
Efficiently Authenticating Code Images in Dynamically Reprogrammed Wireless
Sensor Networks

Jing Deng Richard Han Shivakant Mishra
Computer Science Department

University of Colorado at Boulder
Boulder, Colorado, USA

{jing,rhan,mishras}@cs.colorado.edu

Abstract

For large scale wireless sensor networks (WSNs), repro-
gramming sensor nodes through the wireless channel is an
important capability. To avoid reprogramming false or viral
code images, each sensor node needs to efficiently authen-
ticate its received code image before propagating it. Public
key schemes based on elliptic curve cryptography are feasi-
ble in WSNs, yet are still very expensive in terms of memory
and CPU consumption. In this paper, we propose a hybrid
mechanism that combines the speedy verification of hash
schemes with the strong authenticity of public key schemes.
A hash tree is computed from packetized code and its root
is signed by the public key of the base station. Each sen-
sor node can quickly authenticate the data packet as soon
as it is received. Simulation shows that the proposed secure
reprogramming scheme adds only a modest amount of over-
head to a conventional non-secure reprogramming scheme,
namely Deluge, and is therefore feasible and practical in a
WSN.

1 Introduction

Applications of wireless sensor networks (WSNs) are
becoming increasingly diverse, ranging from habitat mon-
itoring to indoor sensor networks, and from battlefield
surveillance to seismic monitoring of buildings. Many of
these applications require remote reprogramming of sensor
nodes through the wireless channel for efficient sensor net-
work management, i.e. for patching buggy code, chang-
ing run-time parameters, or installing new applications and
unanticipated features. Manual reprogramming of sensor
nodes is impractical for large in situ deployments, because
of the scale of such deployments and the physical inacces-
sibility of certain sensor nodes.

For certain WSN applications, securing the process of

dynamic reprogramming is essential. For example, code
updates in military applications must be authenticated to
avoid the download of malicious code into deployed sen-
sor nodes. In addition, applications that require privacy and
anonymity should not admit code updates that can repro-
gram the WSN to snoop on targets without permission. For
all of these cases, it is important that the sensor nodes be
able to efficiently verify that code originates from a trusted
source, namely the base station.

The goal and challenge for this paper is to build a secure
mechanism for dynamic reprogramming of a WSN that is
also efficient, namely frugal in terms of memory footprint,
energy consumption, overhead, and processor usage. As far
as we are aware, this is the first published full paper that
builds a secure and efficient code propagation mechanism
for WSNs. Existing work, such as the Deluge code propa-
gation protocol [8] developed for WSNs, is not secure.

A simple solution for verifying code images at each node
is to employ a single global secret key shared by a base sta-
tion and all sensor nodes to protect the integrity and authen-
ticity of disseminated code. However, if an adversary can
compromise a sensor node and capture the key, he can still
inject malicious code. Compromising a sensor node mote
has been shown to be relatively quick and easy [3], allowing
all internal information such as keys to be revealed. Sensor
nodes are at high risk of compromise due to their in situ de-
ployment, placing them within proximity of an adversary.
In addition, cost constraints for resource-poor nodes limit
the hardware security protections that can be integrated into
a node.

Another approach for authenticating code images is to
apply a public key scheme. Suppose a base station has
a private key, and each sensor node has the base station’s
corresponding public key. The base station signs every
packet with the private key, so a sensor node can verify
every packet with its public key. This simple per-packet
scheme is computationally intensive and avoided on the

wired Internet. Per-packet public key authentication would
be far worse in a resource-constrained WSN that has at
least two orders of magnitude less RAM, CPU, and band-
width per node. While recent work has shown that elliptic
curve cryptography (ECC) is feasible on MICA2-class sen-
sor motes [10, 7], ECC-class public key authentication is
still only practical if used sparingly.

Our approach is to combine the best properties of both
public key schemes and faster hashed verification schemes
to build secure and efficient dynamic programming. Public
key schemes have the advantage of simplifying key distri-
bution while ensuring authentication even if a node is com-
promised, i.e. the public key does not allow a compromised
node to spoof the base station. Hashed verification schemes
have the advantage of fast execution time and small mem-
ory footprint. Our approach is akin in spirit to SSL on the
Internet, which combines an initial public key scheme with
a subsequent fast symmetric key approach.

