or v6 with probability1− pr.

4.1 Multi-parent routing scheme

To reduce the starkness of pronounced paths caused by shortest path (SP) routing, as shown by the direct
node-to-base station route in Figure 5(a), we require each node to randomly select one of multiple parent
nodes to route data to the base station, as shown in Figure 5(b). When a node needs to forward a packet, the
node randomly selects one of its parent nodes to forward the packet. We call this scheme multi-parent routing
(MPR). We propose two methods for setting up multiple parents for each node. In the first method, as shown
in Figure 6, whenever a base station sets up a routing structure, it broadcasts or floods a message called the
beacon. The beacon message contains alevelfield. The base station sets the value oflevel to 0. When a node
forwards a beacon message, it increments it by 1. So the valueof level represents the number of hops that a
node is from the base station along a particular path. A sensor nodes selects all neighboring nodes whose
levelvalue is less thans’s levelvalue as its parent nodes. In the second method, a node monitors all beacon
messages it receives before forwarding the first beacon message. Since a nodes has to wait for some amount
of time before forwarding a beacon message (waiting time in MAC layer), it selects all nodes from whom it
receives a beacon message while waiting to forward the first received beacon message as its parent nodes.

An adversary has several ways to attack these multi-parent routing setup schemes. For example, a malicious
node can claim a lowlevelvalue to attract traffic from other nodes, or it can use unfairmedia access control
mechanisms to occupy the wireless channel. Protecting routing schemes from such attacks is beyond the scope
of this paper. Here we assume that the routing set up scheme isrelatively fast, so an adversary doesn’t have
enough time to attack the routing set up process. Several mechanisms [13, 5] have already been proposed to
protect against attacks during the routing setup. Notice that thelevel information will be erased by every node
after the routing paths are set up. So even if a node is compromised, an adversary won’t know the distance to
the base station because thelevel information of the compromised node won’t be available.

4.2 Random Walk

To further diversify routing paths and mitigate rate monitoring attacks, we propose a random walk (RW)
routing scheme. In RW, when a node receives a packet, it forwards the packet to one of its parent nodes
with probabilitypr. However, it uses a random forwarding algorithm with probability 1 − pr. In the random
forwarding algorithm, the node forwards the packet to one ofits neighboring nodes with equal probability.
Like [12] and [23], MPR and RW use probabilistic routing. However, [12] and [23] use probabilistic routing
for reliable data transmission in sensor networks, while weuse probabilistic routing to defend against therate
monitoring attack.
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The RW technique results in some packets traversing a longerpath to reach the base station than the shortest
available path, as shown in Figure 5(c). This implies that RWwill consume more energy per node on an
average. To estimate how much extra energy is consumed by RW,we calculate the cost C of RW, where cost
is defined as [5]:C = M ′

M
. Here,M ′ is the average number of hops a packet takes to reach the base station

from an aggregator node in RW, andM is the number of hops a packet takes to reach the base station from
the same aggregator node in SP. Clearly,M ′ depends on the several factors related to network topology,e.g.
how many neighbors a sensor node has, how far the base stationis from a sensor node or from one of its
neighboring nodes, and so on. We calculate the value ofC by making the following simplifying assumption.
Suppose a nodeu randomly selects a neighboring nodev to forward a packet, and the distance (number of
hops along the shortest path) betweenv and the base station isd, while the distance betweenu and base station
is d′. We assume that the probability thatd > d′ is the same as the probability thatd < d′. So on average,
whenu forwards a packet tov, the distance from the base station doesn’t change. Only when u forwards the
packet to its parent node, the distance is reduced by 1. We denoten as the number of hops from the aggregator
to the base station in SP, andn′ as the number of average hops in RW. We haven′×pr = n. This implies
C = M ′

M
= 1

pr
.

In addition, a packet will take a longer time to reach the basestation in RW. In fact, the extra time delay
is directly proportional (linear) to the extra hops used forforwarding the packet. So, the time cost for each
packet to reach the base station is roughly1

pr
in RW.

