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Distributed Spatiotemporal Gesture Recognition in Sensor Arrays
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NIKOLAUS CORRELL, and RICHARD HAN, University of Colorado Boulder

We present algorithms for gesture recognition using in-network processing in distributed sensor arrays
embedded within systems such as tactile input devices, sensing skins for robotic applications, and smart
walls. We describe three distributed gesture-recognition algorithms that are designed to function on sen-
sor arrays with minimal computational power, limited memory, limited bandwidth, and possibly unreliable
communication. These constraints cause storage of gesture templates within the system and distributed
consensus algorithms for recognizing gestures to be difficult. Building up on a chain vector encoding algo-
rithm commonly used for gesture recognition on a central computer, we approach this problem by dividing
the gesture dataset between nodes such that each node has access to the complete dataset via its neigh-
bors. Nodes share gesture information among each other, then each node tries to identify the gesture.
In order to distribute the computational load among all nodes, we also investigate an alternative algo-
rithm, in which each node that detects a motion will apply a recognition algorithm to part of the input
gesture, then share its data with all other motion nodes. Next, we show that a hybrid algorithm that dis-
tributes both computation and template storage can address trade-offs between memory and computational
efficiency.
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1. INTRODUCTION

Gesture-based control, ranging from simple directional swipes to input of complex
characters, has emerged as a standard method for human–computer interaction (HCI).
Most systems, however are spatially limited to sensor arrays (e.g., tactile displays,
range-finding cameras such as the Xbox Kinect) and require information processing in a
central unit. We wish to make gesture recognition available to a wider range of surfaces,
which embed memory, computation, and communication capabilities and can therefore
function without a central processing unit. Examples of such surfaces range from a
building wall made of “smart bricks,” robotic sensing skins, or “smart paint” [Butera
2002; McEvoy and Correll 2015]. In the short term, we are interested in smart building
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Fig. 1. An example simple interaction with a smart façade in our prior work: touching any of the wall
elements will provide a color-coded “menu” whose items are selected by dragging them into the center. In
this example, selecting the blue menu item switches to a dial-like submenu in which input is then provided
via a circular gesture [Farrow et al. 2014].

materials that allow users to control environmental conditions using gestural input
without a central computer processing the data and that can do so independently of the
arrangement of the smart bricks. An example of simple swipe-based interaction with
such a system is shown in Figure 1, which allows a user to use linear or circular gestures
to control specific functions. In previous work, for example, Farrow et al. [2014], a user
interacts with specific hardware functions through submenus providing slider-like or
dial-like input for room temperature or brightness control. While such an approach
provides a wide range of possible interactions by hard-coding distributed controllers
to recognize up-down and circular swipes, limiting gestures to simple swipes quickly
becomes nonintuitive as more functions become available, for example, if this interface
should be used to control multiple aspects of a building, such as lighting, heating,
ventilation, and cooling, or even selecting among different ambient music channels
[Farrow et al. 2014]. Adding the capability to recognize actual letters and other complex
gestures should therefore drastically increase the vocabulary and extensibility of such
a system.

In the long run, we envision a new class of smart materials that completely embeds
and integrates sensing, computation, and actuation [Paradiso et al. 2004]. Such a hard-
ware base could use the presented distributed pattern recognition algorithms to allow
for rich interaction with users. For example, when embedded in clothes [Nakad et al.
2003; Profita et al. 2015], gestures might allow communication with other devices, such
as music players or cell phones, in an intuitive manner. Integration into a robotic skin
[Hughes and Correll 2014; Lumelsky et al. 2001] might allow users to use tactile ges-
tures to control the robot. Finally, materials with shape-changing capabilities [McEvoy
and Correll 2014; McEvoy et al. 2013] could enable furniture that can adapt to their
user’s needs via rich gestural input.

In previous work, we developed multicast communication algorithms to limit com-
munication in a distributed system to devices that are actually part of the gesture
[Hosseinmardi et al. 2012; Ma et al. 2012], though that previous work did not investi-
gate gesture recognition algorithms. This article is a first attempt to study distributed
gesture recognition with a view towards supporting next-generation smart materials. A
key challenge here is that all nodes that are part of the gesture need to exchange infor-
mation with all other nodes, which is difficult in harsh communication environments
with minimal bandwidth. Emphasis on minimalist computation, memory, and com-
munication might enable distributed gesture recognition on other surfaces in which
sensors and computation are tightly integrated. In such systems, links are likely to
eventually fail due to imperfect low-cost fabrication and wear and tear of the materials,
thus causing additional complications to a distributed gesture recognition algorithm.

In this article, we introduce three distributed algorithms that are adapted to min-
imize memory and computation, as well as a hybrid algorithm that minimizes both
memory and computation. We show that the hybrid algorithm achieves performance
that is comparable to the distributed computation algorithm in terms of recognition
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reliability and robustness to packet loss, but maintains the memory efficiency of the
distributed dataset algorithm.

