
SWARMS: A Sensornet Wide Area Remote
Management System

Charles Gruenwald, Anders Hustvedt, Aaron Beach, Richard Han
Department of Computer Science, University of Colorado, Boulder

{charles.gruenwald, anders.hustvedt, aaron.beach, richard.han}@colorado.edu

Abstract—Our experiences deploying a wide area wireless
sensor network (WSN) in the wildfires of Idaho motivate the need
for a software middleware system capable of remotely managing
many sensor nodes deployed in widely disparate geographic
regions. This requirement is unlike the localized focus of many
traditional WSN middleware systems, which manage a group of
sensor nodes deployed in a single small region, e.g. a warehouse
or lab. We describe in this paper SWARMS, a wide area
sensor network management system. The SWARMS architecture
is designed for scalability and flexibility, while providing an
infrastructure to manage in situ sensor nodes, e.g. upload code
images, retrieve diagnostics, etc. To demonstrate its flexibility, we
present two deployments of SWARMS, the first in a wide area
weather sensor network, and the second in a local area testbed
that was used by a class of graduate students. To demonstrate
its scalability, we analyze the performance of SWARMS when
the middleware is subject to sensor data loads of thousands of
packets per second.

I. INTRODUCTION

Our experiences with deploying a wide area WSN called
FireWxNet [1] to monitor weather conditions surrounding
wildland fires motivate the need to develop a software middle-
ware system capable of managing disparate far-flung WSNs.
Our sensor nodes were deployed in the Bitterroot National
Forest of Idaho in summer 2005 across three different moun-
tain peaks, separated by tens of kilometers. Each individual
WSN was connected to a backhaul WiFi network. What
our deployment lacked was a software system capable of
systematically collecting, integrating, and managing the sensor
data in one place while also communicating with each of the
geographically distinct subnets in our far-flung WSN.

Our belief is that FireWxNet represents the future of many
WSNs that will evolve towards more and more widespread
deployments. Global sensor networks will be needed to under-
stand planet-wide environmental effects in the land, sea, and
air, e.g. to better understand the impact of global warming
on our ecology. For all of these scenarios, it is important
to develop software systems that scale to meet the needs of
wide-area deployments, yet remain flexible to accommodate
the desire to tailor sensor networks to application-specific
domains.

Prior work in the area of managing WSNs and WiFi
networks is largely focused on managing localized groups
of sensor nodes, e.g. in indoor testbeds [2], [3] and outdoor
testbeds confined to a single field [4], [5]. While the software
developed in such systems can scale to hundreds of nodes, it

is not designed to manage and integrate data from diverse ge-
ographic sources. Issues encountered in wide-area WSNs such
as service discovery and addition/subtraction of occasionally
connected or disconnected subnets are not addressed.

Fig. 1. SWARMS: Wide Area Sensor Network Management

As shown in Figure 1, the SWARMS system is designed to
provide an infrastructure to manage wide area in situ sensor
nodes. WSNs can be distributed in different geographic areas,
yet are jointly managed by the same SWARMS software.
SWARMS enables users to be able to specify that certain code
images be uploaded to different user-defined groups of sensor
nodes via either a user-friendly Web interface or a scripting
language interface. At the same time, SWARMS logs both data
and diagnostics emerging from these multiple WSNs.

Our approach is to provide these basic features while
designing the architecture of SWARMS to balance scalability
with flexibility. The modularity of SWARMS is key in accom-
plishing the dual goals of flexibility and scalability. The differ-
ent aspects of the system (e.g., user interface, job management,
programming nodes, communicating with nodes) have been
abstracted so as to achieve both scalability and flexibility.
The SWARMS system consists of seven components: sensor
nodes, software node mates, cluster controllers, head servers,
the database, the web server, and the logger. The organization
of the system is hierarchically networked and distributed
such that individual components can be offloaded to different
hosts, enhancing scalability. For example, if the Web server
or database are found to be too much of a bottleneck, then
they can be easily separated to execute on parallel hosts.
In addition, node-mates are designed to be customizable so



that application-specific data protocols can be supported in
SWARMS. The SWARMS software is so flexible and generic
that it can be configured to support two very different yet
common WSN scenarios: wide area in situ WSN applications;
and local area sensor testbeds.

In the following, Section II discusses related work and
how SWARMS contrasts with other wireless middleware and
network testbeds. Section III details the design features of the
SWARMS architecture. Section IV discusses how the system
was implemented in practice. A wide-area application deploy-
ment of SWARMS is described in Section V. A local area
testbed deployment of SWARMS is described in Section VI,
along with an evaluation of the SWARMS testbed’s scalability
and performance in the face of increased message traffic. The
paper finishes with conclusions and future work in Section
VII.

II. RELATED WORK

The Motelab [2] WSN testbed manages hundreds of motes
and was developed by Harvard to serve as a community
resource for WSN researchers. SWARMS differs in a variety
of ways. The focus of SWARMS is on supporting wide area
sensor networks that span diverse regions, while the focus
of Motelab is on a local area testbed. Also, SWARMS is
agnostic to the sensor operating system uploaded into the
motes, e.g. TinyOS, the multithreaded Mantis OS [6] or the
modular SOS [7] are all admissible, while Motelab is tightly
integrated with TinyOS. SWARMS borrows some design ideas
from Motelab, e.g. a web interface, direct access to sensor
nodes and a user based locking mechanism.

