
A Practical Study of Transitory Master Key Establishment For Wireless Sensor
Networks

Jing Deng, Carl Hartung, Richard Han, Shivakant Mishra
Computer Science Department

University of Colorado at Boulder
Boulder, CO, 80309-0430

Abstract

Establishing secure links between pairs of directly con-
nected sensor nodes is an important primitive for building
secure wireless sensor networks. This paper systematically
identifies two important security requirements of pairwise
key setup in wireless sensor networks, namely opaqueness
and inoculation. Transitory master key schemes, such as
the LEAP protocol, can satisfy both requirements if the mas-
ter key has not been compromised. However, if the master
key is compromised, every key in the network is exposed to
an adversary. To prevent the master key from becoming a
single point failure of the whole system, we propose a new
opaque transitory master key (OTMK) scheme for pairwise
key setup in sensor networks. In OTMK, even if the master
key is compromised, an adversary can only exploit a small
number of keys nearby the compromised node, while other
keys in the network remain safe. To further investigate key
establishment schemes, we experimented with a way to com-
promise a sensor node, and tested our key establishment
time in a real sensor network environment.

1 Introduction

Wireless sensor networks (WSNs) are rapidly growing
in their importance and relevance to both the research com-
munity and the public at large. Security is a critical issue
for many applications of sensor networks, e.g. military bat-
tlefield deployments and homeland security.

Establishing pairwise keys between pairs of neighbor
nodes has become an important primitive for building sen-
sor network security. These pairwise keys can be used
to provide support for data confidentiality, integrity, and
node authentication in hop-by-hop communication. These
keys have also been used to defend against some sophis-
ticated attacks such as the HELLO attack [18, 11]. Be-
cause of their importance, many schemes to set up pair-

wise keys in wireless sensor networks have been proposed
[14, 10, 20, 13, 27, 7].

A straightforward approach to setting up pairwise keys is
to pre-configure all sensor nodes with a global key and use
that key as a pairwise key for all pairs of directly connected
nodes, which we call neighbor nodes. However, this scheme
has a serious deficiency. If the global key is compromised,
an adversary can decrypt all information that is being ex-
changed over the network by simply sniffing the network.
Another mechanism is to use the base station as the authen-
ticated third party to assign pairwise keys for all neighbor
nodes in the network. However, it is not scalable for a large
multihop sensor network, in which a single base station
needs to manage a large number of sensor nodes. Several
sophisticated pairwise key setup schemes for WSNs have
been proposed over the last several years. Examples include
random key pre-distribution schemes, transitory master key
based schemes, and plaintext key exchange schemes.

To analyze these key setup schemes for WSNs, let’s first
look at the security requirements for traditional key setup
schemes. Traditional key setup introduces three security re-
quirements: (1) confidentiality; (2) authentication; and (3)
integrity [8]. However, for a large WSN, these requirements
can be relaxed. As analyzed by Anderson et.al., for a large
sensor network the confidentiality requirement can be made
less strict if an adversary is only able to eavesdrop on key
setup within a small area [7]. This doesn’t mean that the key
setup schemes for wireless sensor networks require less se-
curity. Integrity and authenticity are still important for sen-
sor network key setup. In addition, intrusion tolerance be-
comes an important characteristic required by pairwise key
setup schemes in sensor networks. Sensor nodes are typi-
cally deployed in situ and are therefore susceptible to phys-
ical capture and compromise by an adversary. For reasons
of cost, sensor nodes often lack expensive hardware protec-
tion to prevent tampering. Even with hardware protection,
other problems such as hardware failure during deployment
can expose information contained in a deployed node. In
all these cases, compromising a sensor node allows an ad-

1



versary to gain access to all information stored in that node,
including all of the node’s keys. There are several poten-
tially adverse consequences of a node compromise: an ad-
versary can obtain all keys stored in the compromised node;
an adversary can use the node’s keys to deduce the keys em-
ployed elsewhere in the network; and an adversary can use
the node’s keys to aid unauthorized malicious sensor nodes
to join and/or disrupt the network elsewhere.

Hence, a key setup scheme for a wireless sensor network
should satisfy at least two additional properties related to
intrusion tolerance: (4) the opaqueness property - an adver-
sary cannot deduce most of the pairwise keys being used
in the network by compromising a small number of sen-
sor nodes; and (5) the inoculation property - an adversary
cannot aid unauthorized sensor nodes to successfully join a
network by compromising a small number of sensor nodes.

This paper first summarizes the existing pairwise key
setup schemes in Section 2 and shows how they are vul-
nerable to compromise by being unable to satisfy one or
more of the properties of opaqueness and inoculation. Sec-
tion 3 demonstrates the ease and speed with which a node
can be compromised using off the shelf technology, thereby
exposing the vulnerability of transitory master key schemes.
Section 4 describes OTMK, a pairwise key setup scheme
in that improves the resiliency of the transitory master key
approach so that the property of opaqueness is at least sat-
isfied. Section 5 describes additional issues in the design
of OTMK. A completed implementation and performance
results of our approach are given in Section 6. Although
some sensor network key setup schemes have been imple-
mented on a sensor node [5, 26], or simulated in a dense
network [14, 10, 20, 13, 7], we have not found prior work
assessing the performance of these implementations under
real multi-node sensor networking conditions.

2 Analysis of Current Pairwise Key Setup
Schemes

A variety of pairwise key setup schemes for WSNs have
been proposed over the last several years. These can be
classified into the following categories: (1) Random Key
Pre-distribution (RKP) schemes; (2) Transitory Master Key
(TMK) based schemes; and (3) Plaintext Key Exchange
(PKE) schemes. We investigate these schemes for their re-
siliency against node compromise, particularly in terms of
inoculation and opaqueness.

