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Abstract

Typical packet traffic in a sensor network reveals pronodpeadterns that allow an adversary analyzing
packet traffic to deduce the location of a base station. Oiso®dkered, the base station can be destroyed,
rendering the entire sensor network inoperative, sincesa bation is a central point of data collection
and hence failure. This paper investigates a suite of deletion countermeasures aimed at disguising
the location of a base station against traffic analysis letta& set of basic countermeasures is described,
including hop-by-hop reencryption of the packet to chamtgappearance, imposition of a uniform packet
sending rate, and removal of correlation between a packextiipt time and its forwarding time. More
sophisticated countermeasures are described that imeeadmdomness into the path taken by a packet.
Packets may also fork into multiple fake paths to furtherfuse an adversary. A technique is introduced
to create multiple random areas of high communication &gtballed hot spots to deceive an adversary as
to the true location of the base station. The effectivenéfisese countermeasures against traffic analysis
attacks is demonstrated analytically and via simulationgithree evaluation criteria: total entropy of the
network, total overhead/energy consumed, and the ahilifyustrate heuristic-based search techniques to
locate a base station.

Keywords: Sensor Network Security, Traffic Analysis

1 Introduction

In wireless sensor networks, sensor data is typically cbaleng relatively fixed paths from sensor nodes
towards the base station. This produces quite pronounaéit {patterns that reveal the direction towards and
hence the location of the base station. Figure 1 illustrétegpacket traffic volume forwarded by each node
in the network with the shortest path routing scheme (whiehtevm the SP scheme). The nodes near the
base station clearly forward a significantly greater volwhpackets than nodes further away from the base
station, in the same manner that a river grows wider as iectdlmore water from its tributaries. Aggregator
nodes that compress the data from multiple child nodes bdfowarding upstream towards the base station
can mitigate the pronounced increase in traffic volume tde/éne base station. However, the data traffic still
accumulates towards the base station, if the aggregatedstiseir data through multiple hops.

An adversary can analyze the traffic patterns revealed iar€if to deduce the location of the base station
within the WSN's topology. For example,
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Figure 1: Pronounced data traffic patterns in a WSN using 8thipscheme reveal the location of the base
station.

1. If the contents of a packet being transmitted are in pkity &an adversary can determine which packets
are being forwarded towards the base station. This alloeradiversary to follow the direction of these
packets towards the base station.

2. If there is a correlation in time between the instant a n&deceives a packet (a neighbor transmits
that packet toX') and when nodeX forwards that packet, an adversary can use this time cooele
identify the same packet as it is relayed hop by hop, and lilgetrace the direction towards the base
station.

3. Given that there is higher communication activity nearlthse station, an adversary can move closer
to the base station by moving towards areas of higher pacétt

Since the base station is a central point of failure, onceldbation of the base station is discovered, an
adversary can disable or destroy the base station, theesiolering ineffective the data-gathering duties of
the entire sensor network.

A simple defense against plaintext observation is to eriaegpgh packet. However, if data packets are en-
crypted, but do not change hop by hop, then an adversary itaioldtw a given encrypted packet pattern
towards its destination, which will often wind up at the batsion. Following the path of encrypted packets
can be defeated if each data packet is reencrypted at eacthbogby changing the appearance of each packet
at each hop, e.g. by employing pair-wise key schemes [8,13},725].

Even with hop-by-hop reencrypted packets, an adversarystifinleduce significant information that can
reveal the base station’s location by monitoring traffiowog, or by looking at time correlations. The act of
transmitting itself reveals information to the attackegardless of whether packet contents can be inspected.
In the case of rate monitoring, the volume of transmissi@rshe exploited. In the case of time correlation,
an adversary can listen to a transmission and also the @xeivwarding transmission along a relay path and
infer some path relationship between two neighboring nodgardless of whether the packet is redisguised
at each hop.

We therefore identify two classes of traffic analysis attatkwireless sensor networksrae monitoring
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attack and aime correlationattack. In arate monitoringattack, an adversary monitors the packet sending
rate of nodes near the adversary, and moves closer to the ti@tdave a higher packet sending rate. tima
correlation attack, an adversary observes the correlation in sendimglietween a node and its neighboring
node that is assumed to be forwarding the same packet, aad thie path by following the “sound” of each
forwarding operation as the packet propagates towardsabe station.

In this paper, we focus on developing countermeasures stgadtffic analysis attacks that seek to locate the
base station, particularly against the rate monitoring tame correlation attacks. Given an adversary who
is analyzing packet transmissions within its range, theallvebjective is to significantly delay an adversary

from locating a base station. In particular, our goals are:

e An adversary cannot determine a packet destination by étisgethe contents of the packet.

e An adversary cannot find the data flow direction by analyzivegtime correlation between the packets
sent by children nodes and packets sent by their parent nodes

e An adversary cannot find the data transmission directiomiyyi@ying statistical analysis of the packet
transmission rate of every node within its range.

One way to defend against traffic analysis is to control trekgasending rate of every node in the network
in such a way that every node sends packets with the samelnaBection 3, we describe two methods to
control the packet sending rate and packet sending timechf &snsor node. These two methods can be used
to defend against the rate monitoring and time correlatitecks. However, there are some limitations to
these rate control methods. For example, they may delayrdptats, or introduce too much traffic to the
network.

To address these limitations, we propose four improvednigdes in Section 4 that introduce randomized
traffic volumes throughout the sensor network to deceiveisdinect an adversary from discovering the true
location of the base station. First, a multiple parent rayscheme is introduced that allows a sensor node to
forward a packet to one of its parents. This makes the patless pronounced in terms of routing packets
towards the base station. Second, a controlled random watkroduced into the multi-hop path traversed
by a packet through the WSN towards the base station. Thisbdites packet traffic, thereby rendering
less effective rate monitoring attacks. Third, random fplths are introduced to confuse an adversary from
tracking a packet as it moves towards a base station. Thigatgs the effectiveness of time correlation
attacks. Finally, multiple, random areas of high commuicaactivity are created to deceive an adversary
as to the true location of the base station, which furtheriases the difficulty of rate monitoring attacks.