Other local area WSN management systems include Mist-
Lab and GNOMES. MistLab is a system similar to Motelab
that consists of 60 Mica2/Cricket nodes, each connected to
central power and ethernet connections. The GNOMES testbed
was designed to showcase low-cost hardware/software and
explore properties of heterogenous wireless networks [8].
The entire system, from serial/USB programmers to interface,
maintains an idea of different kinds of nodes, possibly even
virtual nodes.

EmStar [9] takes network heterogeneity in an interesting
direction allowing for an integration of a simulation environ-
ment with a real-world network testbed. This approach is also
called emulation. Its focus is not on wide area management.

Several local area testbeds have explored the notion of scale.
The ExScale project [4] and Trio [5] have both deployed
on the order of 500 nodes. Each has developed a software
middleware system to manage this large scale of sensor nodes.
Again, there is no integration of wide area sensor networks into
their infrastructure nor an exploration of some of the issues of
managing in the wide area.

Simulators have been designed to explore scaling issues in
WSNs [10], [11]. However, complex interactions and vari-
ability within real-world wireless mediums necessitate real-
world testing and verification. SWARMS evaluates its scaling
performance in a real-world environment.

The Roofnet project at MIT has developed software to
collect and measure real world effects on wireless data trans-
mission [12] in a topology that is not quite wide area but
somewhat beyond a single LAN. The management backbone
itself is not tested for scalability.

III. ARCHITECTURE

The architecture for SWARMS is designed to provide basic
programming and diagnostic functionality while achieving
scalability, flexibility, and extensibility. The core of the mid-
dleware system inhabits the dashed outline in Figure 2, and
exists between the sensor nodes and the clients receiving
the data. Clients at the top use SWARMS for programming,
controlling and communicating with the sensor nodes at the
bottom, which we term gateway sensor nodes. This involves
transferring new images to the gateway sensor nodes and
routing messages through SWARMS passed from nodes to
the connected clients and vice versa. Broadly speaking, in
tier 1 Node Mates control a gateway sensor node; in tier
2 multiple node mates funnel information back and forth
between a Cluster Controller; and similarly in tier 3 multiple
cluster controllers funnel information back and forth to the
Head Server, which controls the entire system.

Head Server

Node Mate

Cluster Controller Cluster Controller

Node Mate Node Mate

SWARMS

PC1 PC2

Client DatabaseClient Web Server

Sensor node Sensor node Sensor node

Fig. 2. Swarms Architecture

The three-tiered hierarchy of SWARMS is scalable, flexi-
ble, and extensible in the following ways. The head server,
database, and Web server can all be distributed to execute
on separate computers. This scaling feature was found to
be especially useful during the initial performance evaluation
of the system, when the database began to bog down the
entire system when run on the same machine as the Web
server. Because of SWARMS’ modular design, offloading this
process to another PC was a simple procedure, and effectively
eliminated this performance bottleneck.

Another scaling feature arises from the design of the cluster
controller. One cluster controller Daemon runs on any com-
puter that has sensor nodes attached to it. A “cluster” is then
defined as any computer that has nodes attached to it, the



cluster controller daemon process, and the nodes managed by
the cluster controller. This architecture supports scaling in that
if a particular cluster-controller PC becomes overloaded, more
computers can be added to function as additional clusters,
with some of the sensor nodes then physically offloaded for
management to the new clusters. For example, this feature was
found to be quite useful when handling scaling issues while
building out a testbed variant of SWARMS. After experiencing
a bottleneck in USB bandwidth when using only one PC to
manage the testbed, SWARMS made it straightforward to add
a new PC and its associated cluster controller, which was then
easily configured to take over management of about half of
the sensor nodes.

Perhaps the most prominent feature of SWARMS is its
wide-ranging flexibility to remotely manage both sparse wide-
area WSNs, e.g. sensornets distributed across a city or even the
globe, and dense local-area WSNs, e.g. testbeds within a room
in a lab. Conceptually, the two seemingly different paradigms
are handled in a similar manner within the SWARMS frame-
work. In the simplest case, SWARMS maintains a one-to-one
correspondence between a node mate and a hardware sensor
node. In this case, to realize a wide-area WSN, SWARMS just
maintains a one-to-one correspondence between a cluster con-
troller and a node, i.e. each PC cluster controller manages only
one sensor node. Each sensor node can be placed anywhere in
the world where there is a PC to run a cluster controller. It is
thus simple to build a wide-area WSN. Each new user can add
a new node to an existing wide-area sensor network managed
by SWARMS by starting one local node mate process and one
local cluster controller process, which only needs to be told
where to connect to the appropriate head server.

To realize a local-area WSN testbed, SWARMS generalizes
to inherently support a many-to-one correspondence between
each cluster controller and many sensor nodes. Instead of the
special case of managing just one node as in the wide-area
application, each PC cluster controller in the testbed is capable
of managing many sensor nodes. These nodes can all be placed
within a single room to form a dense local area testbed.