The paper is organized as follows. In section 2, we dis-
cuss the security requirements for dynamic reprogramming
of WSNs. In section 3, we present our scheme of secure
dynamic programming of WSNs. Section 4 presents the
simulation results of our scheme, highlighting the modest
overhead of our approach. Section 7 concludes the paper.

2 Security Requirements

2.1 Assumptions

We assume our security scheme is built on standard sen-
sor nodes like crossbow motes [1]. A mica2 mote has 4K
bytes of SRAM, 4KB internal EEPROM, and 128KB flash
memory for program. The standard packet size provided by
the TinyOS operating system is 29 bytes.

Several groups of researchers have implemented RSA
and Elliptic Curve (ECC) on mica motes [7, 10, 14, 6, 11, 5].
Up to now, the best result reported by N.Gura et.al shows
that public key encryption/decryption runs hundreds or
thousands milliseconds, and consumes hundreds of bytes
of SRAM [7]. P. Ning et.al provide source code of ECC
which runs 12 to 16 seconds to verify a signature on micaz
motes [11]. On the contrary, the block cipher based hash
functions run about hundreds or thousands of times faster
than public key schemes.

In this paper we assume that the code images are prop-
agated from a base station to every node in the network.
The whole code image is segmented into a sequence of data
packets from 1 to n, and these packets need to be reliably
delivered to every node. Because the data transmission in a
wireless sensor network is unstable and the packet loss rate
is high, reliable data transmission mechanisms must be pro-
vided, such as acknowledgement messages (ACK) or nega-
tive acknowledgement messages (NACK). We assume these

are provided hop by hop as in the Deluge protocol.

2.2 Threat Model

The goal of an adversary is to reprogram its own code
into sensor nodes or launch denial of services attacks to the
large number of sensor nodes in the network. He is able to
eavesdrop on any communication in the network, to com-
promise individual sensor nodes and capture all informa-
tion inside them, and to inject fake packets to sensor nodes
nearby. However, we assume the base station is rich in com-
puting resources and it is securely protected. An adversary
cannot compromise a base station.

2.3 Security Goals

The goal of this paper is to efficiently protect the authen-
ticity and integrity of propagated code images. In particular,

• Every sensor node can authenticate and verify the in-
tegrity of the program code disseminated from a base
station. An adversary cannot spoof the base station or
change the contents of a code image without being de-
tected by other nodes.

• Every node can verify the code image as soon as it re-
ceives it, even though some packets may arrive out-of-
order due to packet losses. Otherwise an adversary can
potentially launch denial of services attacks against the
sensor network due to delayed authentication.

• The resource consumption of the proposed security
mechanism must be light weight in terms of commu-
nication, computing and memory usage.

3 Hash-tree Based Code Image Authentica-
tion Scheme

3.1 Underlying Reliable Data Transmis-
sion Scheme

To build our security scheme, we assume that the un-
derlying reliable data transmission mechanism is similar to
Deluge: the whole code image is divided into n packets. A
node sends a group of packets to its neighbor nodes, and af-
ter a certain time, each neighbor node sends back a NACK
message to tell the sender which packets it missed. Then
the sender retransmits missed packets. For example, if the
sender transmits packet P1, P2, P3, and P4, and the receiver
gets P1 and P4, but missed P2 and P3, then the receiver
sends a NACK message to inform the sender. The sender
then retransmits P2 and P3. This process saves traffic since
the receiver doesn’t have to acknowledge every packet.

signatureLevel 0

Level 1

Level 2

Level 3

Level 4

Hash Hash Hash Hash Hash Hash Hash Hash

Hash Hash Hash Hash

Hash Hash

P1,0

P2,0 P2,1

P3,0 P3,1
P3,2 P3,3

P4,0
P4,1 P4,2 P4,3 P4,4

P4,5 P4,6 P4,7

Figure 1. Hash Tree Scheme. This hash tree
structure has only 5 levels (m = 4), and every
index packet contains 2 hash values (w = 2).