In Section 5, we analyze our decorrelation techniques teroehe their effectiveness in thwarting rate mon-
itoring and time correlation attacks, and assess the cddfsese countermeasures. The general issue is
whether employing the set of decorrelation techniquesraalabove is worth the cost incurred in additional
messaging and hence energy expenditure, e.g. for mulpldom fake paths. Consider that the lifetime of
the network is actually theninimumof two quantities: the time to destroy the base station, Wwhiitl disable
the WSN; and the time until most nodes in the sensor netwarklepleted of energy, which will also disable
the WSN. In the absence of any randomization, let us defingéntieeto destroy the base stationds the time
that most leaf sensor nodes will be exhausted by typical clgtling to beT;,, and the lifetime of the network
T = min(Ty,T,). With randomization, definé}; as the time to destroy the base station WhE;re> Ty,
andT,, as the reduced energy lifetime whéfe < T,,, andT" = min(T,,T,). In general, randomization is
worth it only if we can increase the lifetime of the networle. ionly if 7" > T..
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Let us consider a simple example to provide an idea of thetff&lin employing randomization. The energy
lifetime of each MICA2 sensor mote is typicall§, ~ (2 to 3 months) assuming two AA batteries and a
low duty cycle. T}, is approximately the average number of search steps by arsaty multiplied by the
average time/search step. As shown later, under certaimgsi®ns like shortest path routing, no randomizing
defenses, and a specific search method, the number of seégpshts find the base station is on the order of
tens of steps. If the sensor reporting rate is sufficientipphand each step takes say ten minutes to physically
move from one hop to the next, th@) ~ (2 to 3 hours). The unprotected WSN will only survive two to
three hours when under a concerted traffic analysis attaclyesdesire the introduction of randomization
techniques that will improve the network’s survival time.s Bhown later, under certain assumptions, our
results demonstrate that our randomization techniquetfis@ntly delay (up to 19X) an adversary from
finding a base station, at the cost of introducing additiongdrhead and energy consumption (2-3X). In
this caseT, ~ 19 x Ty ~ 2to 3 days, whileT], ~ (% to %) x T, =~ 1 month. In this simple example,
randomization is able to extend the lifetime of the WSN byadaof 19, while keeping the energy/overhead
costs affordable sincg, > T,.

A natural extension of this approach is to broadcast evetkgiawhich achieves maximum decorrelation at
maximum cost. The methods proposed in this paper, e.g. DEERRed later, achieve close to broadcast's
maximal decorrelation, as signified by maximizing the nuntdfesearch steps by an adversary, at a fraction
of the cost, namely about two orders of magnitude less oaertigan flooding.

The proposed countermeasures are specially adapted fdessrsensor networks and exhibit several desirable
properties. First, all four techniques are distributedature. There is no single initialization or coordination
point involved to setup these mechanisms. Second, memarg@mputation requirements in each sensor
node are relatively low, and can easily be met by modern sermah as the MICA2 mote. Third, any
compromise of one or a small number of sensor nodes by ansatyds easily tolerated. If an adversary
compromises some nodes, the damage it can inflict upon the M/#MNited. Fourth, our techniques don'’t
require a node to delay sending packets, as would be thercdszsimple decorrelation approaches discussed
in Section 3. A node can send/forward its packet as soon asréady. This aids in reducing the time
delay introduced by countermeasures against traffic asadytacks. Finally, the cost of these techniques is
moderate and the techniques are applicable to large seeswoniks. This is confirmed by simulation results
presented in Section 5.

2 Network Traffic and Threat Model

We assume a standard wireless sensor network consistirntgezfsh one base station collecting sensor data
over multiple hops from a wireless network of sensor nodégse& nodes form a tree-structured WSN routing
topology rooted in the base station, forwarding data to Heelstation thereby creating the pronounced traffic
patterns in Figure 1. The nodes are severely resourceraoresd in terms of limited memory, bandwidth,
CPU, and energy. Aggregator nodes are permitted and proetasirom their local sensor nodes before
sending the aggregated result to the base station througifpieminops. We assume that the number of base
stations in a WSN is relatively small, so that the pronourdatd traffic pattern shown in Figure 1 is not likely
to be mitigated in any significant way by introducing mukdiflase stations. So, even if there are multiple base
stations, an adversary can employ the same traffic anabdmmigues to locate and destroy each base station
one by one. We assume that the data reporting rate of the gedesates sufficient packet traffic such that
an adversary has some advantage in employing traffic andtydiscover the base station, i.e. traffic analysis
gives an adversary an opportunity to reduce the networkriferather than waiting for energy exhaustion of
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the WSN.

For the capabilities of an adversary, we assume that an satyectan monitor network traffic, and perform
arate monitoring attackand atime correlation attack An adversary can capture sensor nodes, compromise
them and obtain all information, e.g. encryption keys angting tables, inside a node. A compromised
node can be reprogrammed and converted into a malicious nddeever, we assume that the adversary
requires some non-trivial amount of time to compromise aenodWe also assume that an adversary can
physically move from one location to another in the netwdrdowever, the adversary doesn’t have global
information about the whole network, and cannot jam thereméetwork. Our solutions are designed for a
large sensor network, in which an adversary cannot find tke btation unless it is close by. We term the
area within which an adversary can immediately identify sebstation as thbase station areaThe threat

of traffic analysis from the adversary is assumed to be imnmjne. the adversary will be present some time
during the network’s lifetime. In other scenarios, attaokay be infrequent or rare, so that traffic analysis
countermeasures, rather than extending the lifetime dcdetrease the lifetime when the probability of an
attacker being present is small. We do not consider suclagosn

We assume that sensor nodes use the key framework propok&d\m [25] to protect hop-by-hop commu-
nication. Nodes can set up pair-wise keys using existingppuods [8, 3, 7, 14, 25]. Every node can also set
up a single cluster key [25] shared with all of its neighbgritodes. As described in [5], when a node sends a
packet, it protects and encrypts the packet with its cluggr An adversary who has not obtained the cluster
key via compromise cannot decrypt the contents of a packahefsame time, other nodes in the cluster can
easily understand the type of packet and process it acgydin

3 Basic Decorrelation Countermeasures

3.1 Hidden Packet Destination Address

The first countermeasure is to ensure that the external eppmaof a packet changes as it moves forward

through a multi-hop sensor network. To do this, a clusterikegstablished among each set of neighboring

nodes. The packet destination address, packet type, akdtpamtents are encrypted by a node using its

cluster key. As a packet moves forward, each node first dectip packet and then reencrypts it using the

cluster key. The current sender’s address remains in pidiab that the receiver can choose the correct cluster
key to decrypt the packet. The format of a packet is

IDg,c||Exc,,.(type||I Dy |data)

When a node receives this packet, it che£ks,.. and decides which cluster key to use to decrypt the packet.
After decrypting the rest of the packet, a node checks if ihesdestination of the packet. Integrity can be
added via a MAC based on the cluster key.