In this manner, the same SWARMS software architecture
is capable of flexibly managing both local area WSN testbeds
as well as wide area WSNs. In this paper, we present two
application deployments of SWARMS corresponding to sep-
arate wide area and local area realizations. However, the
SWARMS framework accommodates additional flexibility: a
single SWARMS server can simultaneously manage a hybrid
combination of dense and sparse WSNs; further, the mapping
between node mate and sensor node can be relaxed to ac-
commodate many-to-one mappings between a node mate and
sensor nodes, i.e. to support multi-hop WSNs that connect
through a single node mate to a cluster controller. We elaborate
on these possibilities in future work.

SWARMS’ flexibility is enhanced by supporting a discon-
nected mode. In many practical deployments, nodes may not
be persistently connected to the remote middleware managing
the network. As a result, SWARMS’ design allows discon-
nection between the local software, e.g. the cluster controller,

and the remote software, e.g. the head server. Upon observing
that a connection has broken with the head server, the local
cluster controller drops into disconnected mode and begins
caching sensor data. After observing that a connection has
been reestablished with the head server, all the cached data is
flushed back to the head server. This feature came in handy
during deployment of the wide-area SWARMS application,
when the connection between one sensor node at a home in the
mountains and the head server at the university would break
intermittently over a poor-connectivity modem line. The local
cluster controller appropriately cached sensor data when the
modem line was down, and reported it so that no data was
lost when the line was back up.

Extensibility in SWARMS is supported in at least two
ways. First, the node mates themselves are designed to be
customizable, so that application-specific filters can be placed
into node mates to translate incoming data to an appropriate
application-specific format. SWARMS is agnostic to what
format this data takes, and simply routes the data to the
endpoint, whether that is the database or the client. Second, a
goal of this architecture was to be agnostic to the underlying
node hardware and software thus making the system extensible
to new nodes. Node-mates can be configured to accommodate
new hardware as new sensor nodes are introduced.

A. Node Identification

Before discussing the details of how data and control
messages pass through the system, the identification of nodes
will be explained. Aside from the processes depicted in Figure
2 exists a database containing all the meta-data required for
identifying each node. There is a node table that contains
information like the type of node, the cluster controller it is
connected to and a unique ID used internally to identify each
node. This information is required to uniquely identify where
a message originated if it is coming from a node or where it
is destined if it is going to the node. This information also
helps identify which nodes are expected to be connected to
SWARMS at any time. This database also contains informa-
tion regarding grouping of nodes and assignments between
program images and these defined groups. It is this grouping
structure that allows us to program many gateway sensor nodes
at once with the same image, repeatedly with ease.

B. Types of Communication

In the sections below, two types of communication are iden-
tified which are treated differently in the SWARMS system.
The system separates the communication into a control plane
and a data plane. This allows each flow of data to be handled
separately as their use is quite different in functionality.

1) Control Messages: Control messages are messages nor-
mally initiated from an end user to perform a particular action
on a node or group of nodes. These actions include program-
ming a new image, starting and stopping execution. These
messages use an RPC mechanism known as Distributed Ruby
Objects (or DRb). These messages are instantiated strictly by
the client and pass down to the node mate. These messages



do not get passed onto each node and never travel in the other
direction.

2) Data Messages: Data messages are bi-directional in
that they can either be generated by an attached node or
by a client. The SWARMS system encapsulates the data in
a generic packet and routes it accordingly. If the message
is from a node, it is broadcast to each client by the head
server. If the message is destined for a node, it is routed by
SWARMS to the appropriate node mate. The benefit of this
encapsulation process is that it allows a custom protocol to
be built on top of SWARMS with little modification required
to the internals of the system. Additionally, clients are able to
have live interaction with the nodes through this path.

C. Node Mate

The node mate has several responsibilities including pro-
gramming the node, controlling the node (starting / stopping
the running execution) and translating messages between the
gateway sensor node and SWARMS, each of which is ex-
plained below. The node mate is a process that consists of parts
that are specific to each node hardware/software. As such, only
the node mate knows how to get an image onto the node or
what packet format a node will be sending messages in. There
is exactly one node mate process for each node connected to
a computer.

The largest factor affecting the extensibility of this system
is the ability to add a new type of node. As such, this part
of the system was designed to be as modular as possible with
the different responsibilities clearly separated. A node mate is
then comprised of a generic layer and several specific layers
depicted in Figure 3.

Serial Translator

OS Translator

Custom Layer

Generic SWARMS Layer

Cluster Controller

Sensor Node

D
ata

C
o
n
tro

l Programming 

Fig. 3. Node mate Architecture

The Generic SWARMS Layer is responsible for establishing
a control and data connection to the cluster controller. Next
control messages are passed to the programming interfaces
upon request by the cluster controller. Likewise, data messages
are passed through the stack on the right side. The Generic
SWARMS Layer takes SWARMS packets from the cluster
controller and passes them down the stack to the node.

Additionally, this layer takes discrete packets, adds the node’s
id, creating a SWARMS packet and passes it on to the cluster
controller.

Below the Generic SWARMS Layer in Figure 3 are two
sections that are truly specific to the particular node. The
left side provides the control interface to the node while
the right side provides the data interface. The programming
interface is specific to the given hardware of a node. This
layer provides a function to take an image that resides on the
local computer and program the node with that image. It is ad-
ditionally responsible for stopping and restarting the currently
running program. This piece is currently implemented for the
MICA2/MICAz and TelosB nodes.

The Serial Translator listens on a given serial port and
provides a byte stream interface to the OS Translator. The
serial port is passed down as control information from the
cluster controller and stored by the Generic SWARMS Layer.

