
University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

INSENS: Intrusion-Tolerant Routing in Wireless Sensor
Networks

Jing Deng, Richard Han, Shivakant Mishra

Department of Computer Science

University of Colorado, Boulder, CO 80309-0430.
Contact: {rhan, mishras}@cs.colorado.edu

ABSTRACT

This paper describes an INtrusion-tolerant routing protocol
for wireless SEnsor NetworkS (INSENS). INSENS
constructs forwarding tables at each node to facilitate
communication between sensor nodes and a base station. It
minimizes computation, communication, storage, and
bandwidth requirements at the sensor nodes at the expense
of increased computation, communication, storage, and
bandwidth requirements at the base station. INSENS does
not rely on detecting intrusions, but rather tolerates
intrusions by bypassing the malicious nodes. An important
property of INSENS is that while a malicious node may be
able to compromise a small number of nodes in its vicinity,
it cannot cause widespread damage in the network. A
prototype implementation in the ns2click simulator is
presented to demonstrate and assess INSENS's tolerance to
malicious attacks launched by intruder nodes in random and
grid topologies.

Keywords: Wireless sensor networks, multi-path
routing, intrusion tolerance, security, resource
constraints.

1 INTRODUCTION

Wireless sensor networks (WSNs) are rapidly
emerging as an important new area in mobile
computing research. Applications of WSNs are
numerous and growing, and range from indoor
deployment scenarios in the home and office to
outdoor deployment scenarios in natural, military and
embedded environments. For military environments,
dispersal of WSNs into an adversary’s territory
enables the detection and tracking of enemy soldiers
and vehicles. For home/office environments, indoor
sensor networks offer the ability to monitor the health
of the elderly and to detect intruders via a wireless
home security system.

In each of these scenarios, lives and livelihoods may
depend on the timeliness and correctness of the
sensor data obtained from dispersed sensor nodes. As
a result, such WSNs must be secured to prevent an
intruder from obstructing the delivery of correct
sensor data and from forging sensor data. To address
the latter problem, end-to-end data integrity
checksums and post-processing of sensor data can be
used to identify forged sensor data. This paper
focuses on the former problem and develops a secure
routing system to address the issue of obstructing
packet delivery, which is an acute problem in sensor
networks since each individual node can be easily
compromised and thereby lead to the entire sensor
network being compromised.

The design and implementation of secure WSNs must
simultaneously address several difficult research
challenges. First, wireless communication among the
sensor nodes increases the vulnerability of the
network to eavesdropping, unauthorized access,
spoofing, replay and denial-of-service (DOS) attacks.
Second, the sensor nodes themselves are highly
resource-constrained in terms of limited memory,
CPU, communication bandwidth, and especially
battery life. These resource constraints limit the
degree of encryption, decryption, and authentication
that can be implemented on individual sensor nodes,
and call into question the suitability of traditional
security mechanisms such as compute-intensive
public-key cryptography for such resource-
constrained sensor nodes. Third, WSNs face the
added physical security risk of individual sensor
nodes falling into the wrong hands. Sensor nodes that
are physically deployed in the field can be obtained
by an intruder, and can then be subject to attacks from

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 2

the potentially well-equipped intruder in order to
compromise a single resource-poor node. Following
a successful attack, a compromised sensor node could
then be used to instigate such malicious activities as
advertising false routing information, possibly
unbeknownst to the sensor network, and launching
DOS attacks from within the sensor network.

The combined threats introduced by increased
physical security risk and severe resource constraints
motivate the following design philosophy to achieve
secure WSNs: concede that a well-equipped intruder
can compromise individual sensor nodes, but secure
the overall design of the WSN so that these intrusions
can be tolerated and the network as a whole remains
functioning despite such localized intrusions. More
precisely, our objective is the design of intrusion-
tolerant secure WSNs that have the property that a
single compromised node can only disrupt a localized
portion of the network, and cannot bring down the
entire sensor network. This design objective of
intrusion tolerance for secure WSNs must provide
protection against two classes of attack that could
bring down an entire sensor network: DOS-type
attacks that flood data packets to the entire network;
and routing attacks that propagate erroneous control
packets containing false routing information
throughout the network.

Intrusion tolerance can be designed to take advantage
of a common architecture found in WSNs, namely the
asymmetric architecture pictured in Figure 1. A base
station functions as a gateway, e.g. an uplink to a
satellite or a bridge between the wireless world of the
WSN and the wired infrastructure seeking to process
and mine the sensor data. Such a base station
typically has more resources in terms of power,
computation, memory, and bandwidth than the
individual sensor nodes.