The net effect is that the packet’s entire appearance isfoaned at every hop along its path, making it
difficult for an eavesdropper to trace the path of the packep-by-hop reencryption spatially decorrelates
the packet’s appearance. Unless an attacker can compranssader’s neighboring node and obtain the
cluster key, it won’t know the contents of the packet. If aaeiter compromises a nodeand obtains all the
keys inside the node, it will be able to decrypt the packetd bg s’s parent node, and can then track two
hops towards the base station, but cannot track beyond that.
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Figure 2: Decorrelating packet send times via random delays

3.2 Decorrelating Packet Sending Times

Packet encryption can hide a packet destination, but cdndeits sender. By carefully monitoring the packet
sending time of every node, an adversary may obtain somamiation about data traffic flows. For example,
if a parent node receives a packet from its child nodand forwards that packet immediately, an adversary
can observe the short time interval betweeand ¢ and eventually infer the parent-child hierarchy given
sufficiently long observations.

To prevent this, we decorrelate the packet sending timesdest a parent node and its child nodes. Here we
only consider the situation that every node sends data atiine rate. This situation occurs when every node
regularly aggregates data from its children nodes and serefsult to its parent node. Suppose all child nodes
and parent nodes report their data during time pefiod_et’s denote the time interval between two child
nodes sending packets As. (we assume sensor nodes use a MAC layer protocol to avoigtpaahisions),

the time interval from the last child node sending data toptaent node sending data As,, and the time
between a parent node sending data and its grandparentrftingyalata as\¢,. We denoteAt,, At,, At,

as the average value dft., At,, andAt,. If the differences betweent., At, andAt, are observable, an
adversary may be able to extract which node is the parentafdelemonitoring the network for an extended
period of time.

If the parent node and child nodes send packets with the saigesensor nodes can introduce random delay
between packet sending times. This makes the differendesbeAt., At, and At, unobservable. To do
this, first the time period’ is divided intom slots, if there aren — 1 child nodes and 1 parent node. Every
node is assigned a slot and randomly chooses a time withshoitto send its packet. For example, in Figure 2,
the time slot assignment algorithm is centered at the pawade:. The parent node informs each child node of
its time slot with a secure unicast message. Nade® n, arens’s child nodes, anayg is n5's parent node.
Figure 2(a) shows every node sends its packet as soon as iTbartifferences betweeft., At, andAt,

are correlated. Figure 2(b) shows thatto n5 occupy different time slots and each node sends its packet
randomly within its time slot. The differences betwegn., At, andAt, are indistinguishable. Experiments
show that a sensor node only spends about 40 to 50 millisedorsend a 36-byte packet. Normally, a sensor
reports data once per minute or once per tens of seconds.dm&cted sensor network, a sensor node may
have 10 to 20 neighboring nodes. So the time slot is big endaigh sensor node to successfully send its
packet.
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3.3 Controlling Packet Sending Rates

In the previous subsection, we assumed that every node peklists at the same rate. However, in some
cases, different sensor nodes may send packets with diffierees. For example, the base station may require
that each sensor node sends its neighborhood informatioictfwontains the IDs of its identified neighboring
nodes) back to the base station. We call this@ology report The topology report helps a base station to
update its complete network topology picture. The end uaaruse this information to learn what sensor
nodes and base stations are unreachable. For the topojomy neessages, a parent node has to forward every
message from its children nodes, and aggregation is avoitiedery node sends a packet with the same rate,
then nodes closer to the base station will sustain largetisgmates. By monitoring packet sending rates, an
adversary can track the base station.

Our solution is to set the packet sending rate control betagerent node and its children nodes. That creates
a uniform sending rate across the entire sensor networkag@very node behaves like every other node in
terms of traffic volume. When a parent node has a packet inffertto send, it won't accept any packet from
its children nodes. When the parent has sent out its patletceépts one packet from its children nodes and
saves that packet into its buffer. All children nodes are ibooing the packet sent out by their parent node,
because they have the parent’s cluster key. If a child nods fhmat its packet was just transmitted by its parent
node (that means its parent node has received its packet)it éinds its parent beginning to send dummy
packets (that means the parent node has an empty bufferthtaehild begins to accept a new packet from its
children nodes. Otherwise it will continue to send the saaket to its parent node. If a node doesn’t have
any packet to send, it just injects a dummy packet to its paceil the whole topology reporting process
stops. The base station can send a broadcast message amdtatop the topology reporting process. This
rate control scheme is depicted in Figure 3; Figure 4 dessribe algorithm. This algorithm implements rate
control, and it is robust, handling the case when the chitterfails to hear the parent node forward its packet.

3.4 Limitations

There are some limitations to the prior methods. First, t@yfine the data sending pattern of the network.
They require every node to aggregate data from its dowmstreades. Second, these methods do not work
if there is urgent data that needs to be sent to the baserstiquickly as possible. Third, imposing a
uniform sending rate results in dummy packets being senthfise nodes that have less data to contribute
than the global sending rate. The dummy packets increasengrgy expenditure of such nodes. Finally,
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while (1) {
sendP; to parent node
listen to packet sending of neighboring nodes
if receive packep
if (p.sender == parent_node) {
if ((p == Ps)l|(p == dummy)){

P — dummy

} else if p.sender € s.children) {
if (p # dummy&& Ps == dummy) {
P, —p
}
}

wait for next time slot

}

Figure 4: Algorithm for packet sending controP(is the packet to send)

base station  base station base station base station
r' s
sensor sensor sensor sensor
O node node node node
(a)shortest (b)multi-  (c) multi-parent (d) multi-parent

path routing  parent routing routing+random routing-+random
walk walk + fractal

propagation

Figure 5: Techniques to counter traffic analysis.

they introduce extra delays in forwarding packets at eagh cuumulatively increasing the time to deliver data
from source nodes to the base station. In the next sectiomtroeluce more advanced schemes to defend
against traffic analysis attacks.

4 Inhibiting Traffic Analysis Attacks With Randomized Traffi c

This section introduces a suite of randomized network trédithniques that improve upon Section 3's basic
traffic analysis countermeasures. These techniques dapoe onerous limitations such as a high uniform
sending rate throughout the network or enforced aggregatievery hop, as in the previous section. Figure 5
summarizes each of the major randomization techniquesviattroduce in this section.
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4.1 Multi-parent routing scheme

To reduce the starkness of pronounced paths caused bysthpateé (SP) routing, as shown by the direct
node-to-base station route in Figure 5(a), we require eade mo randomly select one of multiple parent
nodes to route data to the base station, as shown in Figure\dfien a node needs to forward a packet, the
node randomly selects one of its parent nodes to forwardabkap. We call this scheme multi-parent routing
(MPR). We propose two methods for setting up multiple parémt each node. In the first method, as shown
in Figure 6, whenever a base station sets up a routing stejdtibroadcasts or floods a message called the
beacon. The beacon message contaieselfield. The base station sets the valudesielto 0. When a node
forwards a beacon message, it increments it by 1. So the ealeegelrepresents the number of hops that a
node is from the base station along a particular path. A semste s selects all neighboring nodes whose
levelvalue is less thar's levelvalue as its parent nodes. In the second method, a node msoaitdeacon
messages it receives before forwarding the first beaconagesSince a nodehas to wait for some amount
of time before forwarding a beacon message (waiting time ACMayer), it selects all nodes from whom it
receives a beacon message while waiting to forward the éicgtived beacon message as its parent nodes.