2.1 Threat Model

In this paper, we assume that sensor nodes are not mo-
bile. People deploy sensor nodes in a certain area and these
nodes form a wireless ad hoc network. After that, a sen-
sor node cannot move to other places. Because of limited

power support, we believe that this assumption is suitable
for most current sensor network applications.

We assume that the adversary is able to compromise a
sensor node and obtain all of its keys. We show that this
is a feasible assumption in Section 3. The adversary takes
a certain amount of time to compromise a node Tmin. The
adversary can consist of multiple agents, each working to
compromise a different sensor node, but each agent can only
be in one place at one time. The number of agents is small
relative to the size of the sensor network. The adversary’s
agents can move to another place at a later time, introduc-
ing a compromised node elsewhere in the network. The
adversary could clone nodes, and introduce them in several
different areas. The adversary is also able to eavesdrop on
message exchanges due to the broadcast nature of the wire-
less medium. However, recording of such exchanges is con-
fined to the limited number of small areas inhabited by the
adversary’s agents. The adversary is not able to eavesdrop
on the entire network.

2.2 Random Key Pre-distribution Schemes

In RKP schemes, every node is preconfigured with a
number of keys randomly selected from a large key pool.
Neighboring nodes use their preconfigured keys to set up
their pairwise keys. A communication channel secured be-
tween two nodes using pairwise keys is called a key path.
To protect confidentiality, every key is usually assigned an
index, and nodes exchange the index of keys with neigh-
bors to ultimately determine their shared pairwise keys. If
the network density, the size of the key pool, and the num-
ber of keys pre-configured in each sensor node are carefully
chosen, it is highly likely that all nodes in the network will
be connected via key paths.

Compromise of a node reveals its keys and any local
pairwise keys, but the WSN still maintains opaqueness
against an adversary. Even if a small number of sensor
nodes are compromised, the majority of pairwise keys in
the network cannot be deduced by the adversary, since the
adversary only has access to a subset of the pool keys. How-
ever, an adversary who obtains a compromised node’s keys
can still inject malicious sensor nodes elsewhere into the
network, since the pool keys that were obtained are al-
ways valid and are used to authenticate each node. As
a result, RKP is unable to inoculate the sensor network
against arbitrary malicious injections. Another problem
is RKP schemes usually consume more memory than TMK
schemes and PKE schemes, and memory is a very con-
strained resource for a sensor node.



2.3 Plaintext Key Exchange Scheme

In the PKE scheme proposed by Anderson et al., every
node sets up pairwise keys with each of its neighbor nodes
by sending plaintext [7]. Opaqueness is achieved because
an adversary cannot be in all places at all times, and there-
fore cannot observe the setup of all pairwise keys. If the
time for this key exchange phase is short, an adversary has
very little time to eavesdrop on key setup. At the most,
an adversary can observe key setup in only a small part of
the network. Compromising a node does not afford the ad-
versary any added advantage in deducing these keys. PKE
does not provide protection for confidentiality, integrity, and
node authentication. Another drawback of this approach is
that an adversary can inject malicious nodes into the net-
work, since there is no authentication mechanism to verify
whether a sensor node is a valid member.

2.4 Transitory Master Key Schemes

In TMK, the same transitory master key is pre-
configured into each sensor node. A node uses this key to
generate pairwise keys to share with each of its neighbors.
After the key setup phase, each node erases the master key
from its memory.

A representative TMK scheme is the LEAP protocol,
proposed by S. Zhu et al. [27] In LEAP, every node is pre-
configured with a master key KI (called the initial key).
For a node with ID u, its individual key is Ku = f(KI , u),
where f is a secure one-way function. For nodes u and v,
their pairwise key is f(Ku, v), if u > v, and is otherwise
f(Kv, u). By exchanging ID numbers alone, every node
can set up pairwise keys with its neighbor nodes. After the
key setup phase, every node v will erase the master key KI

from its memory, but retain its own individual key Kv. If
a new node u (who has the master key KI) wants to set
up a pairwise key with an old node v, u can compute their
pairwise key by Ku,v = f(f(KI , v), u), and v can also
compute Ku,v from its individual key Kv and the ID of u.
1

Since the master key will be erased from memory af-
ter the key setup phase, an adversary who compromises a
node u after that key setup phase can only capture u’s in-
dividual key Ku and the pairwise keys between u and its
neighbor nodes. The adversary cannot deduce other pair-
wise keys in the network, and he cannot inject other ma-
licious nodes into the network, since the adversary cannot
compute f(KI , i) for i �=u during node joining. The net-
work is therefore opaque to and inoculated against the ad-
versary after key setup has completed.

1While LEAP uses the terminology “master” key to denote the individ-
ual key, we consistently use the term master key throughout this paper to
denote the initial key spanning all nodes.

However, the LEAP TMK scheme loses its opaqueness
and inoculation against malicious nodes if an adversary is
somehow ever able to obtain the master key KI before it is
erased. In this case, the adversary will not only be able to
compute all previously setup pairwise keys in the network,
but will also be able to calculate all future pairwise keys that
may be setup. In addition, the adversary can also inject any
number of malicious nodes into the network.

The likelihood of obtaining the transitory master key, ei-
ther during the TMK key setup phase or in some other man-
ner, is an important issue. One argument is that since the
key setup phase is very short, it is very difficult for an adver-
sary to compromise a node during that time period. How-
ever, there are examples that demonstrate the feasibility of
such compromise. A small number of sensor nodes with
hardware faults may retain the master key in flash memory
without erasing it. This scenario is increased if sensor nodes
are sprinkled from a passing airplane. If the master key is
stored in flash memory, then an adversary can easily retrieve
this key from a malfunctioning or broken node damaged
from impact. As we will show, it is also possible to read
the key even if it is stored in volatile RAM. In other cases,
the time to deploy a sensor network may be significant. In
these cases, the setup phase may need to be extended until
all nodes are activated, or reach their destination. In such
cases, the master key would exist for much longer than sev-
eral seconds, perhaps tens of minutes or more. Although
designers will try their best to enhance the physical security
of a node and protect the master key, since the master key is
a single point failure of the whole sensor network system,
an adversary will also try its best to compromise the master
key.