To achieve intrusion tolerance given an asymmetric
topology and resource constraints, this paper presents
an INtrusion-tolerant routing protocol for wireless
SEnsor NetworkS (INSENS). The INSENS secure
routing system adheres to the following high-level
design principles. First, to prevent DOS-style
flooding attacks, the type of communication is
constrained. Individual nodes are not allowed to
broadcast to the entire network. Only the base station
is allowed to broadcast. We describe later on how

authentication of the base station is achieved via one-
way hashes, so that individual nodes cannot spoof the
base station and thereby flood the network. For
unicast packets, nodes must first communicate
through the base station, allowing the base station to
act as a packet filter to prevent DOS via a single
node. INSENS is similarly resilient to distributed
DOS or DDOS, because multiple nodes will also not
be able to broadcast to the entire network. Second, to
prevent advertisement of false routing data, control
routing information must be authenticated. A key
consequence of this approach is that the base station
always receives correct partial knowledge of the
topology. Though the base station may not receive all
of the topology discovery information, due to
localized intrusions, the picture of the network that
the base station is able to construct is nevertheless
correct. Third, to address resource constraints,
INSENS follows two design decisions: symmetric key
cryptography is chosen for confidentiality and
authentication between the base station and each

resource-constrained sensor nodes, since it is
considerably less compute-intensive than public key
cryptography; and, the base station is chosen as the
central point for computation and dissemination of
the routing tables. Fourth, to address the notion of
compromised nodes, redundant multipath routing is
built into INSENS to achieve secure routing. The
paths are designed to be disjoint, so that even if an
intruder takes down a single node or path, secondary

Figure 1. Sample asymmetric WSN topology over 10
sensor nodes with multiple paths to the base station.

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 3

paths will exist to forward the packet to the correct
destination.

In the remainder of the paper, we address related
work in Section 2, provide a detailed description of
the INSENS system in Section 3, present
implementation and experimental analysis of INSENS
in Section 4, and conclude the paper.

2 RELATED WORK

Sensor network security is a critical issue in sensor
network research [Perrig00, NAI]. Ganesan et al
propose a redundant "multipath" routing approach for
a sensor network [Ganesan02] in order to provide
fault tolerance and reliable data dissemination. Every
node can have multiple paths to another node. Two
kinds of multipath are studied: disjointed paths, and
braided paths. DPSP [Papadimitratos02a] provides a
fast multipath routing algorithm, based on a novel
heuristic that picks a set of highly reliable paths. For
our approach, multipath routing is useful to combat
intrusions or malicious nodes, but is tightly integrated
into a complete secure routing system capable of also
ensuring authentication and data integrity.

Security and intrusion tolerance approaches based on
Byzantine fault tolerance have been proposed
[Awerbuch02, Pathak02]. For example, a mechanism
for distributed authentication that can tolerate
Byzantine faults has been proposed [Pathak02]. It
involves a distributed system of mutually
authenticating semi-trusted parties. While this
mechanism is well-suited for mobile networks, its
computational requirements limits its utility for
resource-constrained WSNs. Byzantine fault-
tolerance algorithms typically require significant
computation and communication.

In the field of ad hoc wireless networking [Broch98,
Royer99], previous work on secure routing employs
public key cryptography to perform authentication
([Kong01, NAI, Papadimitratos02b, Zhou99,
Zhang98]). Unfortunately, resource constraints in
sensor network limit the applicability of these current
public/asymmetric key standards.

SPINS addresses secure communication in resource-
constrained sensor networks, introducing two low-
level secure building blocks, SNEP and µTESLA
[Perrig01]. A brief example of secure basic routing
with these building blocks is described. We leverage
some of these concepts to implement intrusion-
tolerant multi-hop routing for WSNs. For example,
we utilize keyed message authentication codes
(MAC) similar to SNEP to verify the integrity of
control packets. Keyed MAC's are vital for verifying
the integrity of topology information delivered to the
base station. We also employ the concept of a one-
way hash chain seen in µTESLA, but use the chain to
provide one-way sequence numbers for loose
authentication of the base station, rather than as the
key release mechanism seen in SPINS. One-way
sequence numbers are essential for limiting a variety
of DOS and rushing attacks, as described later.

Instead of a public/private key system, SEADS
[HuWMCSA02] and Ariadne [HuMobi02] use
symmetric cryptography, a one-way hash function,
TESLA [Perrig01], and MACs to build secure
wireless network routing. SEADS proposes a secure
mechanism on top of DSDV. The paper utilizes
secure one-way hash chains to authenticate metric
and sequence numbers. The shared secret key
between neighbor nodes is used to authenticate
neighbors. Ariadne provides a secure routing
mechanism built on top of DSR [Johnson96]. Three
kinds of mechanisms, e.g. shared secret keys, TESLA,
and digital signatures, are proposed for
authentication. TESLA is used to authenticate the
path between two nodes. Ariadne proposes to use
multipath to thwart the effects of routing
misbehavior. The multipath is a byproduct of standard
DSR. These two protocols propose mechanisms to
build routes between two peer nodes in ad hoc
wireless networks.