An adversary has several ways to attack these multi-papeiting setup schemes. For example, a malicious
node can claim a lodevelvalue to attract traffic from other nodes, or it can use unfaédia access control
mechanisms to occupy the wireless channel. Protectinqigpsthemes from such attacks is beyond the scope
of this paper. Here we assume that the routing set up scherakiwely fast, so an adversary doesn't have
enough time to attack the routing set up process. Severdianens [13, 5] have already been proposed to
protect against attacks during the routing setup. Notiaettielevelinformation will be erased by every node
after the routing paths are set up. So even if a node is comgediman adversary won't know the distance to
the base station because theelinformation of the compromised node won't be available.

4.2 Random Walk

To further diversify routing paths and mitigate rate moriitg attacks, we propose a random walk (RW)
routing scheme. In RW, when a node receives a packet, it fosvine packet to one of its parent nodes
with probability p,.. However, it uses a random forwarding algorithm with praligbl — p,.. In the random
forwarding algorithm, the node forwards the packet to onésofieighboring nodes with equal probability.
Like [12] and [23], MPR and RW use probabilistic routing. Hawer, [12] and [23] use probabilistic routing
for reliable data transmission in sensor networks, whileigeprobabilistic routing to defend against thte
monitoring attack
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The RW technique results in some packets traversing a Igragbrto reach the base station than the shortest
available path, as shown in Figure 5(c). This implies that RilY consume more energy per node on an
average. To estimate how much extra energy is consumed byB\8&lculate the cost C of RW, where cost
is defined as [5]C = % Here, M’ is the average number of hops a packet takes to reach thethéiea s
from an aggregator node in RW, aid is the number of hops a packet takes to reach the base stairan f
the same aggregator node in SP. Cleatly,depends on the several factors related to network topotagy,
how many neighbors a sensor node has, how far the base s&fimm a sensor node or from one of its
neighboring nodes, and so on. We calculate the valug lof making the following simplifying assumption.
Suppose a node randomly selects a neighboring nodé¢o forward a packet, and the distance (number of
hops along the shortest path) betweemd the base stationds while the distance betweenand base station

is d’. We assume that the probability that> d’ is the same as the probability that< d’. So on average,
whenwu forwards a packet to, the distance from the base station doesn’t change. Onlynwlerwards the
packet to its parent node, the distance is reduced by 1. Wealeas the number of hops from the aggregator
to the base station in SP, and as the number of average hops in RW. We halep, = n. This implies
C=M_1

- M T opr

In addition, a packet will take a longer time to reach the k&tadion in RW. In fact, the extra time delay
is directly proportional (linear) to the extra hops usedftowarding the packet. So, the time cost for each
packet to reach the base station is rougﬁlyn RW.

4.3 Fractal Propagation

MPR and RW spread out data traffic and make it difficult to usg@monitoring attack. However, RW is still
vulnerable to thdime correlationattack. Usually, for a node, the number of parent nodes is less than half
of s’s neighboring nodes, and for energy and efficiency conatders,p, > 0.5 typically. As a result, the
possibility that a node forwards a packet to its parent nedgher than the possibility it forwards the packet
to any one of its other neighbors. An adversary can expl@ttthlaunch a time correlation attack, either by
injecting abnormal report data or monitoring over a longqakof time.

To address the shortcomings of MPR and RW, we propose a néwnwigee calledractal propagation In

this technique, severéhke packets are created and propagated in the network to irteoehore randomness
in the communication pattern. When a node hears that itdhhergng node is forwarding a packet to the
base station, the node generates a fake packet with prityahil and forwards it to one of its neighboring
nodes. To control the propagation range of the fake pacieh eewly generated fake packet contaifength
parameter with valuél. K is a constant that is known to all nodes, so an adversary téood the whole
network by sending fake packets witngthparameter higher thalR'. When a node receives a fake packet,
it decrementgengthby 1. If the value ofengthis greater than zero, the node forwards the fake packet to one
of its neighboring nodes (not necessarily in the directibthe base station). If the value t#ngthis zero, a
node stops forwarding the fake packet. In addition, whendetears that its neighboring node is forwarding
a fake packet to someone else wigémgthvalue %k (k < K), it generates and forwards another fake packet
with probability p. andlengthvaluek — 1.

These fake packets spread out in the network and their tiagigm paths form a tree (see Figure 5(d)). In
particular, the communication traffic is much more spreaitioan RW. So even if an adversary can track a
packet using time-correlation, she cannot track wheredhé(as opposed to fake) packet is going. This is
because she cannot differentiate between a real and a feketpegithout knowing the encryption key.

Suppose a node hasneighboring nodes on average. pgt= p.xx and f(K) represents the total length of

10



Elsevier Pervasive and Mobile Computing Journal, Speasalié on Security in Wireless Mobile Computing
Systems, vol 2, issue 2, April 2006, pp. 159-186

a fake tree that originated witbngthvalue K. We have

FIE) =ppx f(K=1)+ f(K-1)+1

Solving this recursive equation, we get

R S (T i T
K = P + 1 t— pf pf
FK) g( s+ { K otherwise

Suppose the length of real path from the aggregator nodestbabe station is. The cost is

(pp+1)EK -1
M ntnxppxf(K)  nHnxppx Hge—

¢ M n n

= (py + 1
If we combine RW and the fractal idea, the total cost is

(py + DK
pr

C =

If we use fixed values of,, py and K, the average cost is a fixed value that is independent of zkeeos$ithe
network.

4.3.1 Fractal propagation with different forking probabil ities

One problem with simple fractal propagation is that it gates a large amount of traffic near the base station.
This will potentially increase the packet collision ratalgracket loss rate.