To mitigate these vulnerabilities in the basic LEAP TMK
scheme, Zhu et al. proposed enhancements to LEAP by
introducing time-limited initial keys [26]. In this enhanced
LEAP protocol, every master key is only valid for a time
slot. Every node that is deployed at time slot T is configured
with the master key MT , and a number of individual keys
for all other time periods t, t≥T . If MT is compromised,
the adversary can only know the pairwise keys setup within
time period T . The pairwise keys setup during other time
slots are safe.

However, this solution introduces its own set of issues. A
critical question is how to determine the length of the time
slot T . If T is long and there are many nodes setting up
keys during T , this approach is not especially advantageous
compared to the original LEAP protocol. By reducing T ,
the number of pairwise keys that would be captured if MT

is compromised is also reduced. However, shorter intervals
of T increase the difficulty of practical deployment. Nodes
would have to be deployed within a short time period. If
they miss their deadline and their master key expires, then
they will be unable to setup pairwise keys with any nodes.



key setup schemes opaqueness inoculation mobility support new node joining
RKP yes no yes yes
PKE yes no yes yes
LEAP yes/no* yes/no* no yes
OTMK (Scheme II) yes/yes* yes/no* no yes

Table 1. Properties of pairwise key establishment schemes. (* master key is compromised)

This could necessitate expensive rekeying. Also, it may not
be physically possible to deploy nodes within the short time
period, especially if nodes are deployed manually, or are
deployed across a wide area. Tighter time synchronization
is required for shorter intervals. The number of individual
keys stored per node would also be higher for shorter in-
tervals. If the lifetime of the network is sufficiently long,
then the number of individual keys that need to be stored
to accommodate shorter intervals could exceed the limited
memory capacity of sensor nodes.

Table 1 summarizes the properties of the above three
types of pairwise key establishment schemes. We also list
our OTMK scheme for comparison. We can see that the
transitory master key scheme, LEAP, keeps both opaque-
ness and inoculation properties when the master key is se-
cure. Our OTMK scheme has an advantage over LEAP in
that when the master key is compromised, OTMK still pre-
serves opaqueness. In terms of mobility, RKP and PKE
schemes will be able to establish secure links as nodes
move, while TMK schemes, such as LEAP and our OTMK
scheme, don’t adapt well to mobile sensor networks. This is
because two long-lived mobile nodes that have already re-
moved their master keys will be unable to establish a secure
link.

3 Practical Techniques For Compromising a
Sensor Node

To demonstrate the viability of node compromise of the
master key, we have designed and carried out a number of
experiments detailing the relative ease with which current
sensor nodes can be compromised using regular ‘off the
shelf’ products. While node compromise is often discussed
as a potential vulnerability in sensor networks, almost no
work has been published to prove the feasibility of such at-
tacks on today’s sensor nodes.

Our experiments found that only three readily available
tools are needed for complete compromise of a typical sen-
sor node, MICA motes: a laptop (or computer), a program-
ming board, and a debugging interface JTAG device [3].
With only the computer and programming board, attackers
can use the freely available uisp utility to obtain copies of
the executable located in flash, and any data located in the
onboard EEPROM. The code is dumped off the node in the

form of a Motorola SREC, which can be easily converted
into assembly language using freely available AVR tools in
order to be analyzed. Thorough analysis of the code can
provide the attacker with routing algorithms and security
mechanisms. Further, by using a JTAG interface an attacker
can also obtain the node’s SRAM in addition to both the
flash and EEPROM data. SRAM is generally considered a
safer place to store keys because of its volatile nature. How-
ever, we were able to demonstrate for example that the keys
to TinySEC [17] could easily be observed by dumping the
RAM.

We found that an attacker could obtain copies of all the
node’s memory and data within one minute of discovering
it, given the proper level of experience with JTAG program-
mers and AVR tools. The majority of that time is spent
dumping the flash or RAM across the communication line,
e.g. serial. Only about fifteen seconds is spent to type the
commands needed to invoke the proper downloading tools.
If an attacker knows the precise area of memory from which
to pull the keys, then the compromise time Tmin is in the
tens of seconds.

These results demonstrate the ease and speed with which
an experienced attacker can compromise a sensor node. In
TMK schemes, if the master key takes tens of minutes to
set up, then an adversary can quickly compromise that node
within a minute of finding it. Tamper-proof hardware can
slow down the adversary, though cost may not allow this de-
fense. Even with tamper-proof hardware, damaged or dis-
abled nodes can be made to give up their secret keys using
techniques similar to the ones presented here.

4 OTMK: Opaque Transitory Master Key
Establishment

In this paper, we propose a solution to pairwise key setup
that improves the transitory master key setup scheme of
LEAP [27]. While both TMK and RKP provide opaque-
ness in the presence of node compromise, we selected the
TMK class of approaches as the basis for our work, because
RKP-based approaches suffer from the weakness that an ad-
versary can inject any number of malicious nodes into the
network by just compromising one node. In contrast, TMK
and LEAP provide some inoculation against injection when
the adversary hasn’t obtained the master key. In our im-



proved solution of OTMK, even if the master key is com-
promised, the property of opaqueness is preserved. Our
basic OTMK protocol in section 4.1 achieves this opaque-
ness using simple techniques that ease node deployment,
instead of relying on the complex timing mechanisms pro-
posed in [26] as enhancements to LEAP. We then propose a
more flexible OTMK protocol in section 4.2 that allows new
nodes to join after the master key has been erased, while
preserving opaqueness and inoculation after the master key
has been erased.