4.3 Fractal Propagation

MPR and RW spread out data traffic and make it difficult to use a rate monitoring attack. However, RW is still
vulnerable to thetime correlationattack. Usually, for a nodes, the number of parent nodes is less than half
of s’s neighboring nodes, and for energy and efficiency considerations,pr > 0.5 typically. As a result, the
possibility that a node forwards a packet to its parent node is higher than the possibility it forwards the packet
to any one of its other neighbors. An adversary can exploit this to launch a time correlation attack, either by
injecting abnormal report data or monitoring over a long period of time.

To address the shortcomings of MPR and RW, we propose a new technique calledfractal propagation. In
this technique, severalfakepackets are created and propagated in the network to introduce more randomness
in the communication pattern. When a node hears that its neighboring node is forwarding a packet to the
base station, the node generates a fake packet with probability pc, and forwards it to one of its neighboring
nodes. To control the propagation range of the fake packet, each newly generated fake packet contains alength
parameter with valueK. K is a constant that is known to all nodes, so an adversary cannot flood the whole
network by sending fake packets withlengthparameter higher thanK. When a node receives a fake packet,
it decrementslengthby 1. If the value oflengthis greater than zero, the node forwards the fake packet to one
of its neighboring nodes (not necessarily in the direction of the base station). If the value oflengthis zero, a
node stops forwarding the fake packet. In addition, when a node hears that its neighboring node is forwarding
a fake packet to someone else withlengthvaluek (k < K), it generates and forwards another fake packet
with probabilitypc andlengthvaluek − 1.

These fake packets spread out in the network and their transmission paths form a tree (see Figure 5(d)). In
particular, the communication traffic is much more spread out than RW. So even if an adversary can track a
packet using time-correlation, she cannot track where the real (as opposed to fake) packet is going. This is
because she cannot differentiate between a real and a fake packet without knowing the encryption key.

Suppose a node hasx neighboring nodes on average. Letpf = pc×x andf(K) represents the total length of
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a fake tree that originated withlengthvalueK. We have

f(K) = pf×f(K − 1) + f(K − 1) + 1

Solving this recursive equation, we get

f(K) =
K−1
∑

i=0

(pf + 1)i =

{

(pf+1)K
−1

pf
if pf > 0

K otherwise

Suppose the length of real path from the aggregator node to the base station isn. The cost is

C =
M ′

M
=

n + n×pf×f(K)

n
=

n + n× pf × (pf +1)K
−1

pf

n
= (pf + 1)K

If we combine RW and the fractal idea, the total cost is

C =
(pf + 1)K

pr

If we use fixed values ofpr, pf andK, the average cost is a fixed value that is independent of the size of the
network.

4.3.1 Fractal propagation with different forking probabil ities

One problem with simple fractal propagation is that it generates a large amount of traffic near the base station.
This will potentially increase the packet collision rate and packet loss rate.

To address this problem, nodes can use different probabilities to generate fake packets. When a node forwards
packets more frequently, it sets a lower probability for creating new fake packets. This technique is called
Differential Fractal Propagation (DFP). The algorithm forsetting this probability is as follows. When the
packet forwarding rater at a node is lower than a thresholdh, the node generates new fake packets with
probability p. When the packet forwarding rate is higher thanh, the node generates new fake packets with
probabilityp′ = p×(h/r)2; h can be chosen as the packet sending rate of the aggregator node.

4.3.2 Enforced fractal propagation

The idea of fractal propagation aids significantly in spreading out the communication traffic evenly over the
network and obfuscating any paths to the base station. To make matters worse for an adversary, we generate
local high data sending rate areas, calledhot spots, in the network. An adversary may be trapped in those areas
and not be able to determine the correct path to the base station. This routing technique is called Differential
Enforced Fractal Propagation (DEFP). The challenge here ishow to create hot spots that are evenly spread
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Figure 7: Ticket table of nodeu

out in the network, such that only a minimum (preferably zero) amount of extra communication/coordination
among the sensor nodes is needed.