3.2 Description of Algorithm

The principle of our secure dynamic reprogramming
scheme is to apply public key operations in a sparing man-
ner, yet allow the sensor node to quickly verify the authen-
ticity and integrity of each data packet. Figure 1 illustrates
our basic tree-structured approach. The code image is di-
vided into packets at the base station, and a secure hash
is computed on each packet. These hash values are them-
selves input to create a new level of hashes, and so on up
the tree. A packet at level i contains hash values of w
packets in level i + 1. For example, a packet Pi,j con-
tains hash values Hash(Pi+1,j∗w), Hash(Pi+1,j∗w+1),
. . . , Hash(Pi+1,j∗w+w−1). If the hash tree has m + 1 lev-
els (from 0 to m), the packets in level m are data packets
that contain the code image, (from Pm,1 to Pm,n), and the
packets internal to the tree are called index packets. By this
way, every data packet has a hash value, and that value is
linked to a hash tree structure. The root value at the top of
the tree, level 0, is the level 1 hash signed with the private
key of the base station.

A sender transmits packets from the low levels to the
high levels, i.e. from level 0 to level m. When a node sends
a code image to its neighbor nodes, it also sends packets
from the low levels to the high levels. For each level, the re-
ceiver sends back an acknowledgement message to inform
the sender whether it received all packets in this level, or
which packets were missed. When a node receives the root
packet, it saves the signature, and it will use the signature
to authenticate the data in the level 1 packet, and save all
hash values in that level 1 packet. When a packet in level
2 is received, it can use the saved hash values to authenti-
cate level 2 packets, and saves the hash values in this level
2 packet, and so on. Eventually, it can authenticate every

packet in level m with saved hash values that were received
from level m − 1 packets. Because the total size of hash
values is smaller than the size of the packetized code im-
age, this pre-release of verification information creates little
traffic.

This approach has several advantages. First, the receiver
only needs to execute the public key verification operation
once, upon receipt of the initial signature packet. All sub-
sequent verification operations are performed quickly using
hashes in the tree. Second, the hash tree enables every node
to verify each packet immediately, even if it didn’t receive
some packets at the same level. When a data packet arrives,
a quick hash of its contents can be compared to the previ-
ously saved hash to verify authenticity.

One cost of the hash tree scheme is the extra index pack-
ets that need to be transmitted. However, this is a trade-
off because the underlying reliabilty mechanism saves many
acknowledgment messages. Another cost of the tree-based
scheme is its memory consumption. Roughly, if a node
wants to verify each packet in level i, it should save all pack-
ets at level i − 1 in its SRAM. For a large code image, this
could become a concern. Fortunately, sensor nodes have
considerable storage in Flash or EEPROM to save the inter-
nal hash values. In addition, as tested in [3], reading data
from EEPROM is very fast. It takes less than 1 millisecond
to read 8 bytes of data from EEPROM, which introduces
minimal delay.

This hash-tree mechanism securely protects and verifies
the authenticity of the tree of hashes. An adversary will be
unable to modify hashes in the tree without being detected.
Similarly, an adversary will be unable to modify the code
packets without being detected by using the hashes.To pre-
vent replay attacks of old yet valid code images, a version
number and/or time stamp can be included in the signed root
hash. Each node only accepts code that is at or higher than
the current version number.

4 Experiments

The goal of this experiment is to understand the costs of
our security mechanism, and see if it is feasible for sensor
network applications. Since prior work has already tested
the memory and computational costs of public key algo-
rithms and hash-based algorithms on sensor motes, our fo-
cus was on comparing the message overhead cost of our
security protection scheme to the Deluge non-secure code
propagation scheme. The intent was to discover if the tree-
structured approach could achieve its security goals while
introducing only modest overhead.