The OS specific portion of the packet translation is provided
by the OS Translator layer. This layer takes discrete packets
from the Generic SWARMS Layer and converts them into
OS specific packets and sends them to the Serial Transla-
tor. Additionally, it reads the byte stream provided by the
Serial Translator and passes discrete packets to the Generic
SWARMS Layer.

It is also easy to see how a custom layer could be inserted
into this design to perform additional manipulation on the
packets before being sent to the cluster controller. In addition
to traffic shaping mechanisms, additional operations such as
compression / encryption could be performed at this layer.

D. Cluster Controller

The cluster controller is a process that manages the many
node mate processes on a given computer, saves images to
the local drive, and acts as a conduit for the node mate
and head server to exchange data. As such, there is only
one cluster controller process on each computer participating
in SWARMS with nodes connected. One or more cluster
controllers can connect to the head server. This organization
allows us to distribute the cluster controllers and node mates
across different computers that are an arbitrary distance apart,
as shown in Figure 2. As a consequence, the cluster controllers
can exist across the Internet, thus giving this design flexibility
for managing a wide area distribution of sensor nodes. When
a user selects to program an image that they’ve uploaded, the
head server transfers the image to each cluster controller, then
sends a control message notifying each cluster controller of
the job to be started. The cluster controller then notifies each
node mate (spawning new node mate processes as necessary)
to program the given image.

The other main responsibility of the cluster controller is
routing messages between each node mate and the head server.
As such, each cluster controller must be configured with the
appropriate head server to connect and transfer messages with.
It opens a TCP/IP connection to the head server. Then, each
message sent from the head server is inspected and sent to the
appropriate node mate process. Any message sent from the



node mate is transferred to the head server over this connection
as well.

E. Head Server

The head server process is the central point of access for
external clients to the SWARMS system. When the head
server receives messages from a cluster controller, it distributes
that message to each client connected. Likewise, when the
head server receives a message from a client, it inspects the
message, performs a look-up in the meta-data to determine
the appropriate cluster controller and routes the message
appropriately. Control messages are passed onto the cluster
controllers in a similar fashion.

F. Clients

Clients, as mentioned in previous sections, are simply
applications that wish to control nodes, communicate with
nodes, or both. A DRb connection is made with the head server
for control messages while a TCP/IP connection is established
for node communication. When a client wishes to send data
to a node, it encapsulates that data in a specific structure that
contains that node’s unique id as established in the SWARMS
meta-data. Next, it sends this data to the head server to be
routed to the node. As a result, the client only needs to know
the unique id given to the node(s) it wishes to communicate
with and a TCP/IP connection. This property allows custom
clients to be created to handle the actual data sent from the
node. This also allows the client to format data destined for
the node in any fashion possible and the system will route the
packet regardless of the underlying data.

Fig. 4. Remote Job Management Interface

1) Web Server: One unique client that is included with
the SWARMS system is the Web Server. This client pro-
vides an interface for remotely managing WSNs, i.e. reserv-
ing SWARMS, creating groups, job assignments (Figure 4),
managing groups, and even reserving time on the testbed
(Figure 5). Additionally, the Web server provides access to
a database of logged data from the nodes (Figure 6). As such,
it is possible to use SWARMS without any specific software
installed on a user’s computer besides a Web browser.

Fig. 5. Interface for testbed reservations - resource management

2) Database Logger: Another client included in the
SWARMS system is a Database Logger. This (which may
be selectively enabled for any given job) simply stores each
message from all nodes in a database for later retrieval and
inspection. This provides persistence of data regardless of
whether or not an external client is connected. Also, since
the data resides in a database on the server, it can quickly be
indexed and managed through the Web interface.

Fig. 6. Summary of log messages

Due to the fully distributed design of SWARMS, both the
Web server and database need not be co-located with the head
server. Either or both software entities can execute at remote
locations and connect via TCP/IP and DRb, which is useful
for scalability. In our implementations, we had full flexibility
in choosing where to locate and set up the head server, the
database, Web server, and cluster controllers.

IV. IMPLEMENTATION

The programming language used throughout the system was
Ruby. This was chosen for its cross platform support and
ease of maintainability. An end-user of the system may either
employ the Web interface or develop their own custom client.
A testbed administrator may need to develop software for a
new node mate. Using ruby allows us to minimize the amount
of code required to do this, thus simplifying the task.



The DRb library was leveraged to provide the control plane
between the clients and the nodes. This RPC mechanism nicely
matched our goals, simplifying the separation between data
and control planes.

Access to the database is provided by Active Record, a part
of the Web framework called Ruby On Rails. This provides
a generic interface which has many database backends. As a
result, the system can work with PostgreSQL, MySQL and
possibly others as the database to store the meta-data about
the testbed. We have implemented versions of SWARMS using
either PostgresSQL or MySQL.

The Web interface is constructed based on the Ruby On
Rails framework. SWARMS’ Web interface provides cross-
platform support for uploading and controlling the nodes,
alleviating the client software from having to provide these
functions as well. Leveraging Ruby On Rails provided a
convenient framework to build this user interface. Snapshots
of the Web interface can be referenced in Figures 4, 5, and 6.