DEFP is a simple distributed algorithm based on DFP. The key idea is to let the nodes that forwarded fake
packets earlier have a higher chance to forward fake packetsin the future. In particular, if a nodeu forwarded
a fake packet to another nodev in the past, then it forwards the next fake packet received tov with a higher
probability. The node uses alottery schedulingalgorithm [22] to choose the next node to forward the fake
packet to. In this algorithm (see Figure 7), a node assigns tickets to each of its neighboring nodes. It chooses
the next node to forward a fake packet to based on the number oftickets assigned to the neighboring nodes. A
neighboring node with more tickets assigned has the higher probability of being chosen. In the beginning, all
neighboring nodes are assigned one ticket. When the node chooses a neighboring node as the next node for
forwarding a fake packet, it increments that node’s ticketsby k. This way, after a node has forwarded a fake
packet to one of its neighboring nodes, it will continue to forward other fake packets to the same neighboring
node with higher and higher probability. If an area of nodes receive fake packets, they are more likely to
process more and more fake packets in the future. This will turn that area into a hot spot. It is also very easy
to destroy current hot spots and reconstruct new hot spots atdifferent places. For example, sensor nodes just
reset the value of tickets to 1 when they receive a broadcast message from the base station, and then start to
build hot spots from scratch. A patient attacker can wait at ahot spot until the communication pattern changes.
While this will allow the attacker to determine that he was ata fake hot spot, it does not provide any other
information about the possible location of the base station. Furthermore, waiting for a long time at a fake hot
spot will add more delay to finding the location of the base station.

4.4 Node Compromises

If an adversary compromises a node, she can normally find out the identity of its parent nodes, and read the
contents of all packets passing through this node. In addition, by monitoring the traffic for some sufficiently
long period of time, she can obtain distribution information about all the ancestor nodes within her activity
range. However, with this knowledge, she cannot determine the location of the base station, and cannot block
communication between an aggregator node and the base station. To determine the location of the base station,
the adversary will have to compromise a large number of nodesalong the path to the base station.

To further minimize the damage of node compromise, we propose thedirectional pairwise IDmechanism
such that every node has different IDs to its children nodes and parent nodes. When a nodeu is compromised,
an adversary knows its parent nodep’s ID. However, the parentp only uses that ID to accept packets, and
doesn’t use that ID to send packets. So the adversary cannot know which node isp by listening to packets.
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Hops Average Number of Compromised Nodes
5 53.7

10 87.1
15 120.8
20 152.6
25 181.2

Table 1: Average number of nodes that need to be compromised to trace back to the base station given
directional pairwise ID’s.

She has to compromiseu’s neighboring nodes one by one, until capturingp.

Concretely, every node shares a unique pair of IDs with each of its parent nodes. For example, suppose node
u has parent nodep1 andp2. Thenu has an IDIDup1

to p1, andp1 has an IDIDp1u to u. Thusu andp2

shares another pair of IDsIDup2
andIDp2u. Whenu sends a packet top1, it uses the format that

IDup1
||EKCu(type||IDp1u||data)

If u is compromised, the adversary knowsKCu, IDup1
andIDp1u, but she doesn’t knowp1’s IDs to p1’s

parent nodes. She has to compromiseu’s neighboring nodes which are notu’s children nodes, until she
capturesp1. This mechanism increases the workload of node compromise.Table 1 shows the average
number of nodes that need to be compromised in a random distributed network under a single parent routing
scheme. We can see that if the first compromised node is 15 hopsaway from the base station, the adversary
needs to compromise about 120 other nodes, instead of 15 nodes, to get to the base station. This shows that an
adversary has to compromise a relatively large number of nodes along the path until reaching the base station.

In fractal propagation, if an adversary compromises a node,she can find out whether a packet is a fake or
real. However, she cannot obtain any information other thanwhat was discussed above. The adversary can
attempt to launch a DoS attack by generating several fake packets and forwarding them to flood the network.
However, the propagation area of a fake packet is limited by the value of thelengthparameter. A fake packet
can propagate and generate new fake packets only within a small part of the network, so the damage due to
such DoS attacks is limited to a small part of the network.

Cooperating adversaries can launch a collaborative attack. For example, two cooperating adversaries on
different sides of a WSN can respectively determine the direction (a vector) where a base station is possibly
located from their current location by analyzing packets over just a few hops. They can then form an estimate
of the base station’s location by intersecting the two vectors. However, such an attack requires that the
direction in which a parent node is located is precisely the direction towards the base station. This is quite
unlikely in a randomly distributed sensor network. In addition, MPR increases the difficulty in determining
the precise geographic direction towards the base station,forcing the adversary to compromise a large number
of nodes.