2. RELATED WORK

There exists a large body of work on gesture recognition and online handwriting recog-
nition in touchpads, tablets, tablet computers [Mitra and Acharya 2007; Wu and Huang
1999], or other electronic devices [Davis and Lyall 1986]. Although the gestures we are
interested in are not necessarily limited to alphabet characters, stroke-based charac-
ter recognition is a mature field, allowing encoding and recognizing a large variety of
gestures. These algorithms deal exclusively with a centralized representation of the
gesture, that is, gestures are recorded by a specific device such as a camera, range-
finding device, or inertial-measurement unit (IMU) [Schlömer et al. 2008], co-located
with a computer and processed thereon. In contrast, our article seeks to implement
recognition of complex gestures in a fully distributed and scalable fashion.

Nagi et al. [2012] is most closely related in terms of distributing the gesture recogni-
tion problem and introduces a gesture recognition algorithm to overcome the perception
limitations of simple swarm robots. Robots observe a simple hand gesture from differ-
ent angles, attempt its classification, then share their posterior probability vectors
and arrive via a distributed consensus at a decision. This approach does not consider
distributing memory or communication. Rather, it capitalizes on the variations in per-
ception that each robot incurs by looking at the gesture from a different angle. In
our work, we aim instead to distribute computation and memory in order to perform
classification, while being robustly aware of communication failures that may make
individual units perceive a gesture slightly differently.

A common approach to encoding gestures/handwritten characters is to use a “chain
code,” taking into accounting its trajectory [Confer and Chapman 2004; Elmezain et al.
2009; Ozer et al. 2001]. In fact, Elmezain et al. [2009] show that features that convey
trajectory information of the swipe are the most robust features for gesture/character
recognition. For this, consecutive points of a gesture are sampled at regular intervals,
and a discrete number, for example, 0 to 7 to encode angles in 45-degree intervals,
are assigned based on the angle of the two consecutive samples. The resulting number
streams can then be classified, for example, using Hidden Markov models (HMM)
[Elmezain et al. 2009; Lee and Kim 1999; Wilson and Bobick 1999], Dynamic Time
Warping (DTW) [Carmona and Climent 2012; Sakoe and Chiba 1990], support vector
machines [Bahlmann et al. 2002], or neural networks [Murakami and Taguchi 1991].

While these approaches are intellectually appealing, they suffer from high compu-
tational complexity that make them less suitable for resource-constrained distributed
sensor arrays in smart materials. An alternative is to employ a simple and robust
recognition method that simply compares the Euclidian distance of a sequentially ac-
quired chain code [Confer and Chapman 2004]. Although this approach requires the
users to provide the gestures in the correct direction, it has been successfully used on
platforms such as the Palm Pilot user interface. This approach further exhibits the
advantage that it can be modified to allow us to divide both the dataset and computa-
tional load across a grid of distributed nodes. We selected this algorithm over an HMM
or DTW approach due to its computational simplicity and its proven robustness, which
makes it potentially applicable for implementation in distributed architectures with
very limited computational capabilities. For example, DTW has computational com-
plexity O(n2) since it uses a dynamic programming algorithm to compute the distance
between two chain codes, while Confer and Chapman [2004] use simply Euclidean
distance with O(n) to compute the distance, where n is the dimension of the feature
vector. We also note that distributing DTW is not straightforward as the underlying
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dynamic programming approach requires all parts of the dataset to provide an optimal
estimate.

The idea to create user interfaces in materials that are equipped with distributed
computation was first articulated by Lifton et al. [2002], who introduced “push-pin
computing,” and the idea of a smart, distributed flooring system [Schlömer et al. 2008]
as an architecture for algorithms such as what is proposed in this article. Yet, these
ideas have become economically feasible only recently with microcontrollers becoming
more powerful, smarter, and cheaper, which we believe will lead to a renewal of interest
in distributed algorithms that can operate on such platforms.

3. BASIC GESTURE RECOGNITION ALGORITHM

We consider a distributed array of sensing nodes arranged as a lattice, with each
node in the lattice having limited computational abilities and local connectivity to its
immediate neighbors. We further assume that all nodes involved in a gestural event can
communicate with each other by multihop, multicast communication [Hosseinmardi
et al. 2012; Ma et al. 2012]. In this manner, each node involved in the gesture (motion
node) will create a table of other group members’ unique identification number IDs, and
their relative coordinates and temporal order that can be inferred from the network
topology, for example, a square grid or a hexagonal arrangement.

As in centralized gesture recognition, pattern recognition will be based on compar-
ison of an input stream with a dataset of template vectors. A key challenge here is
that gestures likely have different sizes and therefore require scaling as a preprocess-
ing step. In our scenario, gesture size is determined by the number of motion nodes
detecting such a gesture. Therefore, data vectors inside motion-node tables need to
be interpolated or extrapolated to match the template length. Classification can then
be performed by finding the template that minimizes a distance metric with the mea-
surement vector. While there are multiple ways to encode the gesture and perform
training and classification, the algorithms described in this article build up on Confer
and Chapman [2004], who proposed a centralized algorithm that uses the Euclidian
distance between sequential chain codes. We chose this algorithm due to its linear com-
putational complexity, proven robustness on a full-sized alphabet, and relative ease to
distribute both its memory and computational requirements.