To address this problem, nodes can use different probabitib generate fake packets. When a node forwards
packets more frequently, it sets a lower probability foratireg new fake packets. This technique is called
Differential Fractal Propagation (DFP). The algorithm $atting this probability is as follows. When the
packet forwarding rate at a node is lower than a threshald the node generates new fake packets with
probability p. When the packet forwarding rate is higher tharthe node generates new fake packets with
probability p’ = px (h/r)?; h can be chosen as the packet sending rate of the aggregator nod

4.3.2 Enforced fractal propagation

The idea of fractal propagation aids significantly in spregaut the communication traffic evenly over the
network and obfuscating any paths to the base station. Te makters worse for an adversary, we generate
local high data sending rate areas, caltetispotsin the network. An adversary may be trapped in those areas
and not be able to determine the correct path to the baserstdtnis routing technique is called Differential
Enforced Fractal Propagation (DEFP). The challenge hehnevisto create hot spots that are evenly spread
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V2 Ticket table of node u V2 Ticket table of node u
vl { ID Tickets pfr%?;;ﬁﬁty } vl { ID Tickets pfr%?;;ﬁﬂty }
v3 [ v 1 1/6 } v3 [ v 1 1/10 }
[ v2 1 /6 ] [ v2 1 1/10 ]
v3 1 /6 } v3 5 172 }
u \.V 4 va4 1 1/6 ] u \.V 4 va4 1 1/10 ]
v5 1 1/6 } v5 1 1/10 }
V6 [ v6 1 16 } V6 [ v6 1 1/10 }
v5 v5
(a) before node: forwards any fake packet (b) afterforwards a fake packet to node

Figure 7: Ticket table of node

out in the network, such that only a minimum (preferably 2@mount of extra communication/coordination
among the sensor nodes is needed.

DEFP is a simple distributed algorithm based on DFP. The #ex is to let the nodes that forwarded fake
packets earlier have a higher chance to forward fake patk#ts future. In particular, if a node forwarded

a fake packet to another noden the past, then it forwards the next fake packet receivedwith a higher
probability. The node useslattery schedulingalgorithm [22] to choose the next node to forward the fake
packet to. In this algorithm (see Figure 7), a node assigkets to each of its neighboring nodes. It chooses
the next node to forward a fake packet to based on the numbiekefs assigned to the neighboring nodes. A
neighboring node with more tickets assigned has the higtudrability of being chosen. In the beginning, all
neighboring nodes are assigned one ticket. When the nodseb@ neighboring node as the next node for
forwarding a fake packet, it increments that node’s tickstg. This way, after a node has forwarded a fake
packet to one of its neighboring nodes, it will continue torfard other fake packets to the same neighboring
node with higher and higher probability. If an area of nodeseive fake packets, they are more likely to
process more and more fake packets in the future. This wiilthat area into a hot spot. It is also very easy
to destroy current hot spots and reconstruct new hot spdiffeitent places. For example, sensor nodes just
reset the value of tickets to 1 when they receive a broadcassage from the base station, and then start to
build hot spots from scratch. A patient attacker can waithaitaspot until the communication pattern changes.
While this will allow the attacker to determine that he wasdake hot spot, it does not provide any other
information about the possible location of the base staftamthermore, waiting for a long time at a fake hot
spot will add more delay to finding the location of the baséata

4.4 Node Compromises

If an adversary compromises a node, she can normally fincheutientity of its parent nodes, and read the
contents of all packets passing through this node. In amigithy monitoring the traffic for some sufficiently
long period of time, she can obtain distribution informat&bout all the ancestor nodes within her activity
range. However, with this knowledge, she cannot deternfiedocation of the base station, and cannot block
communication between an aggregator node and the basmsthtidetermine the location of the base station,
the adversary will have to compromise a large number of naltewy the path to the base station.

To further minimize the damage of node compromise, we pr@plsdirectional pairwise IDmechanism
such that every node has different IDs to its children nodesparent nodes. When a nodés compromised,
an adversary knows its parent noge ID. However, the parenp only uses that ID to accept packets, and
doesn't use that ID to send packets. So the adversary canoet Which node i by listening to packets.
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Hops || Average Number of Compromised Nodgs
5 53.7
10 87.1
15 120.8
20 152.6
25 181.2

Table 1: Average number of nodes that need to be compromiséhde back to the base station given
directional pairwise ID’s.

She has to compromisgs neighboring nodes one by one, until capturing

Concretely, every node shares a unique pair of IDs with e&th parent nodes. For example, suppose node
u has parent nodg; andp,. Thenw has an IDID,,, to p;, andp; has an IDID,, ,, to u. Thusu andp:
shares another pair of ID9,,,,, andI D,,,,. Whenu sends a packet o, it uses the format that

IDyp, |Exc, (type| ’IDplu‘ |data)

If u is compromised, the adversary know&”,, ID,,,, andID,,,, but she doesn’'t know;’s IDs to p;’s
parent nodes. She has to compromige neighboring nodes which are nats children nodes, until she
capturesp;. This mechanism increases the workload of node compronilsdle 1 shows the average
number of nodes that need to be compromised in a randombdistd network under a single parent routing
scheme. We can see that if the first compromised node is 15&dvegg from the base station, the adversary
needs to compromise about 120 other nodes, instead of 15,rtodget to the base station. This shows that an
adversary has to compromise a relatively large number cdsatbng the path until reaching the base station.

In fractal propagation, if an adversary compromises a nshe,can find out whether a packet is a fake or
real. However, she cannot obtain any information other thbhat was discussed above. The adversary can
attempt to launch a DoS attack by generating several fakeepmand forwarding them to flood the network.
However, the propagation area of a fake packet is limitechbyalue of théengthparameter. A fake packet
can propagate and generate new fake packets only within i ganaof the network, so the damage due to
such DoS attacks is limited to a small part of the network.

Cooperating adversaries can launch a collaborative att&ak example, two cooperating adversaries on
different sides of a WSN can respectively determine thectoe (a vector) where a base station is possibly
located from their current location by analyzing packetsrgust a few hops. They can then form an estimate
of the base station’s location by intersecting the two vectoHowever, such an attack requires that the
direction in which a parent node is located is precisely tinection towards the base station. This is quite
unlikely in a randomly distributed sensor network. In aiddif MPR increases the difficulty in determining
the precise geographic direction towards the base stdtiming the adversary to compromise a large number
of nodes.

Finally, an adversary can also generate several forgedpaatets and forward them to the base station in
an attempt to flood the base station. However, mechanisnnentlyr exist that allow intermediate nodes to
filter out forged data packets, e.g. see [24, 26]. In theséhamesms, intermediate nodes use randomly pre-
distributed pair-wise keys to verify the authenticity oéttata sent by the aggregator node. Forged packets
are filtered out by each intermediate node with a certaingitiby and thus prevented from propagating over
a long path.

13



Elsevier Pervasive and Mobile Computing Journal, Speasalié on Security in Wireless Mobile Computing
Systems, vol 2, issue 2, April 2006, pp. 159-186

(c) DFP. (d) DEFP.

Figure 8: Number of packets sent/forwarded by each nodeafimgl cumulatively more methods of random-
ization.