Finally, an adversary can also generate several forged datapackets and forward them to the base station in
an attempt to flood the base station. However, mechanisms currently exist that allow intermediate nodes to
filter out forged data packets, e.g. see [24, 26]. In these mechanisms, intermediate nodes use randomly pre-
distributed pair-wise keys to verify the authenticity of the data sent by the aggregator node. Forged packets
are filtered out by each intermediate node with a certain probability and thus prevented from propagating over
a long path.

13



Elsevier Pervasive and Mobile Computing Journal, Special Issue on Security in Wireless Mobile Computing
Systems, vol 2, issue 2, April 2006, pp. 159-186

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

40 

120 

180 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

40 

90 

350 

hot 
spot 

(a) RW. (b) Naive fractal propagation.

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

40 

60 

120 

10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

40 

70 

140 

hot 
spots 

(c) DFP. (d) DEFP.

Figure 8: Number of packets sent/forwarded by each node employing cumulatively more methods of random-
ization.

4.5 Simulation Results and Summary

We implemented our randomization techniques in our simulator, which is based on a standard discrete event
generator. Figure 8 shows the cumulative routes taken by packets through a sensor network employing each
of the techniques. The simulation results demonstrate thatRW creates a more diffuse routing pattern than SP
(compare to Figure 1). Similarly, fractal propagation techniques, DFP and DEFP introduce increasing degrees
of randomness respectively that obscure the location of thebase station. The network configuration for these
simulations is a grid network described in Section 5.

A summary of the problems addressed by each of the randomization techniques presented in this section is
given in Table 2. The set of techniques based on fractal propagation address both rate monitoring and time
correlation attacks. Together, Table 2 and Figure 8 providean intuitive sense of the scope and cost of these
randomization techniques.

5 Evaluation

5.1 Evaluation Criteria

For the basic schemes described in Section 3, the cost of a rate control mechanism is assessed. For the
randomized traffic based schemes described in Section 4, ourevaluation measures how random the network

14



Elsevier Pervasive and Mobile Computing Journal, Special Issue on Security in Wireless Mobile Computing
Systems, vol 2, issue 2, April 2006, pp. 159-186

Randomization Technique Rate Monitoring Attacks Time Correlation Attacks

Multi-Parent Routing (MPR)
√

Controlled Random Walk (RW)
√

Fractal Propagation (FP)
√ √

Differential Fractal Propagation (DFP)
√ √

Differential Enforced Fractal Propagation (DEFP)
√ √

Table 2: Randomization techniques and the problems they address.

traffic is, and the cost of randomized traffic. In particular,we measure the randomness of network traffic and
its effectiveness againstrate monitoringattacks. We employ two metrics —entropyof the network traffic and
theGSATtest. To estimate the cost of our techniques, the number of messages exchanged in our techniques is
counted and compared with the number of messages exchanged in Shortest Path (SP) forwarding. Since our
techniques incur very little memory cost on each sensor node, e.g. a few encryption keys and tickets of neigh-
boring nodes, memory consumption overhead was not measuredin our simulation. Also, the effectiveness of
randomization in defending againsttime-correlationattacks was not evaluated. Intuitively, a higher forking
probability (pf ) and a longerlength of fake path will make it more difficult to launch atime correlation
attack. However, measuring the effect of this increased difficulty is more challenging, and is left as future
work.

Entropy We use entropy to measure the randomness of network traffic. Entropy is a mathematical measure
of information uncertainty, and it has been widely used as a metric to measure randomness in many applica-
tions, e.g. data communication, data compression, random number generators, and security of cryptographic
algorithms. Entropy of a random variableX with a probability functionp(x) is defined as

H(X) = −
∑

p(x)log2p(x)

Suppose that during a time periodT , a sensor nodea sent/forwardedpa packets, and a total ofM packets
were sent/forwarded in the WSNN . We define the network entropy with the following formula anduse it to
estimate the randomness ofN during the time period

T : H(N) = −
∑

a∈N

pa

M
log2

pa

M

In general, a higher value ofH(N) implies that the communication traffic pattern ofN is more random.