The specific procedure for accessing a SWARMS-controlled
sensor network through the Web is straightforward. A user
first logs in, or establishes an account, by clicking on the
appropriate button in the SWARMS Web page. After logging
in, the user may reserve the set of nodes that is being managed
for a specific day and specific hours, as shown in Figure 5.
SWARMS enforces that only one user at a time can be
occupying the set of nodes. Next, the user can define a new
job by going to the Jobs menu, as shown in Figure 4. The
user can separately define groups and assign subsets of nodes
to each group by clicking on the Groups menu. Then, within
a job, the user can define an image and assign this image to
be uploaded to a given group of sensor nodes. The normal
method for starting the job is ”Program and Start” in the Job
menu, which programs the nodes, and then starts all of the
nodes when they are finished programming. The total time to
program and start all of the nodes is usually about 1 min, with
the nodes starting in about the last 2 seconds of that time. To
obtain diagnostic data while the job is running, clicking on the
Status menu of the Web page gives a near real-time readout
of the last 30 messages received from the collective set of
nodes, as shown in Figure 6. All the data being generated by
the sensor nodes and sent back as packets through SWARMS
is logged in the database. Once the user is done with the job,
a snapshot from the database can be obtained by clicking on
the menu below the ”Snapshot” tab, which will download all
of the log messages as a CSV file for easy post processing.

The current clients are implemented in ruby, thus giving
them access to the control plane as well as the data plane.
The clients have a Generic SWARMS Layer as well. This
allows clients to quickly be built with only a few lines of
code. All of the details of connecting to the cluster controller
and establishing the two planes are provided by this generic
layer. Using ruby, scripts can easily be created to interact with
SWARMS. This includes controlling groups, nodes, uploading
images and talking directly to the node. The scripting interface
provides a more powerful mechanism than the Web interface
for clients to specify complex jobs that require the definition of

many groups, the uploading of many images, and the ordered
starting and stopping of various images.

V. A WIDE AREA DEPLOYMENT OF SWARMS

To demonstrate the capability of SWARMS to manage a
wide area WSN deployment, we constructed a simple out-
door weather sensor network that spanned about 10 miles of
Boulder, Colorado. Five nodes were deployed around the city
of Boulder, with one at the university, three in the town of
Boulder, and one a few miles outside of Boulder. The TelosB
nodes were put just outside windows, and were not weather
sealed in any form. The temperature, humidity, and light were
reported every minute to the central SWARMS head server at
CU, with the temperature and dewpoint being calculated and
binned over 1 hour periods. The layout of the nodes is shown
in Figure 7.

Fig. 7. Node locations in our real world wide area deployment of SWARMS.

The wide area sensing was up and running during a blizzard
that hit the Denver area after Christmas in 2006. The dewpoint
and temperature are shown in Figure 8, with a normal Decem-
ber day included before the storm to show the contrast, where
the front moving in and rain starting at noon on the second
day in the graph. With SWARMS, we were able to centrally
monitor temp/RH data from a widely scattered collection of
sensor nodes, and thus capture the passage of the blizzard, as
evidenced in particular by the dew points (lower lines) that
changed abruptly around noon on December 27.

During the deployment, we took advantage of the on-line
logging feature of SWARMS to monitor and troubleshoot the
health of the network. We found a variety of failures during
this wide area deployment. Several of the nodes had hardware
problems such as shorting out, freezing, and getting wet,
which necesitated a restart of the node. Another problem with
the sensor nodes is that the memory tends to get corrupted
below -15

◦C , which is different from the node crashing in
that it is difficult to automatically detect a fault. Though
disconnected mode was enabled to handle network link failures
between the sensor node and the SWARMS head server, we
did not experience this type of failure during this deployment.
As reported, we have utilized SWARMS’ caching recovery
mechanism in past deployments.



-10

-5

 0

 5

 10

 15

 20

12/26
00:00

12/26
06:00

12/26
12:00

12/26
18:00

12/27
00:00

12/27
06:00

12/27
12:00

12/27
18:00

12/28
00:00

D
eg

re
es

 C
el

ci
us

Time

Fourmile Temp
Fourmile Dewpoint

CU Temp
CU Dewpoint

Boulder 1 Temp
Boulder 1 Dewpoint

Boulder 2 Temp
Boulder 2 Dewpoint

Boulder 3 Temp
Boulder 3 Dewpoint

Fig. 8. SWARMS in wide area mode: temperature (upper lines) and dewpoint
(lower lines) over time at 5 locations

In order to restart a node, i.e. restart the node mate process
corresponding to a node and then reprogram that node, we
needed remote access to the PC executing the local SWARMS
software. In some cases, the PC was hidden behind a firewall,
so the home user had to provide explicit secure login access
for this port. This brings up an interesting issue with respect
to security and ease of use. Our wide area implementation of
SWARMS sought to achieve ease of use, e.g. after attaching a
node to a PC, a user ran an installation script that only had to
start one node mate process and one cluster controller, which
then reached outbound through the home firewall to connect
to the SWARMS server to begin streaming data. However,
due to the failures noted above, we could not avoid involving
the home user in some further configuration, e.g. opening
up port 22 on their home firewall for ssh login to assist
in fault recovery. While this simplified fault recovery and
remote management, this complicated ease-of-use from the
user’s perspective and also required the home user to trust the
SWARMS manager. At present, we are still considering where
the right balance lies between ease of use for the sensor node
publisher and ease of use for the remote sensor net manager.