In order to create a feature vector in a distributed system, a motion node emits a data
packet upon sensing an event such as touch or light. Such an event packet conveys both
the spatial position information of the node that has detected an event and temporal
information about the time that the event was recorded. This information is then used
on each node receiving the packet to reconstruct a complete spatiotemporal feature
vector from all the collected packets.

After describing preprocessing steps that are common to all algorithms presented
in this article, we propose methods for distributing memory, distributing computation,
and combining both into a hybrid method.

3.1. Feature Extraction

As shown in Figure 2, when someone draws a gesture, each motion node that senses
the gesture also needs to learn about other nodes that sense the motion. As described in
Hosseinmardi et al. [2012] and Ma et al. [2012], after detecting an event, each motion
node will share its ID, spatial information, and order information with other motion
nodes. Each node gathers the spatiotemporal information into a table that will be used
later to extract feature vectors.

Because different directions of input gestures might have different meanings, all
nodes need to know the order in which events were recorded. Nodes will sort member
vectors and their spatial information based on the gesture temporal order for the
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Fig. 2. The shaded nodes have detected the motion gesture with the order {7, 4, 6, 8, 12, 16, 19, 21, 20}. They
will start sharing their packet ID. All motion nodes and their immediate neighbors will help in forwarding
data packets of other motion nodes; however, some packets may not be delivered correctly (the data packet
of node 12 has not been delivered to node 7). Finally, node 7 has a table including information from nodes {4,
6, 7, 8, 16, 19, 20, 21}, and node 12 has a table including information from nodes {4, 6, 7, 8, 12, 16, 19, 20,
21}.

Fig. 3. Input curve of arbitrary size at a motion node, in which red circles are sensors coordinates (left) and
asterisks are used to show the interpolated points to get a fixed gesture length N + 1 (right).

purpose of feature extraction. Each node m will retrieve a certain number of gesture
points from collecting shared packets by other nodes sensing the same gesture. The
node will maintain three data vectors as motion packets are collected: IDm, gm

x and
gm

y , where the superscript indicates that these vectors are collected by node m. The gm
x

and gm
y vectors correspond to the spatial coordinates of the sensors that detected the

motion. In order to compare gesture vectors to a dataset of possible gesture templates,
a new sequence of vectors will need to be computed into a vector chain whose set
size N is of equal size to the templates in the dataset. For this purpose, each node m
will interpolate gm

x and gm
y vectors to obtain xm and ym vectors, which now describe a

unique feature gesture composed of N chain vectors connecting N + 1 ordered points.
For example, in Figure 3, any number of gestural sensing events may be collected at a
particular node; these are interpolated to produce an N + 1 point gesture.

Considering that users may draw gestures with different sizes, thereby spanning
different numbers of nodes, and that packet loss may cause different group members
to have different numbers of nodes in their table, input gestures are likely to have
different vector lengths. The number of motion-node packets received by m will be
denoted with M. Since some of the packets might not be properly recorded or delivered,
each node has a potentially different number of gesture points M, and consequently a
different view of the same gesture. However, we employ the chain technique to extract a
fixed-length feature vector on each node independently. In this way, the fixed-sampling
technique is fairly robust within limits both to how small a gesture is made and to
packet loss or sensor failure. Figure 4 shows three chain vectors with N = 10, 16,
and 32.

A gesture can now be represented by the N vectors that are all the same length
connecting an interpolation of the sample points. We denote a chain of vectors recorded
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Fig. 4. Chain vector for different N in a 12 × 12 network.

by node m as Vm = {−→v m
1 . . . −→v m

N}
−→
vm

i = �m
x (i)(1 0)T + �m

y (i)(0 1)T . (1)

Here, each element of �m
x (i) and �m

y (i) is calculated from the (xm
i , ym

i ) and (xm
i+1, ym

i+1)
coordinates of the points after interpolation

�m
x (i) = xm

i+1 − xm
i , where i = 1, 2, . . . , N (2)

�m
y (i) = ym

i+1 − ym
i , where i = 1, 2, . . . , N, (3)

where i and i + 1 are adjacent points and

xm = (xm
1 , xm

2 , . . . , xm
N+1) (4)

ym = (ym
1 , ym

2 , . . . , ym
N+1). (5)

3.2. Basic Matching Algorithm

In order to recognize what gesture is made, we use a 1-nearest neighbor (1-NN) clus-
tering algorithm to find the template s that is closest to the gesture m.

Let δms = |Vm − Vs| be the distance between a vector chain on node m and template
s ∈ DS a dataset containing all templates. The function f (Vm) will return the lowest
distance between input gesture vector chain on node m and dataset template chains s
such that

f (Vm) = min
s

|Vm − Vs|. (6)

Here, |Vm−Vs| = ∑ ||−→v m
i −−→v s

i || is the distance between two chain vectors and ||.|| is the
Euclidean distance between two vectors. Algorithm 1 summarizes our basic matching
algorithm.