GSAT Test The GSAT test is intended to measure the ability of a randomization technique to guard against
heuristic-based search algorithms that an adversary may use to locate a base station. The GSAT algorithm
[19] was proposed for solving NP-hard satisfiability problems, such as the 3SAT problem [4]. In contrast to
the traditional deterministic solutions, GSAT is a probabilistic algorithm that combines a hill-climbing search
algorithm with a random restart mechanism. GSAT can solve most of the large 3SAT instances in a short
time.

We use the idea of the GSAT algorithm to design a heuristic-based algorithm that an adversary employs to
track the location of the base station. In this algorithm, anadversary starts at some location in the sensor
networkN . She monitors network traffic around her within her activityrange. If she finds that a different
nodes within her activity range has the highest traffic, she moves to s, and continues to monitor traffic from
s. Using this mechanism, she can move towards the locations that have higher and higher traffic volume.
However, if she reaches a location that has the highest traffic within the neighborhood (local maxima), she
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Size Average # Number of Sending
Neighbors Aggregators Rate

Grid 81×81 8 28 4/minute
Random 4500 20 28 4/minute

Table 3: Network configuration Parameters

selects a direction at random, moves in that direction for some time, and then repeats the above algorithm.
She continues to do this until she finds the base station.

The GSAT test measures the average number of hops an adversary takes to finally reach the base station using
this heuristic algorithm. A large value of the GSAT test implies that the routing technique has better potential
to guard against heuristic-based search algorithms that anadversary may employ to locate a base station.

In addition to the degree of randomness, the exact values of entropy and the GSAT test depend on several other
network characteristics, e.g. network structure, networksize, number and location of aggregator nodes. To
evaluate our techniques, we have focused on differences in entropy and GSAT test values measured under the
cases when one of the proposed traffic analysis countermeasures is used and the case when no traffic analysis
defenses are used. We also experimented with different values ofPr in RW andPf in DEFP, to understand
the effects of these parameters. We simulated two network structures in our experiments: a grid topology and
a random topology. Table 3 shows the parameters used in our simulation. Aggregators are located at the four
edges of the network.

5.2 Message Overhead of Rate Control Mechanism
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Figure 9: Overhead of uniform rate control countermeasuresto traffic analysis.

We defineC = M ′

M
to measure the data transmission overhead of our basic suiteof traffic analysis countermea-

sures, whereC is the cost measurement,M is the number of messages without basic traffic analysis defenses,
andM ′ is the number of messages with the our basic traffic analysis countermeasures. In this experiment, we
simulated and measured the message overhead of the rate control scheme, since it introduces extra “dummy”
packets. We ran three groups of tests. For each group of tests, we employed a different network topology.
These networks differed from one another in the number of nodes, but had the same node density. The number
of nodes varied from 250 to 2000. For each test, sensor nodes were randomly deployed in the network area.
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Entropy Traffic Center Traffic
(SP) (BR) (SP) (BR) (SP) (BR)

Grid 9.64 11.40 39000 7×106 10080 4×105

Random 8.20 12.08 21000 5×106 2792 1.8×105

Table 4: Entropy and number of messages exchanged in SP and BR. (Traffic means the total messages ex-
changed in the network, and Center Traffic means the number ofmessages exchanged in the close vicinity of
the base station.)

We set up routing, and measuredM ′ andM . For the same number of nodes with the same network density,
we repeated the test 50 times and calculated the average value. Figure 9 (a) shows the simulation result ofM ′

M

for three different network densities. We can see that the overhead of our rate control strategy increases as the
size of the network increases. Our initial analysis and experiments show thatM

′

M
∝
√

N , whereN is the size
(number of nodes) of the network. That means the rate controloverhead is not scaling directly with the size
of the network.

However, if topology information is not required frequently, the overhead of the rate control scheme only
occupies a small part of the total cost. The network traffic isdominated by regular sensed data report, whose
anti-traffic message overhead is 1. Figure 9 (b) shows the total message overhead combining sensor data
packets and topology reports over an intermediate density network. We assume that every node reports its
data once per minute, and the base station requires a topology report every one to thirty days. Figure 9
(b) shows that the total overhead reduces as the base stationrequires topology reports less frequently. For
example, if the topology report is performed once a week, total overhead is less than 1.01. In this context, the
overhead of sending “dummy” packets is much less noticeable.