4.1 OTMK Scheme I: a basic protocol

The protocol description adheres to the following nota-
tional conventions:

u→v : node u sends message to node v
u→∗ : node u broadcasts to all neighbors
a||b : message a concatenated with b
Ek(p) : encrypt message p with key k
Mk(p) : generate MAC for message p with key k

In this scheme, all sensor nodes are pre-configured with a
master key M . To set up pairwise keys with their neighbors,
each node u broadcasts a JOIN request message as follows:

u → ∗ : JOIN ||EM (IDu||nonce)
Here IDu is the identity of the sensor node u and nonce is
a random number. When a node v receives this message, it
generates a random number Kv,u, and sends the following
REPLY message to u.

v → u : REPLY ||EM (IDv||nonce + 1||Kv,u)
When node u receives this message, it decrypts this mes-
sage and verifies the nonce. If verified, it records node
v as its verified neighbor. The pairwise key between u
and v is either Kv,u that v generated or Ku,v that u gen-
erates on receiving a similar request message from v. If
IDu < IDv , nodes u and v use Ku,v as their pairwise key.
If IDu > IDv, then they use Kv,u as their pairwise key.
We term this above scheme as OTMK Basic I.

To reduce the chances of master key compromise, every
node destroys its master key from memory after a certain
time that is long enough to set up pairwise keys with its
neighbors.

This basic scheme preserves opaqueness but not inocu-
lation if the master key is compromised. The master key M
is used here only to authenticate a legitimate sensor node,
not to compute all pairwise keys, unlike LEAP. This has a
very important consequence. If an adversary compromises
the master key after a node has set up its pairwise key, the
adversary cannot deduce this pairwise key. If an adversary
compromises the master key before the key setup process
is over, it can find out all pairwise keys that are being ex-
changed during the key setup phase by observing the reply
messages. However, since an adversary can observe only a
small part of the network at any point in time, it can deduce

the pairwise keys of only a small part of the network. In
this way, opaqueness is preserved both before and after the
master key is erased. This is in contrast to LEAP, where a
compromise of the master key at any time allows an adver-
sary to determine all pairwise keys in the network. We will
have more to say on the inoculation property in section 5.2.

The overhead of the basic scheme can be improved in
the following manner. The basic scheme requires that each
node unicast a reply to the node that initially broadcast the
Join. This incurs additional energy costs and delays key
setup. To address this problem, we propose the following
modification that only requires one broadcast message sent
by each node for key setup. When node u sets up its pair-
wise keys with its neighbor nodes, it broadcasts message

u → ∗ : JOIN ||EM (IDu||nonceu)
where ID is the ID of sensor node u, nonceu is a random

number.
If node u and v receive JOIN request messages from each

other, they will generate their pairwise key with the formula
Ku,v = f(IDu||IDv||nonceu||noncev)

when IDu < IDv . Otherwise, when IDu > IDv, their
pairwise key is

Kv,u = f(IDv||IDu||noncev||nonceu)
In this way, every node only needs to broadcast one Join

message, in order to set up their pairwise key. We term
this abbreviated basic scheme as OTMK Simplified I. The
drawback of this scheme is that a node cannot immediately
ascertain whether the pairwise key has really been setup.
Nodes have to verify their pairwise keys at a later time, e.g.
by sending a well-known message with a MAC generated
by the pairwise key.

4.2 OTMK Scheme II: Enabling new nodes to join

Our approach should support the ability to allow new
nodes to join even after the master key has been destroyed.
As is, the basic scheme will be unable to add new nodes
once the master key is destroyed. As a result, it is imper-
ative that we develop a new solution capable of handling
joins beyond the initial deployment.

Suppose a newly joining node u wants to setup a pair-
wise key with an existing node v. There are three problems
that we need to solve: (1) How can v who no longer has the
master key authenticate u?; (2) How can u authenticate v
before setting up a pairwise key with v?; and (3) How can
u and v setup a pairwise key between each other?

We propose a solution that addresses these three prob-
lems and allows new legitimate nodes to join an existing
sensor network, while preserving opaqueness before and
after erasure of the master key as well as inoculation fol-
lowing erasure of the master key. First, before a node
v destroys its master key, it generates a new key Kv =
MAC(M, IDv). In addition, it generates a number of ver-



ifiers. Each verifieri contains a random number ri, and yi,
where yi = f(M, ri). Here f() is a a secure one-way func-
tion. Node v stores Kv, and verifier0, . . . , verifierk, and
destroys the master key M .

A newly joining node u is pre-configured with the mas-
ter key M . To authenticate u, v sends one of its ran-
dom numbers ri as a challenge to u, where 0≤i≤k. Since
u is pre-configured with the master key M , it computes
zi = f(M, ri) and sends it to v. Node v can now authenti-
cate u by verifying if zi = yi.

This verification mechanism has some security weak-
nesses that need to be addressed. An adversary can launch
a replay attack and an ri exhaustion attack upon it. First, an
adversary can passively monitor the network traffic to col-
lect < ri, yi > pairs, and then use them at some later time to
join the network. Second, how many verifiers does a node
need to maintain? Too many verifiers would consume ex-
cessive memory, while too few verifiers allow an adversary
to send many fake Join requests and force a node to use
up all of its verifiers. If an exhausted node refuses to issue
challenges, then all future valid Joins will be blocked. If an
exhausted node repeats an old ri, an adversary can provide
the saved yi to fraudulently verify itself.

To guard against the above attacks, u does not send yi

directly to v. Instead, v sends a nonce nv in addition to ri

in its challenge to u, and u uses yi to generate a message
authentication code (MAC) for nv and sends it back to v.
This mechanism is self-metered and resilient to exhaustion
in that only valid Joins need use up an < ri, yi > pair.