We simulated the situation that a source node dissemi-
nates a program code to its direct neighbor nodes, and mea-
sured the number of packets sent during the process under
different packet loss rates and code sizes. There is one

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 0.02 0.04 0.06 0.08 0.1

N
um

be
r

of
 M

es
sa

ge
s

Packet Loss Rate

deluge
hash tree

Figure 2. Message cost of original deluge
scheme and hash tree scheme under differ-
ent packet loss rate.

source and twenty sensor nodes, and the source can com-
municate with every node. This simple test gives us a rough
estimate of the per-hop costs of code dissemination, i.e. at
each hop the same behavior of reprogramming would be
initiated by a source to reprogram its direct neighbors. At
the first hop, the base station would program its one-hop
or level-one neighbors; at level one, each level one neigh-
bor acts as a source to reprogram its level two neighbors
(two hops from the base station); and so on. In future work,
we intend to confirm these initial results by evaluating over
multi-hop topologies, e.g. WSN routing trees.

4.1 Packets Loss Rate

Our first experiment was to measure the extra overhead
cost of our secure reprogramming scheme compared with
Deluge. In this experiment, we set the packet loss rate to
range from 0 to 10%. The size of program code is 32 KB,
which is usual for real applications. Each hash value is 4
bytes, and a 29 bytes index packet contains 6 hash values.
We measured the total number of sent packets. There is a
tradeoff between security and efficiency: the larger the size
of the hash value, the greater the security and the higher the
energy cost. The new Telos sensor node [2] supports 128
bytes of packet size, which can contain larger sized hash
values.

Figure 2 shows the message cost, measured by the num-
ber of packets sent in the network. The number of packets
exchanged corresponds to the energy cost, since the power
used in wireless transmission dominates energy consump-
tion of a sensor node. From these experiments, we see that
the extra cost of our security scheme is relatively small and
is feasible for current sensor network platforms. For exam-
ple, when the packet loss rate is 2%, the packets sent in Del-
uge equal about 1800, and the packets sent in the hash tree
scheme equal about 2300. The extra cost is about 28%. Be-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100 120 140

N
um

be
r

of
 M

es
sa

ge
s

Size of Code Image (KBytes)

deluge
hash tree

Figure 3. Message cost of Deluge and our
hash tree scheme under different program
code sizes.

cause reprogramming doesn’t happen very often, we con-
sider the 28% extra cost during the reprogramming phase to
be relatively small when amortized over the entire life of a
sensor node.

4.2 Size of Code Image

Our second experiment tested the message cost when the
size of the program code changes. In this experiment, we
simulated propagation of program code with different sizes
ranging from 1 KB to 128 KB. We fixed the packet loss rate
at 2%. For both Deluge and the hash tree scheme, we see
that the number of messages linearly increases as the size
of the code increases, and the ratio of extra cost is about
28%. For Deluge, as the size of the code linearly increases,
the time for sending them also linearly increases. For the
hash tree scheme, since the ratio between index packets and
data packets is constant, the total data size also linearly in-
creases.

5 Related Work

Because it is far more efficient than public key algo-
rithms, hash functions have been widely used to authenti-
cate transmitted data. For example, K. Fu et. al proposed
a secure read-only file system with hash tree [4]. A. Perrig
proposed the BiBa scheme which is based on one-way func-
tions and the birthday paradox [12]. However, BiBa is still
too heavy to be applied to WSN reprogramming. First, the
base station needs to generate and maintain a large number
of SEALs since a program is composed of many data pack-
ets. Second, each data packet needs to contains k SEALs if
BiBa uses k-way collisions. A. Perrig et. al also proposed
µTESLA [13] protocol for source authentication in data dis-
semination through lossy channel. However, µTESLA is

vulnerable to denial of services attacks due to delayed au-
thentication. C. Karlof et. al proposed a mechanism for se-
cure multicast in lossy data transmission environment [9].
A receiver can verify each packet it received and can re-
cover original data even though some packets are lost. But
this mechanism is too expensive for resource-poor sensor
nodes.

V. Gupta et. al implemented the SSL protocol on sensor
node with RSA and elliptic curve algorithms, called Siz-
zle [6]. In contrast with Sizzle, our scheme works for one-
to-many data dissemination paradigms, in which a base sta-
tion broadcasts a program code image to multiple sensor
nodes one or more hops away. The base station doesn’t em-
ploy end-to-end data transmission schemes.