5.3 Effectiveness and Cost of Randomized Traffic Techniques

To evaluate the effectiveness of our randomized traffic countermeasures, we simulated them over a grid net-
work (see Table 3) and measured the values of entropy, GSAT test, and energy cost (number of messages ex-
changed). We simulated the following techniques: MPR, MPR+RW, MPR+RW+DFP, and MPR+RW+DEFP.
For simplicity, we use MPR, RW, DFP, and DEFP respectively torefer to these techniques in the rest of the
paper. In these simulations, we setpr to 0.6,pf to 0.2, andK to 6.

To obtain an estimate of an upper bound of entropy and GSAT values, and a lower bound on the cost, we
simulated two routing mechanisms. The first routing mechanism is SP, which selects the shortest path to the
base station from each sensor node. SP provides a measure of lower bound on the cost of routing, but results
in very pronounced communication patters as shown in Figure1. The second routing mechanism is called the
broadcast scheme (BR scheme). In this mechanism, every message sent by an aggregator node is flooded to
the entire network. Since BR generates uniform network traffic, it provides a measure of an upper bound of
entropy and GSAT values. Table 4 shows the entropy values andnumber of messages exchanged in SP and
BR.

Figure 10 (a) shows the entropy measured for various routingtechniques. All data reported here are an average
over 20 runs. As expected, entropy is lowest for SP and highest for broadcast. Entropy for MPR and RW is
higher than SP, but lower than DFP and DEFP, which confirms theprogression of increasing randomness
revealed in Figure 8’s various subgraphs. Figure 10 (a) demonstrates that the idea of generating fake packets
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Figure 10: Effectiveness and cost of randomization countermeasures against traffic analysis.

in a controlled manner does aid in making the network traffic pattern more random. This is in addition to the
original goal of defending against time-correlation analysis.

To determine resiliency against a GSAT search, we simulatedthe data traffic and recorded the number of
packets sent/forwarded by each node in a log file. We initialized a starting point for the adversary in the
network and used the GSAT algorithm to discover thebase station area. We recorded the number of steps the
adversary takes to get into the base station area. For each log file, we set 81 different initial locations. For
each initial location, we ran GSAT to search for the base station area for 100 times, and recorded the number
of hops the adversary takes to get into the base station area.Finally, we computed the average number of hops
the adversary takes to get into the base station area for eachtechnique. In addition, we experimented with
three different activity ranges of the adversary: adversary could monitor data traffic over3×3, 5×5, and9×9
areas around her respectively.

Figure 10 (b) shows the results of the GSAT test. First, we notice that randomization countermeasures signif-
icantly increase the number of steps an adversary has to taketo locate the base station. The addition of each
technique increases the frustration of the adversary, withvarying degrees of effectiveness. For example, she
can discover the base station area in 34 steps in SP (activityrange3×3), and 653 steps in DEFP, which is
about 19 times more. Notice that the number of search steps needed when all packets are broadcast is only
about 1.5 times more than the number of steps needed in DEFP approach. In this sense, DEFP achieves close
to the maximum decorrelation upper bound represented by broadcast.
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The activity range of an adversary also impacts the GSAT value. If the activity range is larger, the corre-
sponding GSAT value is smaller. This implies that the adversary can find the base station in fewer hops. Even
when the activity range of the adversary is large (9×9), our traffic analysis defenses significantly increase the
number of hops an adversary has to take to locate the base station area.

Also, we see that the GSAT values correlate with the entropy values shown in Figure 10 (a) (except DEFP).
Higher entropy corresponds to a larger value of GSAT. This implies that both entropy and GSAT are useful
metrics to measure the randomness in network traffic. The only exception is DEFP. Since DEFP converges
some traffic together to formhot spots, it results in less entropy compared to DFP. However, thosehot spots
make it more difficult for an adversary to locate the base station using a GSAT search algorithm. This is
evident from the higher values of GSAT in DEFP.