ALGORITHM 1: Each node m will compute the total chain vector difference between its input
vectors and all template vectors.
1: Wait until the gesture is complete
2: if it is a motion node m then
3: Sort table
4: Interpolate sensor coordinates to find N + 1 points along the gesture
5: Create Vm = {−→v m

1 . . . −→v m
N} using Equations (1) through (3)

6: δms = |Vm − Vs|, for all s ∈ DS
7: s∗ = arg mins δms and s = 1, . . . , |DS|
8: c̃ = character of (s∗)
9: goto 1
10: end if
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Fig. 5. Possible distribution of pattern datasets between nodes. Note that the dataset has been split into
K = 7 subsets, with each node storing only one subset. Motion nodes corresponding to the character “C” are
highlighted.

4. DISTRIBUTED GESTURE RECOGNITION ALGORITHMS

In this section, we propose three algorithms that achieve distributed gesture recog-
nition: (1) Distributed Dataset (DD), (2) Distributed Vector (DV) computation, and
(3) Hybrid Approach (Distributed Dataset and Vector computation, DDV).

4.1. Distributed Dataset Algorithm

In order to match a gesture to a known pattern, all possible patterns need to be stored
somewhere in the system. The dataset DS includes a specific number of templates
Vs for each possible input. The size |DS| depends on the granularity of the pattern and
the number of possible patterns that can be recognized. Dividing DS into K subsets
can therefore lead to considerable memory savings and the only solution to make high
granularity/high variability pattern recognition feasible on a distributed system with
minimal memory. In this case, memory requirements are traded off with additional
communication requirements for nodes to retrieve dataset information.

In order to minimize this communication overhead, we propose storing the partial
datasets dsn in node n in such a way that every node m has access to the full dataset
via its one-hop neighborhood N (m), that is,

DS =
⋃

n

{dsn|n ∈ N (m) ∪ m}. (7)

We can now compute the distances between the vectors of the input gesture with
the templates contained in the partial dataset dsn. In this manner, neighbors N (m)
of each motion node m will help in computing the distances from other parts of a
dataset. Since the template s that has the minimum distance from the input vector
chain will be chosen as the output ĝ, each neighbor node n ∈ N (m) will send just the
minimum distance and the corresponding template number s (s, δn = mins δns) to its
group members.

Consider Figure 5, in which a dataset has been distributed in K = 7 parts and all
nodes have access to the complete dataset via their one-hop neighbors. For an input “C”
drawn on the network, we can see that the gesture has covered nodes with ds2, ds3, ds6,
and ds7, but did not extend to nodes containing ds1, ds4, and ds5. For each node m, its
neighbor nodes that have different parts of the gestural dataset assist in calculating
the distance from m′s vector Vn to their templates Vs and share that information back
with node m. At this point, m can choose the template that has the smallest δn.

Since all neighbor groups contain the complete dataset, instead of sharing δn among
group members, it will be shared between one-hop neighbors. In this way, all neighbor
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nodes n ∈ N (m) will send their (s, δn) to node m. Node m will compare all the distances
δk for k ∈ K, find the minimum of them, and select template number s corresponding
to the minimum δn as the output c̃, that is, the closest gesture in the dataset, which is
the consensus computational decision of the distributed set of nodes. The pseudo-code
for the DD is provided in Algorithm 2.

ALGORITHM 2: Distributed Dataset (DD): Each node n has access to a subset of dataset dsn.
The dataset is distributed between nodes such that for each motion node m

DS =
⋃

n

{dsn|n ∈ N (m) ∪ m}

1: Wait until the gesture is complete
2: if it is a neighbor node n then
3: Sort its table, find motion nodes that are on its one-hop neighborhood
4: Interpolate sensor coordinates to find N + 1 points along the gesture
5: for all motion node m in the neighborhood of node n do
6: Create Vm = {−→v m

1 . . .−→v m
N} using Equations (1) through (3)

7: δns = |Vn − Vs| for all s ∈ dsn
8: δn = mins δns, s = arg mins δns
9: Pn ← ( character of (s), δn)
10: Send packet Pn to neighbor motion node m
11: end for
12: go to step 1
13: end if
14: if it is a motion node m then
15: Sort its table
16: Interpolate sensor coordinates to find N + 1 points along the gesture
17: Create Vm = {−→v m

1 . . .−→v m
N} using Equations (1) through (3)

18: δms = |Vm − Vs| for all s ∈ dsm
19: Receive packets from its neighbors
20: n∗ = arg minn δn, where n ∈ N (m) ∪ m
21: c̃ = character in the packets from node n
22: go to step 1
23: end if

As we will show later, distributing the dataset will result in dramatically lower
robustness for recognizing patterns under the influence of packet loss. The reason
is that when neighbor nodes send δk to node m, if the packet that includes the best
template match is not delivered to m, it will impact heavily on the decision of node m.