6 Discussion and Future Work

In the Deluge protocol, the whole program code is seg-
mented into pages, and each page contains a fixed number
of packets. To receive packets in page i, a node has to reli-
ably receive all packets in page 1 through i − 1. To adapt
our scheme to Deluge, we can build a hash tree structure
for each page, and the root node of each hash tree is a sig-
nature signed by the base station with its private key. This
approach introduces more public key operations. Thus, one
of the weaknesses of applying this scheme directly to Del-
uge on a per-page basis is the increased number of public
key operations, which can become a concern for large code
images. As part of our future work, we plan to address this
weakness while integrating our hash tree within the Deluge
reprogramming protocol, and running it on a real sensor net-
work testbed.

7 Conclusion

Authentication of code images received over a wireless
channel is an important capability for many WSN appli-
cations. This paper is a first attempt at developing an ef-
ficient secure code propagation protocol for wireless sen-
sor networks. In this paper, we proposed a hybrid security
scheme that employs a public key algorithm and a hash tree
to quickly and efficiently authenticate program code im-
ages. Our experiments show that the proposed mechanism
tolerates disorder caused by packet loss in wireless com-
munication, and introduces little overhead. Our scheme is
light weight enough to be feasible for current sensor net-
work platforms.

8 Acknowledgments

We would like to thank the anonymous reviewers for
their valuable comments.

References

[1] Crossbow website. http://www.xbow.com.
[2] Tmote. http://www.moteiv.com.
[3] J. Deng, R. Han, and S. Mishra. Practical study of transitory

master key establishment for wireless sensor networks. In
1st IEEE/CreateNet Conference on Security and Privacy in
Communication Networks (SecureComm 2005), pages 289–
299, Athens, Greece, September 2005.

[4] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and se-
cure distributed read-only file system. Computer Systems,
20(1):1–24, 2002.

[5] G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar. State of the
art in ultra-low power public key cryptography for wireless
sensor networks. In 2nd IEEE International Workshop on
Pervasive Computing and Communication Security, Kauai
Island, Hawaii, USA, March 2005.

[6] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura,
H. Eberle, and S. C. Shantz. Sizzle: A standards-based
end-to-end security architecture for the embedded internet.
In 3rd Annual IEEE International Conference on Pervar-
sive Computing and Communications, Kauai Island, Hawaii,
USA, March 2005.

[7] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz.
Comparing elliptic curve cryptography and rsa on 8-bit
cpus. In 6th International Workshop on Cryptographic
Hardware and Embedded Systems(CHES’04), Cambridge,
Boston, USA, August 2004.

[8] J. W. Hui and D. Culler. The dynamic behavior of a
data dissemination protocol for network programming at
scale. In 2nd International Conference on Embedded Net-
worked Sensor Systems(SenSys’04), Baltimore, Maryland,
USA, November 2004.

[9] C. Karlof, N. Sastry, Y. Li, A. Perrig, , and J. Tygar. Dis-
tillation codes and applications to dos resistant multicast au-
thentication. In the 11th Annual Network and Distributed
Systems Security Symposium (NDSS 2004), San Diego, CA,
USA, February 2004.

[10] D. Malan, M. Welsh, and M. Smith. A public-key infras-
tructure for key distribution in tinyos based on elliptic curve
cryptography. In 1st IEEE International Conference on Sen-
sor and Ad Hoc Communications and Networks, 2004.

[11] P. Ning and A. Liu. Tinyecc: Elliptic curve cryptogra-
phy for sensor networks. http://discovery.csc.ncsu.edu/ pn-
ing/software/TinyECC/index.html.

[12] A. Perrig. The BiBa one-time signature and broadcast au-
thentication protocol. In 8th ACM Conference on Computer
and Communications Security, Philadelphia, PA, USA,
November 2001.

[13] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar.
Spins: Security protocols for sensor networks. Wireless Net-
works Journal(WINET), 8(5):521–534, September 2002.

[14] R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and
P. Kruus. Tinypk: Securing sensor networks with public
key technology. In 2004 ACM Workshop on Security of Ad
Hoc and Sensor Networks, Washington, DC, USA, October
2004.