Finally, to authenticate v, u includes a random number
nu in its initial join request and requires v to send a MAC
of nu computed using Kv.

The complete protocol for a new node u joining a net-
work and setting up a pairwise key Ku,v with an existing
node v is shown below:

u → ∗ : JOIN ||nu||IDu

v → u : IDv||EKv (ri||nv)||MACKv (ri||nu||IDv||nv)
u → v : IDu||EKv (Ku,v)||MACyi(nv||Ku,v)

A node that doesn’t have the master key will be unable
to join the network. Since nodes destroy their master keys
soon after initial pairwise key setup, compromising a node
after that time will not allow an attacker to inject new false
nodes into the network. The attacker’s compromised node
will not be able to generate correct responses based on yi

to the random number challenges ri. However, a legitimate
new node just introduced to the network has the master key
temporarily and can securely add itself to the network.

OTMK scheme II thus preserves the opaqueness and in-
oculation properties after the master key M is erased. If
an adversary compromises the master key, Scheme II still
preserves opaqueness, because pairwise keys are generated
locally, and not from the master key. Scheme II also has the
advantage that it is completely decentralized and not timing

dependent, unlike the enhanced LEAP approach.

5 Practical Considerations

5.1 Behavior in the presence of message loss

During the key setup process, if any message is lost,
the pairwise key cannot be set up. A simple solution is
to retransmit key setup messages. A node re-sends broad-
cast messages several times during the key setup time to
make sure that its neighbor nodes can receive its message.
To keep consistency, every retransmitted broadcast mes-
sage or unicast message uses the same random number
(nonce). In OTMK basic scheme I, when a node receives
repeated first join (broadcast) messages, it just replies with
the same unicast message, because it doesn’t know whether
the sender received its previous reply. In OTMK’s node
joining scheme II, when a new node receives repeated sec-
ond challenge (unicast) messages from an old node, it will
reply with the same third reply (unicast) message as before.
When an old node receives repeated first join (broadcast)
messages from a new node and hasn’t received the third
message from that node, it will reply with the same second
challenge message to that node.

Naturally, an adversary can launch replay attacks against
these retransmission schemes. The advantages of the replay
attack are that it generates denial of service and/or energy
exhaustion against the nodes nearby the adversary. These
nodes have to resend many messages. Notice that these at-
tacks only affect nodes within a small area. If we can set
some threshold to limit the total number of key setup mes-
sages sent by a node within certain time, we can mitigate
these attacks. This threshold can also defend against an ad-
versary sending many invalid key setup requests. An adver-
sary cannot capture keys or inject false keys by launching
a replay attack. Also, it is hard for the adversary to launch
other attacks by replaying the key setup messages in other
parts of the network, since in transitory master key schemes
the key setup time is limited.

The actual parameters, such as how many times to re-
transmit broadcast messages and how many times to re-
transmit unicast messages, depend on the particular imple-
mentation scenario, e.g., the network density or the number
of secure links that a node desires.

5.2 Mitigating compromise of the master key

One problem with the schemes proposed in Section 4
is that if the master key M is compromised during the
key setup phase, then the inoculation property cannot be
achieved. An adversary can inject any number of malicious
nodes into the network, although the adversary still cannot



deduce most of the pairwise keys already setup in the net-
work. For TMK schemes, it is difficult to prevent an ad-
versary from injecting malicious nodes if the master key is
compromised, since the master key is used to authenticate a
node.

There are several ways to counter false injection if the
master key is compromised. First, an authenticated third
party, e.g., the base station, can be used to verify every new
node added in the network. This approach incurs much data
traffic and energy consumption for a large scale sensor net-
work, but is still practical for a small network. Second, the
scope of the master key can be confined either by its geo-
graphic location or its validity in time. Several random key
distribution schemes propose to distribute keys correspond-
ing to a node’s location [21, 13, 15]. If the keys in a node
correspond to the node’s geographic location, then an ad-
versary will have difficulty cloning that node to other loca-
tions. However, one problem of geographic location based
random key distribution scheme is the difficulty of deploy-
ment, since for each node, we need to know its approximate
location and pre-configure a certain set of keys in it.

In the time limitation approach, the master key is
bounded to a limited time period. After that period, the mas-
ter key is invalidated and the node that contains that iden-
tification information cannot setup pairwise keys with valid
nodes. We focus our discussion on new nodes joining the
network, since they have different identification information
than old nodes which are already in the network. The au-
thentication of new nodes should be processed within that
limited time period, otherwise, a new node cannot be au-
thenticated by an old node. Here, we propose a method for
a time-limited master key approach. We apply a mechanism
which has the same principle as the µTESLA protocol [22],
and employ a one-way hash chain as the master key in each
time period to authenticate new nodes. Compared to [26],
this scheme consumes less memory. Old nodes don’t need
to store each key for each time slot.

Every node is preconfigured with a master key
H1. That key is on a one-way hash chain <
Hk, Hk−1, . . . , H1, H0 >. Every master key Hi corre-
sponds to a time slot i. For the nodes that are deployed
in the same time frame, they set up keys with each other by
using the master key, as described in the previous section.
After the pairwise keys are established, every node v in time
slot i computes Kv with Hi, and computes Hi−1 from Hi

through the one-way function, then it stores Kv and Hi−1

and erases Hi. When a node has stored Hi−1 and erased
Hi, even it is compromised, adversary still cannot use its
keys to inject malicious node.