VI. A TESTBED DEPLOYMENT AND PERFORMANCE
EVALUATION

A. A Local Area SWARMS Testbed

In addition to a wide area application, we have deployed
SWARMS to control a local testbed of 50 TELOS-B sensor
nodes confined to a single room in our lab. This is shown
in Figure 9. The testbed nodes are split between two cluster
controller PC’s. The head server and database reside on a third
PC, while the Web server operates on a fourth PC. A Webcam
is also trained on the SWARMS testbed for visual feedback
and monitoring.

We have effectively used this SWARMS testbed both as a
research tool and a teaching tool. For example, SWARMS was
used to support a programming project during fall 2006 in a
graduate seminar on sensor networks. Just as in the wide area
case, user clients, in this case students, were able to define

Fig. 9. SWARMS in local mode: controlling a large number of motes in
one location

Fig. 10. Packet reception statistics from a single transmitter to multiple
receivers on the SWARMS testbed. Students built their own application,
programmed it into the testbed, and collected statistics via SWARMS.

jobs, upload binary program images onto the testbed, collect
diagnostics, etc. SWARMS enabled the class to implement
a programming assignment to collect and characterize real-
world statistics of wireless radio behavior on sensor motes. An
example of packet reception statistics collected when one of
the students programmed the testbed with SWARMS is shown
in Figure 10. The transmitter power setting is set to the lowest
level on the TELOSB motes. The student programmed one
node as a transmitter and the other nodes as receivers, and
then streamed both packet loss and received signal strength
measurements from each mote to the SWARMS head server. In
the past, the SWARMS testbed has been used in our research
to evaluate the efficacy of MAC and routing protocols.

B. Performance Evaluation

We evaluated the scaling properties of our SWARMS design
on the testbed implementation, i.e. up to what rate of input
data can be processed by the SWARMS system. Input data can
refer to sensor data, debug info, or any other data sent from the
nodes over serial/USB connections into the SWARMS logging
system. Understanding the limits of our design is important
if we expect this system to scale across the Internet, and
support distributed sensor networks and testbeds. We must
be sure that the overhead between abstraction layers is not
too large. We measured three different metrics to understand
system performance. These metrics are:

• Output Packets Received: The rate of packets processed



and routed through the SWARMS system and stored by
the database logger.

• Percent Lost Packets: The percentage of packets lost
during test runs.

• Latency Incurred: The latency incurred while passing
through the SWARMS system.

To test SWARMS, we wrote a performance client that
attached to SWARMS just as any other software application
client would attach, namely at the Head Server. The client
implemented a simple ruby script that would send commands
down to the sensor nodes, and then measure the throughput of
reported sensor data routed through the SWARMS system as
well as the roundtrip latency from the client to a sensor node
and back to the client. The script was a performance testing
suite that cycled through a series of variable settings, as shown
in the table below:

Variables used
Database: On, Off
Packet Size (bytes): 1, 2, 4, 8, 16, 32,

64
Delay Between Packets (ms): 1, 3, 5, 7, 8, 9, 10,

25, 50, 100, 200
Samples per data point: 10 samples
Time per data point: 2 second

For each of the input variables, (database state, packet size,
and delay between packets), the state is set, and a command is
sent to each sensor node to generate packets of size and rate
indicated. These data packets are routed from the node through
the SWARMS infrastructure to the client, and may/may not
include logging at the database. The performance suite consists
of multiple nested loops, i.e. once the packet size is set, the
script will cycle through each of the delay settings before
incrementing the packet size and cycling again through the
delay settings, etc. Since the data load from the nodes goes
from light to heavy several times, the recovery of the system
is also tested. The performance suite is an example of a script
that sends commands to the testbed and the nodes, and then
receives the output from the nodes.

On the nodes, we instrumented the software in a simple
manner to generate different rates and sizes. The rate and size
are configured by input over the serial line, so that they don’t
have to be reprogrammed for every different setting. Also, a
special packet can be sent to the node that causes an instant
“ACK” packet to be sent, for latency measurements.

The evaluation was run on ten of the Telos-B sensor nodes,
each controlled by a separate node mate (i.e. each had an
abstraction layer between them and the cluster controller).
These ten nodes were controlled by a single cluster controller
on one computer. The rest of the system follows the archi-
tecture of section III. In particular, the head server executes
on a separate computer. The MySQL database is on the same
computer as the head server. The web server is on a separate
computer as well, but that isn’t used during the execution of
the performance testing. While we are testing different data
rates, we assume that the data is constant for the duration

Fig. 11. Output packets/second received relative to input packets/second

of each test run. The computers are communicating over a
wired link that experiences significant traffic at all times. We
investigate the performance of the system with caching turned
off to understand where SWARMS begins to overload and lose
packets.

1) Success Rate: Figure 11 shows the rate of output packets
successfully received by the logger, relative to the rate of input
packets sent into SWARMS over the serial interfaces. The
output rate largely follows the input rate along the expected
y=x equality until reaching a “saturation” point of about 1000
input packets/sec. This is true across the range of different
packet sizes that we tested, which were chosen to resemble
the small data packets typical of periodic sensor sampling. At
least in this range, packet size did not affect the output rate,
nor did the presence or absence of the database, which we had
expected would be a time-intensive operation that would slow
down SWARMS.