4.5 Simulation Results and Summary

We implemented our randomization techniques in our siroglathich is based on a standard discrete event
generator. Figure 8 shows the cumulative routes taken byefmthrough a sensor network employing each

of the techniques. The simulation results demonstrateRWaAtreates a more diffuse routing pattern than SP

(compare to Figure 1). Similarly, fractal propagation tw@gues, DFP and DEFP introduce increasing degrees
of randomness respectively that obscure the location dbdlse station. The network configuration for these

simulations is a grid network described in Section 5.

A summary of the problems addressed by each of the randaarizigichniques presented in this section is
given in Table 2. The set of techniques based on fractal gedgan address both rate monitoring and time
correlation attacks. Together, Table 2 and Figure 8 progiéntuitive sense of the scope and cost of these
randomization techniques.

5 Evaluation

5.1 Evaluation Criteria

For the basic schemes described in Section 3, the cost okaoatrol mechanism is assessed. For the
randomized traffic based schemes described in Section €valuation measures how random the network
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| Randomization Technique | Rate Monitoring Attacks Time Correlation Attacks
Multi-Parent Routing (MPR)
Controlled Random Walk (RW)
Fractal Propagation (FP)

Differential Fractal Propagation (DFP)
Differential Enforced Fractal Propagation (DEFP)

ENAAS AN
<=

Table 2: Randomization techniques and the problems thewessld

traffic is, and the cost of randomized traffic. In particulae measure the randomness of network traffic and
its effectiveness againsdite monitoringattacks. We employ two metrics entropyof the network traffic and
the GSATtest. To estimate the cost of our technigues, the number ssages exchanged in our techniques is
counted and compared with the number of messages exchan@ubitest Path (SP) forwarding. Since our
techniques incur very little memory cost on each sensor,rmde a few encryption keys and tickets of neigh-
boring nodes, memory consumption overhead was not measuoed simulation. Also, the effectiveness of
randomization in defending agairtgihe-correlationattacks was not evaluated. Intuitively, a higher forking
probability (py) and a longeriength of fake path will make it more difficult to launch tame correlation
attack. However, measuring the effect of this increaseiitdify is more challenging, and is left as future
work.

Entropy We use entropy to measure the randomness of network traffiitofiy is a mathematical measure
of information uncertainty, and it has been widely used asaimto measure randomness in many applica-
tions, e.g. data communication, data compression, randonbear generators, and security of cryptographic
algorithms. Entropy of a random variabke with a probability functiorp(z) is defined as

H(X) =~} p(x)logop(z)

Suppose that during a time peridd a sensor node sent/forwardeg, packets, and a total d¥/ packets
were sent/forwarded in the WSN. We define the network entropy with the following formula arse it to
estimate the randomness 8fduring the time period

Pa Pa
T:H(N)=-)_ log,~
aeEN M M

In general, a higher value @f (V) implies that the communication traffic pattern/gfis more random.

GSAT Test The GSAT test is intended to measure the ability of a randatioiz technique to guard against
heuristic-based search algorithms that an adversary nmeyouscate a base station. The GSAT algorithm
[19] was proposed for solving NP-hard satisfiability prabse such as the 3SAT problem [4]. In contrast to
the traditional deterministic solutions, GSAT is a proltiab¢ algorithm that combines a hill-climbing search
algorithm with a random restart mechanism. GSAT can solvetrabthe large 3SAT instances in a short
time.

We use the idea of the GSAT algorithm to design a heuristsetdaalgorithm that an adversary employs to
track the location of the base station. In this algorithm admersary starts at some location in the sensor
network N. She monitors network traffic around her within her activigyge. If she finds that a different
nodes within her activity range has the highest traffic, she mowes tand continues to monitor traffic from

s. Using this mechanism, she can move towards the locatiaishtive higher and higher traffic volume.
However, if she reaches a location that has the highestctraithin the neighborhood (local maxima), she
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Size | Average #| Number of| Sending
Neighbors| Aggregators Rate
Grid 81x81 8 28 | 4/minute
Random| 4500 20 28 | 4/minute

Table 3: Network configuration Parameters

selects a direction at random, moves in that direction fonestime, and then repeats the above algorithm.
She continues to do this until she finds the base station.

The GSAT test measures the average number of hops an agviasas to finally reach the base station using
this heuristic algorithm. A large value of the GSAT test implthat the routing technique has better potential
to guard against heuristic-based search algorithms thadeersary may employ to locate a base station.

In addition to the degree of randomness, the exact valuetimi®y and the GSAT test depend on several other
network characteristics, e.g. network structure, netvgizle, number and location of aggregator nodes. To
evaluate our techniques, we have focused on differencedriopy and GSAT test values measured under the
cases when one of the proposed traffic analysis countermesaiswsed and the case when no traffic analysis
defenses are used. We also experimented with differenesalti’, in RW and Py in DEFP, to understand
the effects of these parameters. We simulated two netwouk&tstes in our experiments: a grid topology and
a random topology. Table 3 shows the parameters used inrautagion. Aggregators are located at the four
edges of the network.

5.2 Message Overhead of Rate Control Mechanism

(a) Rate Control Message Cost (b) Integrated Message Overhead
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Figure 9: Overhead of uniform rate control countermeastaorésffic analysis.

We defineC' = %’ to measure the data transmission overhead of our basiaé$tigdfic analysis countermea-
sures, wher€’ is the cost measuremenmdt] is the number of messages without basic traffic analysisdefe
and M’ is the number of messages with the our basic traffic analgsistermeasures. In this experiment, we
simulated and measured the message overhead of the ratel scheme, since it introduces extra “dummy”
packets. We ran three groups of tests. For each group of testemployed a different network topology.
These networks differed from one another in the number oésdout had the same node density. The number
of nodes varied from 250 to 2000. For each test, sensor nodesrandomly deployed in the network area.
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Entropy Traffic Center Traffic
(SP)| BR)| (SP)| (BR)| (SP) (BR)
Grid 9.64 | 11.40| 39000| 7x10° | 10080| 4x10°
Random| 8.20 | 12.08 | 21000| 5x10° | 2792 1.8x10°

Table 4. Entropy and number of messages exchanged in SP an@@&iiic means the total messages ex-
changed in the network, and Center Traffic means the numbraessages exchanged in the close vicinity of
the base station.)

We set up routing, and measuré# andM/. For the same number of nodes with the same network density,
we repeated the test 50 times and calculated the average Vagure 9 (a) shows the simulation result%vé’f

for three different network densities. We can see that tleetmad of our rate control strategy increases as the
size of the network increases. Our initial analysis and expnts show tha: Jvf[ x VN, whereN is the size
(number of nodes) of the network. That means the rate coowerhead is not scaling directly with the size
of the network.