4.2. Distributed Vector Computation

Distributing the dataset already distributes computation somewhat—distances are
only calculated for the local part of the dataset dsn—but we are also interested in
further distributing computation to reduce computational requirements on any single
node in the sensor array. The basic idea is that each node computes distances only for
a subset of the vectors that make up a full gesture. The results of these computations
can then be shared with their neighbors.

First, each node will compute the pieces of data with length �N/M	 in the interval
[a, b]. The boundaries of this interval are calculated as follows for the pth node:

a = (p − 1) × �N/M	 + 1 (8)

b = (p − 1) × �N/M	 + �N/M	 = p × �N/M	 (9)

V p
m = {−→v m

i | i ∈ [a, b]} (10)
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Fig. 6. Possible segmentation of a shape into elements of length �N/M	. Each node will calculate the
distance of the partial vector of its observation (right) from the partial vector of dataset templates (left).

and

V p
s = {−→v s

i | i ∈ [a, b]}, (11)

where �.	 results in the first integer number equal or bigger than its argument. For
motion node m, M is the size of its group. Since the size N/M is not always an integer
number, the last motion node may have vector size less than �N/M	. In this way,
vector Vm is divided to Ncmpt = M

�N/M	 and p = 1, . . . , Ncmpt. Figure 6 illustrates a
possible segmentation of N elements of a gestural chain vector into M subsets.

Each node will calculate the distance of its partial vector V p
m from dataset templates

partial vector V p
s , δ

p
ms = |V p

m − V p
s | and send it out to all other group members. Each

node m will put all δ
p
ms together for each template s to construct a complete distance

vector δms = [δp
1s . . . δ

p
Ms].

While providing a linear decrease in computational time per node, this method re-
quires more communication packets in order to share partial computation results,
which would seem to make the algorithm more susceptible to packet loss. However, as
we will show, the DV algorithm is actually more resilient to packet loss than the dis-
tributed dataset approach, because packet loss in the distributed computation approach
only jeopardizes information about parts of a gesture. For example, if a particular mo-
tion node receives all but one of the partial comparisons from the other motion nodes, it
will still have a fairly good estimate of the closest template gesture to the sensor data,
since it will have all comparison segments but one. Pseudo-code for (DV) computation
is provided in Algorithm 3.

ALGORITHM 3: Distributed Vector (DV): Each node n will compute the distance of part of its
input vector from the corresponding part of all template vectors.
1: Wait until the gesture is complete
2: if it is a motion node m then
3: Sort its table, find its order p
4: Interpolate sensor coordinates to find N + 1 points along the gesture
5: a = (p − 1) × �N/M	 + 1
6: b = p × �N/M	
7: V p

m = {−→v m
i | i ∈ [a, b]}

8: δ p
ms = |V p

m − V p
s | for all s ∈ DS

9: Pm ← (
m, [δ p

m1 . . . δ
p
m|DS|]

)

10: Share packet Pm with other motion nodes
11: δms = ∑Ncmpt

p=1 δ p
ms for all s ∈ DS

12: s∗ = arg mins δms for all s ∈ DS
13: c̃ = character of (s∗)
14: go to step 1
15: end if
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4.3. Hybrid Method

Combining distributed data storage and distributed computation allows a trade-off
whereby the advantages of one technique mitigate the drawbacks of the other method.
The distributed dataset approach is memory efficient but lacks robustness against
packet loss, while the distributed computational vector approach is more computation-
ally efficient and more robust to packet loss, but has large memory requirements when
the dataset is not distributed.

We propose a hybrid distributed data and vector computation (DDV) algorithm that
combines both approaches. Each motion node will compute the distance of V p

n from
part of the dataset templates dsn. Neighbors n ∈ N (m) will send the distances of V p

n
from other parts of the dataset to the motion node m. Then, motion node m will share
the distance of V p

n from the whole dataset with all other group members. Pseudo-code
for the hybrid DDV algorithm is shown in Algorithm 4.

ALGORITHM 4: Distributed Dataset and Vector (DDV): Each node has m access to a subset of
dataset dsm and will compute the distance of part of its input vector to the corresponding part
of all template vectors for of dsm. The dataset is distributed between nodes such that for each
motion node m

DS =
⋃

n

{dsn|n ∈ N (m) ∪ m}

1: Wait until the gesture is complete
2: if it is a neighbor node n then
3: Sort its table, find motion nodes that are in its one-hop neighborhood
4: Interpolate sensor coordinates to find N + 1 points along the gesture
5: for all motion node m with order p in the neighborhood of node n do
6: a = (p − 1) × �N/M	 + 1
7: b = p × �N/M	
8: Create partial vector of vectors: V p

n = {−→v n
i | i ∈ [a, b]}

9: δ p
ns = |V p

n − V p
s | for all s ∈ dsk

10: Pn ← (m, k, [δ p
n1 . . . δ

p
n|dsk|])