To set up the pairwise key between a new node u and an
old node v, we use the following scheme (suppose u uses
Hj and v uses Hi, where j > i):

u→∗ : JOIN ||nu||IDu

v → u : nv||IDv||||i||MACKv (nu||nv||IDv)
u → v : IDu||EKv (Ku,v)||MACHj (nv||IDu||Ku,v)
u → ∗ : Hj

First, the new node u broadcasts a JOIN message with a
random number nu to its neighbors. When an old node v
receives this message, it uses its individual key Kv to MAC
nu, and sends a random number nv, its ID IDv, and mas-
ter key index i to u. u can generate Hi with Hj and i, and
then it generates Kv by Hi and verify the MAC, so u can
authenticate v. If v is verified, u sends the MAC for nv, and
their pairwise key Ku,v to v. After the key setup period, u
broadcasts its master key Hj to its neighbors. Then v can
authenticate u, u’s ID, and the pairwise key Ku,v by ver-
ifying the MAC generated with Hj . If an adversary com-
promises a node in time slot i, it cannot use Hi to inject
malicious nodes in later time slots.

In general, a drawback of the time limitation approach is
that it requires at least loose time synchronization in the net-
work, which increases the complexity of network deploy-
ment and management.

6 Implementation and Key Establishment
Time Estimation

6.1 Goal of experiments

We implemented our OTMK key setup scheme on
Berkeley motes [2]. Our assessment includes how to ini-
tialize the transitory master key, the delay overhead of en-
crypting/decrypting data for each message exchange, and
an evaluation of the overall key setup time for each scheme.

These experiments provide us a rough estimate of the key
establishment time in current wireless sensor networks. No-
tice that OTMK is not intended to speed up the key estab-
lishment time. Instead, OTMK makes the transitory mas-
ter key scheme more resilient to master key compromise.
However, the longer the time needed for key establishment,
the greater the risk of master key compromise. Our exper-
iments show that the time required for message exchanges
dominates key establishment time. Since in the LEAP pro-
tocol every node broadcasts one message for key setup, its
time should be similar to our simplified scheme I. For the
random key schemes such as [14, 12, 20], the number of
exchanged messages are based on the key pool and the num-
ber of keys in each node [9]. R. Di Pietro et.al. proposed
an efficient algorithm which significantly reduces message
exchanges in Gligor schemes [23]. Its key setup time is
similar to LEAP and OTMK simplified scheme. the setup
time of RKP schemes should be no less than transitory mas-
ter key schemes.



TrunkBlock Cipher
Pseudo-random number 

Output

Key

Plaintext Cipher text

Figure 1. Secure Pseudo-random Number
Generator.

6.2 Pseudo-random number generation

The security of our key setup schemes depends upon se-
cure random number generation on a node. The random
number generator (PNG) should be statistically uniformly
distributed. In scheme I, since the random numbers are en-
crypted with master key EM , we don’t have to use a secure
pseudo-random number generator. For new node joining
scheme II, since a new node u needs to send a random num-
ber nu in plaintext, if an adversary can force u to send many
joining requests and eavesdrop them, e.g., jamming the re-
ply messages from old nodes, he can crack the non-secure
pseudo-random number generator and anticipate following
random numbers, even the keys of u, without compromising
u.

A simple solution for this problem is to use a secure,
unpredictable pseudo random number generator. Current
real random number generator are too heavy for sensor node
platform [1, 19]. Here, we use a standard hash chain gener-
ator, which is the lightweight, and secure unpredictable ran-
dom number generation scheme, for our key setup schemes.
First, we preconfigure two random numbers on each sensor
node; one is a seed, and the other is the first random number
ri. These two random numbers are generated by powerful
computing equipment, such as a desktop, with a secure ran-
dom number generator. As shown in Figure 1, every sensor
node uses a block cipher as a secure PRNG, and generates
other random numbers by the formula:

ri+1 = Eseed(ri)

for our PRNG. Here, we depend on the block cipher’s prop-
erty that

1. the ciphertext is statistically uniformly distributed,

2. however many plaintext/ciphertext (ri/ri+1) pairs an
adversary knows, it still cannot figure out what the key
is,

3. even knowing plaintext ri, the adversary cannot figure
out the ciphertext.

Write a 8 bytes key to EEPROM 72.5ms
Read a 8 bytes key from EEPROM < 1 ms
Write a 8 bytes key to flash 19ms
Read a 8 bytes key from flash 1ms

Table 2. read/write key in internal EEPROM

schemes messages encryption decryption
BASIC I JOIN 0.685 0.42

REPLY 1.01 0.82
SIMPL. I JOIN 0.685 0.42
JOIN II JOIN 0.685 0.42

CHALLENGE 1.315 1.045
REPLY 1.675 1.055

Table 3. Delay overhead of packet encryp-
tion/decryption for OTMK schemes (unit:
msec).

This hash chain has the property of creating statistically
uniformly distributed and unpredictable random numbers.
Of course, an adversary can still compromise a node and
obtain its random seed and predict all of its future num-
bers. However, since the adversary already knows all keys
in that node, then cracking the random number generator
won’t give the adversary more information.

6.3 Master key initialization

In the transitory master key scheme, the master key
is first saved in non-volatile memory, e.g., the flash or
EEPROM, and is then copied to volatile memory, such as
SRAM. The key in non-volatile memory is then erased. At
this point, the node can begin its key setup process.

In our implementation, we measured the key transfer
time of the master key from both internal EEPROM and
flash memory. When a node initializes, the master key is
read from a fixed address in EEPROM/flash, is copied to
SRAM, and a number is rewritten to that address in EEP-
ROM/flash. This moves the master key from non-volatile
memory to volatile memory. Table 2 shows the time of read-
ing/writing an eight byte key from/to internal EEPROM,
and reading/write an eight byte key from/to flash. Notice
that we have to write a whole page of data in flash, which is
256 bytes, since flash writes are on a page granularity. Eight
byte keys are deemed acceptable for sensor networks [17].