However, if topology information is not required frequgntlhe overhead of the rate control scheme only
occupies a small part of the total cost. The network traffdaminated by regular sensed data report, whose
anti-traffic message overhead is 1. Figure 9 (b) shows tla teéssage overhead combining sensor data
packets and topology reports over an intermediate densityark. We assume that every node reports its
data once per minute, and the base station requires a tgpopgrt every one to thirty days. Figure 9
(b) shows that the total overhead reduces as the base statjoimes topology reports less frequently. For
example, if the topology report is performed once a week) tmterhead is less than 1.01. In this context, the
overhead of sending “dummy” packets is much less noticeable

5.3 Effectiveness and Cost of Randomized Traffic Techniques

To evaluate the effectiveness of our randomized traffic tmameasures, we simulated them over a grid net-
work (see Table 3) and measured the values of entropy, G3ATaed energy cost (number of messages ex-
changed). We simulated the following techniques: MPR, MRRA-MPR+RW+DFP, and MPR+RW+DEFP.
For simplicity, we use MPR, RW, DFP, and DEFP respectivelyeter to these techniques in the rest of the
paper. In these simulations, we ggtto 0.6,p to 0.2, andK to 6.

To obtain an estimate of an upper bound of entropy and GSATegaland a lower bound on the cost, we
simulated two routing mechanisms. The first routing medraris SP, which selects the shortest path to the
base station from each sensor node. SP provides a measomenftdound on the cost of routing, but results
in very pronounced communication patters as shown in Figjufiecne second routing mechanism is called the
broadcast scheme (BR scheme). In this mechanism, evenagesent by an aggregator node is flooded to
the entire network. Since BR generates uniform networHi¢rat provides a measure of an upper bound of
entropy and GSAT values. Table 4 shows the entropy valuesiamdber of messages exchanged in SP and
BR.

Figure 10 (a) shows the entropy measured for various roteictgniques. All data reported here are an average
over 20 runs. As expected, entropy is lowest for SP and higbhesroadcast. Entropy for MPR and RW is
higher than SP, but lower than DFP and DEFP, which confirmgthgression of increasing randomness
revealed in Figure 8’s various subgraphs. Figure 10 (a) dstrates that the idea of generating fake packets
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Figure 10: Effectiveness and cost of randomization conm@sures against traffic analysis.

in a controlled manner does aid in making the network traffitggn more random. This is in addition to the
original goal of defending against time-correlation asaly

To determine resiliency against a GSAT search, we simuldtediata traffic and recorded the number of
packets sent/forwarded by each node in a log file. We irgtidlia starting point for the adversary in the
network and used the GSAT algorithm to discoverlthse station areaWe recorded the number of steps the
adversary takes to get into the base station area. For egditdpwe set 81 different initial locations. For
each initial location, we ran GSAT to search for the baseostatrea for 100 times, and recorded the number
of hops the adversary takes to get into the base station firelly, we computed the average number of hops
the adversary takes to get into the base station area forteelshique. In addition, we experimented with
three different activity ranges of the adversary: advegrsauld monitor data traffic ovedx 3, 5x5, and9x9
areas around her respectively.

Figure 10 (b) shows the results of the GSAT test. First, weeadhat randomization countermeasures signif-
icantly increase the number of steps an adversary has tadd&eate the base station. The addition of each
technique increases the frustration of the adversary, veithing degrees of effectiveness. For example, she
can discover the base station area in 34 steps in SP (aatiitye3 x3), and 653 steps in DEFP, which is
about 19 times more. Notice that the number of search stegmedenhen all packets are broadcast is only
about 1.5 times more than the number of steps needed in DE#Bam. In this sense, DEFP achieves close
to the maximum decorrelation upper bound represented ladoest.
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The activity range of an adversary also impacts the GSATevalfithe activity range is larger, the corre-
sponding GSAT value is smaller. This implies that the adugrsan find the base station in fewer hops. Even
when the activity range of the adversary is largg ), our traffic analysis defenses significantly increase the
number of hops an adversary has to take to locate the bagmsiega.

Also, we see that the GSAT values correlate with the entr@gbyes shown in Figure 10 (a) (except DEFP).
Higher entropy corresponds to a larger value of GSAT. Thiglies that both entropy and GSAT are useful
metrics to measure the randomness in network traffic. The exdeption is DEFP. Since DEFP converges
some traffic together to forrot spotsit results in less entropy compared to DFP. However, thmgespots
make it more difficult for an adversary to locate the basdastaising a GSAT search algorithm. This is
evident from the higher values of GSAT in DEFP.

Figure 10 (c) shows the cost of randomization in terms of tital number of messages sent/forwarded by
all nodes in the network, and the number of messages sevaffided by nodes near the base station (which
is an area oR0x 20 nodes with base station at center). The total traffic in RWbmua 1.8 times larger than
the total traffic in SP for the whole network and the area nkarbiase station. The total message cost of
DFP and DEFP is about 2.8 times the message cost of SP in tHe nétwork, and 2.4 times near the base
station. In our simulation, when aggregators send four @@cker minute, the nodes directly connected to
the base station forward about 14 packets per minutes inn8Rl@out 34 packets per minute in DEFP. This
is easily feasible in the current sensor network technoldyy important point to note is that the message
cost of these algorithms is constant. It doesn't increadlk intreasing network size. The final observation
is that broadcast costs about 70 times more messaging thBR,RE. Table 4 givdz10° as the number of
messages for broadcasting in a grid while Figure 10 (c) gibesit10° as the number of messages for DEFP.
The overhead messaging cost provides an indication of thggmcost to the WSN, since packet transmission
costs over a thousand times more energy per bit than coriguutdiut is not a precise equivalence due to
other factors such as duty cycling and degree of computation

The big picture emerging from Figure 10's three graphs id tha&r most advanced randomization suite DEFP,
equivalent to MPR+RW+DFP+DEFP, achieves nearly the besbdelation capabilities afforded by broad-
cast at a fraction of the costDEFP achieves close to broadcast flooding’s maximum ddetime, within
about 50% of the maximum number of GSAT search steps requoirad adversary. Yet, DEFP’s overhead
of a hundred thousand messages is 70 times less than pudzasta overhead obtained from Table 4. This
highlights the considerable advantage gained by emplayimgandomization algorithms.

5.4 Effectiveness op, and p

To understand the effect of different valuesppfandp,, we varied parameters for RW and DEFP. We sim-
ulated them on both a grid network and a random network (Tapblén RW, we variedy, from 0.3 to 0.95.