11: Send packet Pn to neighbor motion node m
12: end for
13: go to step 1
14: end if
15: if it is a motion node m then
16: Sort its table, find its order p
17: Interpolate sensor coordinates to find N + 1 points along the gesture
18: a = (p − 1)�N/M	 + 1
19: b = p × �N/M	
20: V p

m = {−→v m
i | i ∈ [a, b]}

21: δ p
ms = |V p

m − V p
s | for all s ∈ dsn

22: Receive packets from its neighbor and construct [δ p
m1 . . . δ

p
m|DS|]

23: Pm ← (
m, [δ p

m1 . . . δ
p
m|DS|]

)

24: Share packet Pm with other motion nodes
25: δms = ∑Ncmpt

p=1 δ p
ms for all s ∈ DS

26: s∗ = arg mins δms for all s ∈ DS
27: c̃ = character of (s∗)
28: go to step 1
29: end if

As a comparison of the three different techniques, we summarize in Table I the order
of savings achieved in computation and space of DD, DV, and DDV for a typical motion
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Table I. Order of Savings in Computation and
Space (Memory) for Motion Nodes Assuming
Neighborhoods of Size K and Group Sizes M

DD DV DDV

Space K 1 K
Computation K Ncmpt K Ncmpt

Ncmpt is defined in Section 4.2.

Fig. 7. A template from the training set (left) and resulting mapping of motion nodes in a 4×4 network
(right).

node with a group of size M, K nodes in a neighborhood and a size of |DS| for the
dataset.

5. EVALUATION

We evaluate the accuracy and performance of each of the three distributed algorithms
in a Matlab simulation. We used a threefold cross-validation technique to evaluate the
algorithms. We created 21 templates for each of the English alphabet’s 26 characters.
We will first evaluate the distributed algorithms and compare them to the Basic algo-
rithm in a typical scenario of a 10×10 network and vector length N = 16. As we will see,
the Hybrid DDV algorithm outperforms both the DD and DV algorithms. Therefore,
we select it as the one for the remainder of the comparisons and evaluate the effect of
other parameters such as network size and feature vector length on the performance
of the Hybrid DDV algorithm. Finally, we consider applications that require smaller
alphabets and how we can choose the subset of gestures that maximize accuracy.

5.1. Data Collection

In order to gather the dataset, we used a touch screen iPad as the input interface. We
collected 21 different templates (size and shape) of gestures for each of the 26 characters
for a total of 546 templates in the dataset (Figure 7, left). We have trained examples
provided by a set of different students in order to generalize in a best possible way
and should therefore be user independent. The drawn gesture was mapped to a sensor
array/lattice as shown in Figure 7 (right). Each sensor node will be considered to be
a motion node if the gesture has passed within the sensing range of the sensor. Each
character has been drawn in a single-stroke gestural approach inspired by Graffiti
[Hawkins 2002] (Figure 8).

5.2. Algorithm Selection

Simulations assume an event-driven message exchange and emulate packet loss by ran-
domly dropping packets with a certain likelihood. We have tested all four algorithms:
Basic, DD, DV, and DDV using data recorded from the iPad for a 10×10 network with
feature vector length N = 16. We used the Bloom Filter-based multicasting algorithm
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Fig. 8. Alphabet used in the dataset.

Fig. 9. Probability of gesture recognition for 546 templates of dataset for Basic (blue), DV (pink), DD (green),
and DDV (red) algorithm when there is no packet loss. Experiment on a 10×10 network, N = 16.

Fig. 10. Average number of packets exchanged for different algorithms (averaged over 546 inputs) when
there is no packet loss. Experiment on a 10×10 network, N = 16.

from Hosseinmardi et al. [2012] with TTL = 2 and threshold 10. Figure 9 shows the
accuracy of all algorithms on a 10×10 network with vector length N = 16 without any
packet loss. There is a small decrease (around 2%) due to the effect at the edges of the
network, where nodes do not have access to the complete dataset via their neighbors.

Figure 9 shows that, in the absence of packet loss, all the distributed algorithms work
fairly well compared to the Basic algorithm, while also maintaining an advantage of
memory and/or computation efficiency. They gain this property through sharing the
data with their neighbors. Therefore, we assessed the communication overhead of
distributing packets in the advanced algorithms, as shown in Figure 10. As expected,
distributing the computation as is done in both the DV and DDV algorithms results in
greater communication overhead than merely distributing the dataset. However, the
relative increase in overhead is mitigated by the fact that all algorithms, including
the Basic algorithm, incur substantial communication overhead because of the initial
sharing of sensor data via multicast packets with other group members.

We can use the algorithms with no special changes for a wireless environment prone
to packet loss. Since all three distributed algorithms require data-packet exchange
to make a decision, we should consider the effect of packet loss on their recognition
accuracy. Here, packet loss is simulated by dropping packets at a constant rate. In
the following experiment, we have considered the effect of packet loss. We test our
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Fig. 11. Gesture recognition probability as a function of packet loss probability for an identical “A” shape
compared to the dataset shown in Figure 8. Experiment on a 10×10 network, N = 16.