Figure 10 (c) shows the cost of randomization in terms of the total number of messages sent/forwarded by
all nodes in the network, and the number of messages sent/forwarded by nodes near the base station (which
is an area of20×20 nodes with base station at center). The total traffic in RW is about 1.8 times larger than
the total traffic in SP for the whole network and the area near the base station. The total message cost of
DFP and DEFP is about 2.8 times the message cost of SP in the whole network, and 2.4 times near the base
station. In our simulation, when aggregators send four packets per minute, the nodes directly connected to
the base station forward about 14 packets per minutes in SP, and about 34 packets per minute in DEFP. This
is easily feasible in the current sensor network technology. An important point to note is that the message
cost of these algorithms is constant. It doesn’t increase with increasing network size. The final observation
is that broadcast costs about 70 times more messaging than DEFP, i.e. Table 4 give7x106 as the number of
messages for broadcasting in a grid while Figure 10 (c) givesabout105 as the number of messages for DEFP.
The overhead messaging cost provides an indication of the energy cost to the WSN, since packet transmission
costs over a thousand times more energy per bit than computation, but is not a precise equivalence due to
other factors such as duty cycling and degree of computation.

The big picture emerging from Figure 10’s three graphs is that our most advanced randomization suite DEFP,
equivalent to MPR+RW+DFP+DEFP, achieves nearly the best decorrelation capabilities afforded by broad-
cast at a fraction of the cost.DEFP achieves close to broadcast flooding’s maximum decorrelation, within
about 50% of the maximum number of GSAT search steps requiredof an adversary. Yet, DEFP’s overhead
of a hundred thousand messages is 70 times less than pure broadcast’s overhead obtained from Table 4. This
highlights the considerable advantage gained by employingour randomization algorithms.

5.4 Effectiveness ofpr and pf

To understand the effect of different values ofpr andpf , we varied parameters for RW and DEFP. We sim-
ulated them on both a grid network and a random network (Table3). In RW, we variedpr from 0.3 to 0.95.
In DEFP, we fixedpr at 0.6, and variedpf from 0.1 to 0.65. The results are shown in Figures 11 and 12. We
notice that the variation in the values of entropy and message cost based onpr andPf is similar in both grid
and random networks. In RW, the entropy sub-linearly decreases and the number of messages decreases with
increasingpr. In DEFP, entropy sub-linearly increases and the number of messages dramatically increases
with increasingpf .

These results imply that we should chosepf as small as possible, as long as it satisfies our requirements. In
Section 4, we analyzed the relation between message cost, and pr andpf . The results from these experiments
imply that there is a relation between the entropy of networktraffic, andpr andpf , which is independent of
the size of the network. Another observation is that although the total number of messages exchanged is quite
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Figure 11: Effectiveness and cost as a function ofpr (a)-(b) andpf (c)-(d) for a grid network.

large for very large values ofpf , the number of messages exchanged near the base station doesn’t change a
lot. This shows that the traffic control mechanism proposed in DFP and DEFP works quite well.

6 Related Work

Research in security issues in sensor networks has receivedmuch attention recently, e.g. secure data commu-
nication [16], secure routing [13, 11, 5], secure data aggregation [18], and pairwise key setup [8, 3, 7, 14, 25].
In the area of privacy in E-commerce, many techniques have been developed to protect the anonymity of
message senders and receivers. Our anti-traffic analysis techniques are similar to the methods used in tra-
ditional privacy and anonymity research, but we have three unique properties: First, we focus on hiding the
physical location of a base station, instead of hiding the identity of a message sender or receiver. Second,
the communication pattern in sensor networks is highly asymmetric and converges on a base station. This
make it more difficult to protect the base station against traffic analysis attacks. Third, traditional networks
are resource-rich compared to a WSN, and so the techniques developed for traditional networks cannot be
directly used in sensor networks.

In traditional privacy research, mist routing requires pre-deployed, hierarchical and trusted routers [2]. [10]
requires that every node can talk to every other node. The Onion routing protocol [9] disguises who talks to
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Figure 12: Effectiveness and cost as a function ofpr (a)-(b) andpf (c)-(d) for a random network.

whom on the Internet by layered encryption and by forwardingreceived messages in a random order. In addi-
tion, a large number of messages are stored before forwarding them in a different order. A sensor node doesn’t
have enough memory to store many packets. Thek-anonymous message transmission protocol proposed in
[1] protects anonymity for both sender and receiver with lowdata transmission latency. Unfortunately, its
high communication and computational requirements prevent it from being used in sensor networks. The
techniques to disguise a receiver by routing each message tomultiple receivers using a multicast mechanism
are proposed in [17, 20]. Tor [6] is the second-generation onion router, which is a circuit-based low-latency
anonymous communication service on the Internet. However,it needs to set up a large number of directory
servers, which is difficult to envision in sensor networks.