In DEFP, we fixedp, at 0.6, and variegh; from 0.1 to 0.65. The results are shown in Figures 11 and 12. We
notice that the variation in the values of entropy and messagt based op. and P is similar in both grid

and random networks. In RW, the entropy sub-linearly dessrea@nd the number of messages decreases with
increasingp,. In DEFP, entropy sub-linearly increases and the numberesfsages dramatically increases
with increasingp .

These results imply that we should chggeas small as possible, as long as it satisfies our requiremients
Section 4, we analyzed the relation between message cdst, andp,. The results from these experiments
imply that there is a relation between the entropy of netwoaKic, andp, andp,, which is independent of
the size of the network. Another observation is that alttoting total number of messages exchanged is quite
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Figure 11: Effectiveness and cost as a functiop,ofa)-(b) andp, (c)-(d) for a grid network.

large for very large values off, the number of messages exchanged near the base statiort dbasge a
lot. This shows that the traffic control mechanism proposediP and DEFP works quite well.

6 Related Work

Research in security issues in sensor networks has reaeivel attention recently, e.g. secure data commu-
nication [16], secure routing [13, 11, 5], secure data aggjien [18], and pairwise key setup [8, 3, 7, 14, 25].
In the area of privacy in E-commerce, many technigques haee developed to protect the anonymity of
message senders and receivers. Our anti-traffic analygisitgies are similar to the methods used in tra-
ditional privacy and anonymity research, but we have thrégque properties: First, we focus on hiding the
physical location of a base station, instead of hiding tlemiily of a message sender or receiver. Second,
the communication pattern in sensor networks is highly asgiric and converges on a base station. This
make it more difficult to protect the base station againgdti¢ranalysis attacks. Third, traditional networks
are resource-rich compared to a WSN, and so the technigwetoded for traditional networks cannot be
directly used in sensor networks.

In traditional privacy research, mist routing requires-geployed, hierarchical and trusted routers [2]. [10]
requires that every node can talk to every other node. TherOwiuting protocol [9] disguises who talks to
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Figure 12: Effectiveness and cost as a functiop,ofa)-(b) andp (c)-(d) for a random network.

whom on the Internet by layered encryption and by forwardaagived messages in a random order. In addi-
tion, a large number of messages are stored before forvggttdém in a different order. A sensor node doesn’t
have enough memory to store many packets. fHamonymous message transmission protocol proposed in
[1] protects anonymity for both sender and receiver with iata transmission latency. Unfortunately, its
high communication and computational requirements piteitdrom being used in sensor networks. The
techniques to disguise a receiver by routing each messagaltiple receivers using a multicast mechanism
are proposed in [17, 20]. Tor [6] is the second-generatidororouter, which is a circuit-based low-latency
anonymous communication service on the Internet. Howd@veeeds to set up a large number of directory
servers, which is difficult to envision in sensor networks.

Recently, techniques to randomize communications duhieghetwork setup phase to protect the anonymity
of the sensor network infrastructure were proposed in [dh].contrast, we focus on defending against
traffic analysis during the data sending phase. In addit@propose a more robust adversary model, and
assume that an adversary can launch active attacks suge@sip traffic in the network, and compromising
sensor nodes. Preserving source-location privacy in WSaks proposed by C. Ozturst.al. [15]. This
work proposes randomization techniques such as fake magearsistent fake sources, and a random walk to
hide the location of the source of data packet from discovenjike our approach, fake packets are always
flooded, which incurs a high overhead cost. The key advartbger approach is that it achieves much of the
decorrelative effects of flooding at a fraction of the codsdi our focus is on the arguably more difficult task
of hiding thedestinationof a data packet, i.e. base station, from discovery, sine@dfierns produced by the
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tree-structured routing are quite pronounced and difficultide.

7 Future Work

There are a variety of research directions that could be rutise explored in the future. First, our work
considers only one form of search algorithm, namely the GS&drch. More advanced search techniques
could be evaluated. Second, the paper also has not devedopetric for evaluating the effectiveness of
our proposed techniques against time correlation attatke fractal propagation approach makes it more
difficult to trace a packet by inspecting transmission tirmkeadjacent nodes, because the attacker may wind
up following a fake path to a dead end. For example, one mttatcaptures the frustration level of an
adversary mounting a time correlation attack is the numbdead ends reached until finding the base station.
Third, this paper does not address a problem that the bagm&dorwarding behavior is somewhat different
than a typical sensor node in that a packet just stops beamgritted after it has reached the base station.
Since a large fraction of packets are destined for the basierst the sudden lack of forwarding is a strong
indication that the base station area has been reachedif @&mposed a uniform sending rate on all nodes.
We have considered a technique whereby a base station thaeteived a packet continues to forward a
dummy version of that packet past the base station. Thesengiymackets will have a limited lifetime and
can be treated by following nodes like the fake forked packesulting from fractal propagation. However,
we have not yet implemented or evaluated this idea. Fourthdegree of aggregation has not been deeply
explored. The tradeoff between the effectiveness and ¢oshdomization will be affected by more pervasive
aggregation throughout the WSN. Fifth, one measuremehwthiald have been useful to include was the cost
in delay, or extra number of hops, due to random walking.

8 Conclusion

The tree-based routing structure of a wireless sensor nletisaooted in a base station. The forwarding
patterns of WSNs are highly pronounced, revealing the ilocaif the base station through traffic volume
and directionality of packet forwarding. An adversary camesdrop and employate monitoringandtime
correlation traffic analysis attacks to locate and destroy a base statias disabling the entire WSN. This
paper proposed a suite of countermeasures aimed at datogeietwork traffic so that the location of a base
station is disguised against traffic analysis techniguést, Fhree basic defenses were proposed that morph
a packet’s appearance at each hop via reencryption, imposgoam sending rate throughout the network,
and decorrelate packet sending times at each hop. Next,@owed suite of four more advanced solutions
were proposed that overcome limitations of the basic defengVe introduce controlled randomization into
the multi-hop path a packet takes from a sensor node to a katsens We further introduce random fake
paths to confuse an adversary from tracking a packet as iesntowards a base station. Finally, we create
multiple, random hot spots of high communication activiydeceive an adversary as to the true location of
the base station. The paper evaluated these techniquesicaiBl and via simulation using three evaluation
criteria: total randommness or entropy of the network | e&rgy consumed as represented by message over-
head cost, and the ability to prolong a heuristic-basedchegachnique called GSAT to locate a base station.
The simulations showed that our combined suite of advarexediomization techniques, namely multi-parent
routing plus controlled random walk plus differential ertfed fractal propagation, together achieved decor-
relation comparable to the best possible decorrelatioresgmted by broadcast, at a fraction of broadcast’s
messaging cost.
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