Fig. 12. Confusion matrix of Basic (left) and Hybrid DDV algorithm (right) when there is no packet loss.
Experiment on a 10×10 network, N = 16.

algorithms on perfect input using an “A” shape without discontinuities. Figure 11
shows the detection probability as a function of packet loss probability and the chosen
algorithm. We observe that the DV computation approach is more resilient to packet
loss than the DD approach, though even the DD algorithm accuracy drops to only
80% with 25% packet loss, which can be viewed as an acceptable recognition rate. The
DDV algorithm stays fairly robust to packet loss, inheriting the robustness to loss of
partial computation results of the DV algorithm and is an improvement over the DD
algorithm. As a result of its superior memory and computational efficiency, as well as
resilience to packet loss, we choose to use the Hybrid DDV algorithm in our remaining
analysis.

Another way to visualize the performance of the Hybrid DDV algorithm is via a
confusion matrix: namely, which gestures were identified versus which gestures were
input, as shown in Figure 12. We observe that the Hybrid algorithm has a fairly similar
confusion pattern compared to the Basic algorithm. DDV has the additional virtues of
lower memory requirements and lower computation per node.

5.3. Sensitivity to Network Resolution and Vector Length

We next evaluate the effect of network size and feature vector length on algorithm per-
formance. The dataset is comprised of 26 characters that have been written in a single-
stroke directional manner, as shown in Figure 8. We have distributed these 26 charac-
ters between neighbors such that each node can have access to the whole alphabet via
its neighbors. As we mentioned in Section 3.1, a gesture will be considered as a chain
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Fig. 13. Average recognition accuracy of Hybrid algorithm when there is no packet loss. Experiment on four
different network sizes, N = 6, 8, 10, 16, 25, 32, 64.

Fig. 14. Average number of packets exchanged (averaged over 546 input) using Hybrid algorithm when
there is no packet loss. Experiment on four different network sizes, N = 6, 8, 10, 16, 25, 32, 64.

Fig. 15. Average recognition accuracy of Hybrid algorithm for 10×10 network and chain vector length N
equal to 10 (dark green), 16 (light green), 32 (yellow).

vector with fixed length N. To examine the role of this parameter in the recognition
algorithm, we have evaluated the recognition accuracy for N = 6, 8, 10, 16, 25, 32, 64
across a range of networks (4×4, 6×6, 10×10, and 12×12), as shown in Figure 13.

As we expected, the recognition accuracy was reduced as the network size decreased.
This happened because the drawn gesture was captured by fewer sensors; as a result,
the input character has lower resolution. For each network size, as we change the
feature vector length, we see that there is a very slight change of maximum 4.9% in the
recognition accuracy. On the other hand, as the network size increases, the number of
exchanged packets increases, as seen in Figure 14.

In Figure 15, we look more closely at the effect of changing vector length on each
alphabet recognition rate in a 10×10 network. We can see that increasing or decreasing
vector length does not have the same effect on recognition for different characters. For
example, D has the best result at N = 10, while U achieves the best recognition at

ACM Transactions on Autonomous and Adaptive Systems, Vol. 10, No. 3, Article 17, Publication date: September 2015.



Distributed Spatiotemporal Gesture Recognition in Sensor Arrays 17:15

Fig. 16. Average recognition accuracy of Hybrid algorithm for 4×4 network and chain vector length N equal
to 10 (dark green), 16 (light green), 32 (yellow).

Fig. 17. Average recognition accuracy of Hybrid algorithm for 10×10 (blue) and 4×4 (red) network, N = 16.

N = 16. Surprisingly, for all characters, the recognition rate using length N = 32 does
not exceed the rate when either N = 16 or N = 10.

In Figure 16, for a network size of 4×4, we also typically observe the worst result
for N = 32. However, also note that there are some characters—for example, Q, S, and
W—for which the accuracy has the highest rate at N = 32.

Figure 17 shows that reducing network size, which causes reduction on input char-
acter resolution, does not always have a negative effect on recognition (however, this
is mostly true). For example, looking closely, we observe that for C and I, recognition
accuracy has increased. On the other hand, we can see that the characters M, Q, and
Y are worst affected by reducing the network size.

5.4. Selecting a Subset of an Alphabet

In some applications, a sensor lattice may be required to respond to only a small number
of gestures. One research goal is to choose a subset of gestures that are most widely
differentiated so that it is easiest to tell them apart. In this section, we show how
we can choose a specific number of characters from the whole 26-character alphabet to
achieve the best recognition percentage. As a case study, suppose that we need to choose
5 characters, for which the number 5 is chosen to allow us to optimally distribute the
dataset on a 4-neighborhood grid structure so that each node has access to the entire
dataset via its one-hop neighbors. In the following, we perform a heuristic experiment
considering all ( 26

5 ) = 65780 possible combinations of 5-member groups. Figure 18
shows the number of 5-member groups that achieve an accuracy of 100% for different
network sizes and vector length. We can see from Figure 18 that the worst case is for
a network size 4×4 and vector length N = 32, though there still exist more than 2500
different combinations that achieve full recognition.