After the saturation point of 1000 input packets/sec, the
average roughly plateaus, deviating substantially from the y=x
line, while the variance starts to increase dramatically. These
results imply that SWARMS begins to experience substantial
performance degradation while trying to service more than
1000 packets per second. After degradation begins, SWARMS
attempts a best-effort transport of all messages. This added
feature extended the performance of the system, avoiding a
complete meltdown up to a level of more than 3000 packets
per second, or 3 times the saturation point. However, at this
point, the figure shows that SWARMS begins to lose more
than 50% of all input packets past 3000 packets/sec.

The results give us some reason to hope that SWARMS
would be capable of handling fairly large sensor networks,
perhaps up to hundreds of thousands of sensor nodes. This is
because many sensor networks generate packet samples on the
order of once per minute, or even once per hour. For example,
a wide area sensor network consisting of 100K nodes, each
generating a packet every 100 seconds (about 2 minutes),



Fig. 12. Latency relative to input packets/second

would in aggregate generate only 1000 packets/sec.
2) Performance Degradation: Latency: Figure 12 shows

how packet latency is affected by congestion due to increasing
message traffic. Assuming, message insertion rates are less
than 100 packets/second, a roundtrip latency of 40 ms is in-
curred. However, above 200 packets/second, latency increases
to 60 ms. Overall, latency rises gradually and is well-behaved
below the 1000 packets/sec saturation point, not exceeding
on average of about 100 ms. This is a fairly small amount
of delay to be adding for most sensing applications. Recall
also that this is the roundtrip delay, and SWARMS is actually
adding only the one-way delay from the moment the sensor
is sampled on the node to the moment it is delivered to the
client. We measured the roundtrip, which only relied on the
client’s clock, because it was easier to capture than the one-
way delay, which would require time synchronization with the
sensor node’s clock and time stamping mechanism.

Above 1000 input packets/sec, performance degrades no-
ticeably at high rates, as SWARMS becomes bogged down
with processing and starts to lose many packets. With insertion
rates greater than 1000 messages/second, latency tends to vary
greatly.

Finally, an understanding of what bandwidth is supported
was also tested. This evaluation is critical to understanding
whether a distributed design approach is plausible. Figure 13
shows latency measured relative to data insertion bandwidth,
helping us to understand whether it is the number of packets or
the overall bandwidth that is causing the congestion. It should
be noted that this data is traveling over a single network,
in our case it was a single 100BaseT link. While results
varied somewhat, the contrast between the general steady
trend of this graph and the plateauing behavior of figure 11
implies that pure bandwidth does not play as big of a role
in system congestion as the number of packets does. This
result suggests that the bottleneck is in software processing
by the different components in SWARMS as opposed to
the bandwidth of traffic on the Internet. Our future work is

Fig. 13. Latency relative to insertion bandwidth

focused on understanding these software bottlenecks more
clearly, though we have already made substantial progress
in identifying and removing such bottlenecks thanks to the
performance test suite, as explained below.

3) Implications: This evaluation has shown that the system
can store packets with high success and good performance
up until a certain threshold. We also have an understanding
of what that threshold is and why it exists. Degradation
begins slightly at a rate of 100 packets/second and becomes
significant beyond 1000 packets/second. This performance
degradation is primarily due to the number of packets and
not the pure bandwidth. It is also comforting to know that
degradation is relatively graceful, allowing for certain types
of analysis e.g., data traces, statistical analysis to remain
valid, even if data streams create flash events that overwhelm
the network. A version of SWARMS is being developed
that doesn’t drop packets, which will significantly affect the
performance under a significant load.

Ensuring that the performance client executed properly un-
der varying workloads was a challenge, as quite a few parts of
the original SWARMS system worked reasonably well under
light loads, but crashed under heavy loads when we stressed
the system. The commands to the nodes had to go through the
system correctly, which exposed a few concurrency problems
with reading and writing to the serial device that we fixed.
Beyond that, quite a few changes were made to reduce the
packet loss, and to aid in the recovery of the system after
the nodes stop sending large number of packets. The resulting
system is what was evaluated in the figures above. We were
thus able validate the complete system for SWARMS in terms
of its scaling performance and capabilities.

VII. CONCLUSIONS AND FUTURE WORK

Remote wide area management of in situ sensor networks is
becoming increasingly important. The SWARMS management
system is designed and built to meet this need with scalability,



flexibility, and extensibility. SWARMS has achieved these
goals by adhering to a set of principles, namely: clean abstrac-
tion modularity, generalized communication between modules,
and an easy to use and easy to access flexible interface. The
following summarizes specific achievements of SWARMS.

• SWARMS achieves scalability through a modular design.
An experimental evaluation demonstrated that SWARMS
can currently scale up to 1000 input packets/sec with little
packet loss and low latency

• SWARMS achieves flexibility through a modular design.
We have shown through two separate implementations
that the same SWARMS software can be configured to
manage a wide area sensor net or a concentrated local
area testbed of 50 sensor motes. The SWARMS architec-
ture is general enough to accommodate any combination
of sparse and dense sensor networks.

• SWARMS can program many nodes in parallel with rel-
ative ease. This is achieved through the use of distributed
cluster controllers running on many computers.