6.4 Delay overhead of packet encryp-
tion/decryption

We implemented three versions of OTMK on MICA2
motes: the basic scheme I; the simplified scheme I; and the



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 2  3  4  5  6  7  8  9  10

T
im

e 
(m

ill
is

ec
on

ds
)

Number of Nodes

basic scheme
simplied scheme

Figure 2. Total time for key setup.

new node joining scheme II. The random number length
was set at four bytes long. A key is eight bytes, and
a message authentication code (MAC) is four bytes [17].
Scheme II’s verifier is eight bytes. To save memory,
we implemented the block cipher RC5 for all encryp-
tion/decryption, MAC generation, and random number gen-
eration. We adapted the RC5 implementation from Tiny-
SEC. The packet sizes of exchanged messages are from
eight bytes to twenty bytes.

Table 3 shows the time for encryption/decryption of
each message in each of our key setup schemes. We see
that a node spends very little time for message encryp-
tion/decryption. For example, for the second message of
basic scheme I, a node only spends 1.01 ms to encrypt the
message, and spends 0.82 ms to decrypt the message.

6.5 Overhead of key setup process

For the transitory master key schemes, it is important to
estimate the total time for pairwise key setup in a WSN.
In our tests, we used two to ten motes to execute our key
setup schemes. Every node can communicate with every
other node. This simulates the different densities of sensor
networks, from each node having only one neighbor to each
node having nine neighbors.

Our initial experiment just implemented the original pro-
tocols in section 4. In this implementation, every node tries
to set up keys with its neighbor nodes as soon as possible,
since the key setup time is critical for transitory master key
scheme. However, because every node sends messages dur-
ing a short time period, many packets collide and were lost.
This resulted in failure of the key setup process.

In a later implementation, we allowed every node to ex-
ecute the key setup process multiple times, in order to toler-
ate packet loss. As analyzed in section 5, the repeated key
exchange messages don’t provide a chance for an adversary

to capture the key or inject false keys. An adversary can
only launch limited DoS attacks on nearby nodes.

Our experiments employed the multithreaded Mantis OS
(MOS) as the sensor operating system [6, 4], executing on
MICA2 motes. The media access control layer protocol is
BMAC [25]. We tested the key setup time for the three key
setup protocols: basic scheme I, simplfied scheme I, and the
new node joining scheme II.

Figure 2 shows the total time for our key setup schemes.
First, we see that as the network becomes denser, the time
for key setup grows longer. For example, for a two node
network, the time for key setup is about 1.4 seconds, and
for a ten node network, the time is about 99 seconds. As
expected, the more neighbors a node has, the larger the pos-
sibility of packet collisions. Another observation is that the
simplified scheme I costs less setup time compared with the
basic scheme I, and the difference becomes more significant
as the network becomes denser. For example, when there
are ten nodes in the network, the time for completing the
simplified scheme is about 23 seconds. If a node has n − 1
neighbors, the simplified scheme I employs O(n) messages,
while the basic scheme I employs O(n2) messages. This ex-
periment confirms that the number of messages for the key
setup scheme will significantly affect the completion time
for that protocol as the density increases.

To provide more details, Table 4 shows the average delay
and median delay for setting up one pairwise key during the
basic and simplified key setup processes. This table con-
firms two observations from figure 2: 1) a denser network
requires more time for key setup; 2) the simplified scheme
I uses significantly less time. From this table, we also see
that the median value is less than the mean value. For exam-
ple, in a ten node network, half of the keys are setup within
six seconds for the basic scheme. This implies that while
many keys are setup during a short time, a few keys need
to take much longer to be setup. The large variance shown
in figure 2 also confirms this behavior. Thus, for transi-
tory master schemes, we can set a timeline to guarantee that
most pairwise keys have been setup and thereby minimize
the opportunity of master key compromise.

We also implemented the new node joining scheme II.
We tested the time for a new node to setup its keys with one
to five old nodes. Table 5 demonstrates these results.

These experiments reveal the latency, variance, and sen-
sitivity to density and collisions of our schemes in a truly
deployed sensor network. Due to wireless channel compe-
tition and packet loss, the time for key setup was longer than
we expected. This problem is critical for transitory mas-
ter key schemes since it gives more time for adversary to
compromise the master key. In addition, in our experiment,
we only isolated a small part of the nodes from the whole
network. Due to hidden terminal problems, the key setup
time in a large dense sensor network may be much worse



nodes Basic I Simplified I
Mean Median Mean Median

2 1094 1093 904 1037
3 1534 1105 1368 1041
4 3266 2169 1765 1191
5 3314 2184 1486 1079
6 3920 3290 1694 1117
7 6757 3028 1985 1035
8 7184 3608 2130 1400
9 6706 3722 1981 1206

10 8897 5282 2921 1717

Table 4. Average and median time for one pair-
wise key setup time (unit: msec).

nodes total time mean time median time
1 2468 2468 1087
2 2178 1125 1131
3 5629 2965 3198
4 3550 2342 2171
5 8411 3772 3250

Table 5. Key setup time for the new node join-
ing scheme II (unit: msec).

than our results. In addition, our experiments only count
the time for message exchanges. Some deployment issues
may delay the key setup process for tens of minutes. While
the key setup process can be expedited, these delays as well
as the rapidity of node compromise suggest that there is still
a need to provide intrusion tolerance against compromised
keys in pairwise key setup.

7 Related Work

Pair-wise key setup is an important building block for
sensor networks and as a result has been extensively studied
in recent years [17, 14, 10, 20, 13, 27, 7, 16, 24]. These
approaches were summarized in Section 2.

Deng et. al proposed a transitory master key based pair-
wise key set up scheme for bidirectional verification and
neighborhood authentication [11]. The master key is only
used to encrypt key exchange messages, so that even if the
master key is compromised, an adversary cannot know other
keys in the network. The problem of this scheme is that it
doesn’t provide a secure authentication mechanism to verify
new nodes.