The question that arises here is how we can choose the subset that maximizes ac-
curacy containing the most mutually distant characters in the feature space. We can
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Fig. 18. Number of 5-member groups that have average accuracy 1.

Fig. 19. Probability of gesture recognition for an identical B shape compared to two different 5-member
sets, network size 4×4, N = 16, Hybrid DDV algorithm.

introduce an optimization problem to find the characters that have the most distinct
feature vectors. The following experiment shows how different combinations act differ-
ently in the presence of packet loss. Figure 19 shows the difference between choosing
two 5-member sets. In one group, we attempt to distinguish B from the set of A, B, D, H,
N, of which four of the members have an upward start. In the other group, B, H, O, W, Z,
each of the members have different starting directions. Both groups have a recognition
accuracy of 100% in the absence of packet loss. We observe how the group A, B, D, H, N
is more sensitive to packet loss than group B, H, O, W, Z. This example illustrates that
other factors, such as differences in the initial directionality of the characters, may be
helpful in selecting a subset of the alphabet that maximizes accuracy. More exploration
is required to determine additional factors, such as starting direction, that would be
useful in influencing optimal subset selection.

6. DISCUSSION

All experiments, including those for data gathered from our hardware setup, were
simulated on a desktop computer. This allowed us to explore a wide range of memory
and bandwidth requirements not necessarily supported by a particular hardware setup.
Whereas all of the presented algorithms can be run on the hardware used here for the
type of data presented (the hybrid algorithm exchanges 2490 packets, on average,
each a few bytes in length), this might not be the case for larger datasets or gestures
with higher resolutions, which will significantly slow down recognition and/or reduce
accuracy if bandwidth is low.

Simulation results confirm that the DD approach is not very robust to packet loss
despite being memory efficient. Distributed computation, in which only parts of the
gesture are lost in the event of packet loss, turns out to be significantly more robust, but
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scales poorly with increasing size of the dataset. The hybrid DDV approach maintains
the memory efficiency of the DDs, while combining the computational efficiency of both.
Performance in terms of recognition probability, however, is identical to that of the DV
computation approach until packet loss is above around 10% for a 10×10 network with
26 different characters in the dataset.

The primary cost of the hybrid DDV algorithm is increased packet overhead com-
pared to the Basic algorithm, though that is mitigated somewhat by the initial costs
required in the Basic algorithm to share packets of raw sensor data among the mo-
tion nodes. We believe that many sensor array systems may find the additional cost of
packet communication reasonable compared to the savings in memory and computa-
tion achieved by the hybrid DDV algorithm, especially those systems in which power
to the sensor lattice is not an issue, such as in smart sensor walls.

A common challenge in recognition of written characters is that subsampling bears
the risk of picking a vector that is not oriented toward the overall motion of the gesture,
for example, due to jitter of the user’s hand. While this problem could be prevented by
an additional smoothing step before subsampling, we believe that jitter is a problem
more specific to handwriting than to larger-scale hand motions. Yet, our results show
that low resolution negatively affects pattern recognition.

Distributing the dataset exclusively among neighboring nodes allows minimization
of the communication overhead of a distributed approach. By this, the overall size of
the dataset is limited by the available memory on every node and the communication
topology. In this article, we consider 4- and 6-member neighborhoods, but 8-member
neighborhoods are also possible, depending on the available hardware. We also note
that higher-connectivity degrees might increase the detection rate in the presence of
packet loss for the hybrid approach.

We note that our current approach is not invariant to rotations. Doing this would
require an additional normalization step that transforms each chain vector into a
rotation-invariant representation. We note, however, that this would also limit the
system to rotation-invariant gestures, possibly excluding, for example, C and U.

7. CONCLUSIONS

We presented a suite of distributed-gesture recognition algorithms for next-generation
smart materials, which embed minimalist sensing, computation, and communication,
and allow a trade-off of computation and memory for more communication among
nodes. All algorithms are fully distributed, scalable to the size of the sensing lattice,
and could be used on amorphous structures, that is, structures covered with a sensor
lattice that have an arbitrary outer shape and possibly holes in the surface. Algorithms
have been validated and tested with respect to packet loss in simulation using digitized
hand-drawn gestures. These results show that a hybrid approach, which distributes
both computation and the template dataset among nodes, can lead to high detection
probabilities when packet loss is less than 10% on a grid lattice topology, even if the
input gesture is presented with discontinuities due to either sensor failure or packet
loss.

In the future, we wish to extend our work to multi-stroke alphabets as well as
multi-alphabet input commands. We are also interested in validating the proposed
advanced algorithm on physical hardware, and are in the process of building a smart-
wall system. We plan to implement Bloom filter-based, multi-cast communication and
a basic character-recognition algorithm on the hardware shown in Figure 1, and are
also interested to implement the proposed algorithms on other smart materials such
as skins and shape changing materials.
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