Recently, techniques to randomize communications during the network setup phase to protect the anonymity
of the sensor network infrastructure were proposed in [21].In contrast, we focus on defending against
traffic analysis during the data sending phase. In addition,we propose a more robust adversary model, and
assume that an adversary can launch active attacks such as injecting traffic in the network, and compromising
sensor nodes. Preserving source-location privacy in WSNs was proposed by C. Ozturket.al. [15]. This
work proposes randomization techniques such as fake packets, persistent fake sources, and a random walk to
hide the location of the source of data packet from discovery. Unlike our approach, fake packets are always
flooded, which incurs a high overhead cost. The key advantageof our approach is that it achieves much of the
decorrelative effects of flooding at a fraction of the cost. Also, our focus is on the arguably more difficult task
of hiding thedestinationof a data packet, i.e. base station, from discovery, since the patterns produced by the
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tree-structured routing are quite pronounced and difficultto hide.

7 Future Work

There are a variety of research directions that could be morefully explored in the future. First, our work
considers only one form of search algorithm, namely the GSATsearch. More advanced search techniques
could be evaluated. Second, the paper also has not developeda metric for evaluating the effectiveness of
our proposed techniques against time correlation attacks.The fractal propagation approach makes it more
difficult to trace a packet by inspecting transmission timesof adjacent nodes, because the attacker may wind
up following a fake path to a dead end. For example, one metricthat captures the frustration level of an
adversary mounting a time correlation attack is the number of dead ends reached until finding the base station.
Third, this paper does not address a problem that the base station’s forwarding behavior is somewhat different
than a typical sensor node in that a packet just stops being transmitted after it has reached the base station.
Since a large fraction of packets are destined for the base station, the sudden lack of forwarding is a strong
indication that the base station area has been reached, evenif we imposed a uniform sending rate on all nodes.
We have considered a technique whereby a base station that has received a packet continues to forward a
dummy version of that packet past the base station. These dummy packets will have a limited lifetime and
can be treated by following nodes like the fake forked packets resulting from fractal propagation. However,
we have not yet implemented or evaluated this idea. Fourth, the degree of aggregation has not been deeply
explored. The tradeoff between the effectiveness and cost of randomization will be affected by more pervasive
aggregation throughout the WSN. Fifth, one measurement that would have been useful to include was the cost
in delay, or extra number of hops, due to random walking.

8 Conclusion

The tree-based routing structure of a wireless sensor network is rooted in a base station. The forwarding
patterns of WSNs are highly pronounced, revealing the location of the base station through traffic volume
and directionality of packet forwarding. An adversary can eavesdrop and employrate monitoringand time
correlation traffic analysis attacks to locate and destroy a base station, thus disabling the entire WSN. This
paper proposed a suite of countermeasures aimed at decorrelating network traffic so that the location of a base
station is disguised against traffic analysis techniques. First, three basic defenses were proposed that morph
a packet’s appearance at each hop via reencryption, impose auniform sending rate throughout the network,
and decorrelate packet sending times at each hop. Next, an improved suite of four more advanced solutions
were proposed that overcome limitations of the basic defenses. We introduce controlled randomization into
the multi-hop path a packet takes from a sensor node to a base station. We further introduce random fake
paths to confuse an adversary from tracking a packet as it moves towards a base station. Finally, we create
multiple, random hot spots of high communication activity to deceive an adversary as to the true location of
the base station. The paper evaluated these techniques analytically and via simulation using three evaluation
criteria: total randommness or entropy of the network, total energy consumed as represented by message over-
head cost, and the ability to prolong a heuristic-based search technique called GSAT to locate a base station.
The simulations showed that our combined suite of advanced randomization techniques, namely multi-parent
routing plus controlled random walk plus differential enforced fractal propagation, together achieved decor-
relation comparable to the best possible decorrelation represented by broadcast, at a fraction of broadcast’s
messaging cost.
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