• Programming of nodes is selective. The concept of
“groups” allows for any combination of nodes being
programmed in parallel to any other independent set of
nodes. The concept of “job” flexibly ties groups and code
images together, giving the user substantial freedom in
time and space to choose how to program a set of nodes.

• The “node-mate” abstraction allows for customization
and coexistence of heterogeneous data protocols.

• The high-level system interface(s) provide flexible remote
access for developers. An easy-to-use web interface is
complemented by the scripting DRb or TCP client inter-
faces, which can be used in parallel.

• The concept of “node” has been generalized to support
any type of node connected to a node mate. This allows
for heterogeneity in future systems. New node mates
would have to be written and then added to SWARMS,
just like loading a new driver.

A variety of objectives remain to be accomplished in
SWARMS. First, our tests of scalability are incomplete. We
would like to test the performance limits of SWARMS when
nodes are more widely spread than they are presently situated.
Second, SWARMS also should support a greater diversity
of sensor hardware through the addition of new node-mates.
Third, we would like to relax the assumption of our current two
application deployments that there is a one-to-one correspon-
dence between a node mate and a sensor node. Instead, we’d
like to demonstrate that SWARMS easily supports a many-
to-one mapping between a multi-hop network of sensor nodes
masked behind a single gateway sensor node and a single node
mate, with the sensor node that the nodemate is connected
to acting as the relay, using the sensor node as a bridge
from wired to radio communications. This would allow, for
example, SWARMS to manage a wide area WSN consisting of
many one-node WSNs (one-to-one mapping with a node mate)
combined with a few other highly populated WSNs that have
hundreds of nodes (many-to-one). This flexibility would be

useful for example in FireWxNet to manage individual isolated
sensor nodes across remote mountain tops, e.g. nodes far
from wildfires, while simultaneously managing large groups
of sensor nodes densely deployed near regions of interest,
e.g. near active wildfires. This is precisely the scenario that
we experienced in FireWxNet, where two mountains con-
tained multi-node WSNs, while the third mountain consisted
of a single-node WSN. Fourth, regarding security, we have
incorporated only limited access control into SWARMS. We
hope to provide improved isolation of user data so one user
cannot view another user’s diagnostic and sensor data without
permission. Finally, we plan to release SWARMS in open
source in the near future.

REFERENCES

[1] C. Hartung, R. Han, C. Seielstad, and S. Holbrook, “Firewxnet: a multi-
tiered portable wireless system for monitoring weather conditions in
wildland fire environments,” in MobiSys 2006: Proceedings of the 4th
international conference on Mobile systems, applications and services.
New York, NY, USA: ACM Press, 2006, pp. 28–41.

[2] G. Werner-Allen, P. Swieskowski, and M. Welsh, “Motelab: A wireless
sensor network testbed,” in The Fourth International Conference on
Information Processing in Sensor Networks (IPSN 2005), Special Track
on Platform Tools and Design Methods for Network Embedded Sensors
(SPOTS), April 2005, pp. 73–78.

[3] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the orbit
radio grid testbed for evaluation of next-generation wireless network
protocols,” in Proceedings of the IEEE Wireless Communications and
Networking Conference (WCNC), 2005.

[4] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathu-
mani, H. Zhang, H. Cao, M. Sridharan, S. Kumar, N. Seddon, and e. a.
Chris Anderson, “ExScal: Elements of an extreme scale wireless sensor
network,” in The 11th IEEE International Conference on Embedded
and REal-Time Computing Systems and Applications, (RTCSA’05), Hong
Kong, Hong Kong SAR, August 2005.

[5] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K. White-
house, and D. Culler, “Trio: enabling sustainable and scalable outdoor
wireless sensor network deployments,” in IPSN ’06: Proceedings of
the fifth international conference on Information processing in sensor
networks. New York, NY, USA: ACM Press, 2006, pp. 407–415.

[6] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker,
C. Gruenwald, A. Torgerson, and R. Han, “Mantis os: An embedded
multithreaded operating system for wireless micro sensor platforms,”
vol. 10, no. 4, August 2005, pp. 563–579.

[7] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A dynamic
operating system for sensor nodes,” in MobiSys ’05: Proceedings of
the 3rd international conference on Mobile systems, applications, and
services. New York, NY, USA: ACM Press, 2005, pp. 163–176.

[8] E. Welsh, W. Fish, and P. Frantz, “GNOMES: A testbed for low-
power heterogeneous wireless sensor networks,” in IEEE International
Symposium on Circuits and Systems (ISCAS), Bangkok, Thailand, May
2003.

[9] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Oster-
weil, and T. Schoellhammer, “A system for simulation, emulation, and
deployment of heterogeneous sensor networks,” in Proceedings of the
2nd international conference on Embedded networked sensor systems
(SenSys), 2004, pp. 201–213.

[10] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
scalable simulation of entire TinyOS applications,” in The First ACM
Conference on Embedded Networked Sensor Systems (SenSys 2003),
November 2003.

[11] R. Barr, Z. J. Haas, and R. van Renesse, Scalable Wireless Ad hoc
Network Simulation. CRC Press, 2005, ch. 19, pp. 297–311.

[12] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level
measurements from an 802.11b mesh network,” SIGCOMM Comput.
Commun. Rev., vol. 34, no. 4, pp. 121–132, 2004.