8 Conclusion

This paper’s first contribution identified opaqueness and
inoculation as two important properties desired by pairwise
key setup schemes in WSNs, given node compromise. Our
second contribution was to analyze existing pairwise key
setup schemes and show how they are vulnerable to com-
promise by being unable to satisfy opaqueness and/or inoc-
ulation. Our third contribution demonstrated the practical
ease and speed with which a node can be compromised us-
ing off the shelf technology. Our fourth contribution pre-
sented OTMK, a pairwise key setup scheme that improves
the opaqueness of the transitory master key approach. Our
key setup schemes have been implemented, tested, and their
setup times have been evaluated on actual sensor nodes.

References

[1] Ansi x9.17. American National Standard - Financial institu-
tion key management (wholesale).

[2] Crossbow website. http://www.xbow.com.
[3] JTAG. http://www.atmel.com/.
[4] mantis website. http://mantis.cs.colorado.edu.
[5] TinyKeyman. http://discovery.csc.ncsu.edu/software/TinyKeyMan/.
[6] H. Abrach, S. Bhatti, J. Carlson, H. Dui, J. Rose, A. Sheth,

B. Shucker, J. Deng, and R. Han. Mantis: System support
for multimodal networks of in-situ sensors. In (WSNA’03),
San Diego, CA, USA, September 2003.

[7] R. Anderson, H. Chan, and A. Perrig. Key infection: Smart
trust for smart dust. In 12th IEEE International Conference
on Network Protocols, Berlin, Germany, October 2004.

[8] C. Boyd and A. Mathuria. Protocols for Authentication and
Key Establishment. Springer, 2003.

[9] H. Chan and A. Perrig. PIKE: Peer intermediaries for key
establishment in sensor networks. In Proceedings of IEEE
Infocom, Mar. 2005.

[10] H. Chan, A. Perrig, and D. Song. Random key predistribu-
tion schemes for sensor networks. In IEEE Symposium on
Security and Privacy, May 2003.

[11] J. Deng, R. Han, and S. Mishra. Inrusion tolerance and
anti-traffic analysis strategies in wireless sensor networks.
In IEEE 2004 International Conference on Dependable Sys-
tems and Networks (DSN’04), Florence, Italy, June 2004.

[12] W. Du, J. Deng, Y. Han, and P. Varshney. A pairwise key
pre-distribution scheme for wireless sensor networks. In
10th ACM Conference on Computer and Communications
Security (CCS’03), Washington D.C, USA, October 2003.

[13] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney. A
key management scheme for wireless sensor networks using
deployment knowledge. In IEEE 23rd International Con-
ference on Computer Communication, Hong Kong, China,
March 2004.

[14] L. Eschenauer and V. Gligor. A key-management scheme
for distributed sensor networks. In Conference on Computer
and Communications Security, (CCS’02), Washington DC,
USA, November 2002.



[15] D. Huang, M. Mehta, D. Medhi, and L. Harn. Location-
aware key management scheme for wireless sensor net-
works. In 2004 ACM Workshop on Security of Ad Hoc and
Sensor Networks, Washington, DC, USA, October 2004.

[16] J. Hwang and Y. Kim. Revisiting random key pre-
distribution schemes for wireless sensor networks. In 2004
ACM Workshop on Security of Ad Hoc and Sensor Networks,
Washington, DC, USA, October 2004.

[17] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer
security architecture for wireless sensor networks. In Second
ACM Conference on Embedded Networked Sensor Systems
(SenSys 2004), Baltimore, MD, USA, November 2004.

[18] C. Karlof and D. Wagner. Secure routing in wireless sensor
networks: Attacks and countermeasures. Ad Hoc Networks,
1(2-3), September 2003.

[19] J. Kelsey, B. Schneier, and N. Ferguson. Yarrow-60: Notes
on the design and analysis of the yarrow cryptographic pseu-
dorandom number generator. In 6th Annual International
Workshop on Selected Areas in Cryptography (SAC’99),
Kingston, Ontario, Canada, August 1999.

[20] D. Liu and P. Ning. Establishing pairwise keys in distributed
sensor networks. In CCS’03, Washingon D.C, USA, October
2003.

[21] D. Liu and P. Ning. Location-based pairwise key establish-
ment for static sensor networks. In 1st ACM Workshop on
Security of Ad Hoc and Sensor Networks, in association with
the 10th ACM Conference on Computer and Communica-
tions Security, Fairfax, VA, USA, October 2003.

[22] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar.
Spins: Security protocols for sensor networks. Wireless Net-
works Journal(WINET), 8(5):521–534, September 2002.

[23] R. D. Pietro, L. Mancini, and A. Mei. Efficient and resilient
key discovery based on pseudo-random key pre-deployment.
In 18th International Parallel and Distributed Processing
Symposium (IPDPS’04), page 217b, Santa Fe, New Mexico,
USA, April 2004.

[24] R. D. Pietro, L. V. Mancini, A. Mei, A. Panconesi, and
J. Radhakrishnan. Connectivity properties of secure wire-
less sensor networks. In 2004 ACM Workshop on Security
of Ad Hoc and Sensor Networks, Washington, DC, USA,
October 2004.

[25] J. POlastre, J. Hill, and D. Culler. Versatile low power me-
dia access for wireless sensor networks. In 2nd International
Conference on Embedded Networked Sensor Systems, Balti-
more, MD, USA, November 2004.

[26] S. Zhu, S. Setia, and S. Jajodia. Leap: Efficient secu-
rity mechanisms for large-scale distributed sensor networks.
http://mason.gmu.edu/ szhu1/leap.pdf.

[27] S. Zhu, S. Setia, and S. Jajodia. Leap: Efficient security
mechanisms for large-scale distributed sensor networks. In
10th ACM Conference on Computer and Communications
Security, Washington D.C, USA, October 2003.