In contrast to a peer-based routing architecture,
INSENS constructs network routing for an
asymmetric or hierarchical architecture consisting of
a base station and sensors. As a result, INSENS's
protocol and security architecture are far different. In
INSENS, each node shares a secret key only with the
base station, and not with any other nodes. This has
the advantage in case a node is compromised that an

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 4

intruder will only have access to one secret key,
rather than the secret keys of neighbors and/or other
nodes throughout the network. In addition, setting up
keys is straightforward in INSENS; each node needs
to be programmed with only one secret key for
authenticating itself to the basestation, and one initial
key for authenticating the basestation to each node.
The request-response cycle of INSENS's route
discovery phase follows the basic paradigm of the
DSR protocol's Route Discovery process. Our
contribution is to make such a paradigm secure in a
resource-constrained wireless sensor network.

3 PROTOCOL DESCRIPTION

3.1 Design Principles

We have designed and implemented a secure and
INtrusion-tolerant routing protocol for wireless
SEnsor NetworkS (INSENS). As noted in Section 1,
INSENS's design is based on three principles:

• Exploit redundancy to tolerate intrusions
without any need for detecting the node(s)
where intrusions have occurred. INSENS
operates correctly in the presence of
(undetected) intruders.

• Perform all heavy-duty computations at the
base station(s), and minimize the role of
sensor nodes in building routing tables, or
dealing with security and intrusion-tolerance
issues. INSENS minimizes computation,
storage, and bandwidth requirements at the
sensor nodes.

• Limit the scope of damage done by
(undetected) intruders by limiting flooding
and using appropriate authentication
mechanisms. INSENS uses symmetric-key
cryptography to implement these
mechanisms.

The first principle addresses the fundamental problem
of the difficulty of detecting intrusions in a timely
manner in sensor networks. The values of some of
the important parameters, such as normal usage and
communication patterns, needed for (anomaly-based)
intrusion detection are typically not known in
advance in a sensor network, particularly in a critical

scenario. Determining these values is time-
consuming, and the presence of intruders can make it
extremely difficult to determine these values. Thus,
anomaly-based intrusion detection techniques cannot
be used to detect intrusions. Furthermore, signature-
based intrusion detection techniques cannot be
fruitfully employed here due to a lack of any
experience with most sensor-network based
applications and the types of attacks that may be
launched.

Rather than rely on traditional intrusion-detection
techniques, INSENS's strategy is to design a routing
mechanism that is intrusion-tolerant. The building or
updating of correct routing tables and the correct
delivery of messages are performed in a manner that
is robust to the presence of a small number of
undetected intruders.

INSENS incorporates redundancy in routing to
bypass intruders while routing messages. As shown in
Figure 2, multiple routes are derived between each
source and destination. These paths are independent
of one another in the sense that they share as few
common nodes/links as possible; ideally, only the
source and the destination nodes are shared among
paths. Each message sent from a source to a
destination is sent multiple times, once along each
redundant path. The presence of one or more
intruders along some of these paths can jeopardize the
delivery of some of the copies of a message.
However, as long as there is at least one path that is
not affected by an intruder, the destination is will

a

B

m
S1

S2

S3

First Path

Second PathFirst Path

Second Path

a

B

m
S1

S2

S3

First Path

Second PathFirst Path

Second Path

Figure 2: The multipath routing policy selects a
second path (red) that shares as few common nodes
with the first path (black) as possible.

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 5

receive at least one copy of the message that has not
been tampered with. Notice that this approach works
despite the presence of (undetected) intruders.

In Figure 2, the first path between the base station B
and the node a is chosen as the shortest path. The
area shaded gray surrounding the first path consists of
all nodes that could be affected by a malicious
intruder. For example, a malicious node m is shown
as the neighbor to a node on the first path. Such a
node m could disable both a node on the first path as
well as its own north-south-east-west neighbors. As a
result, the set of nodes (gray area in Figure 2) that
should be removed from consideration for the second
path consist of all nodes in the first path between the
source and destination, all of their neighbors, and all
of their neighbors' neighbors. A valid second path is
shown avoiding the first path's set of affected nodes.

An important issue here is enabling a destination
node to determine which received copies of a
message are original, and which have been tampered
with. This can be addressed by leveraging
appropriate confidentiality, integrity, and
authentication mechanisms [Perrig01] while
exchanging messages.

The second principle addresses the issue of resource
constraints in sensor networks. INSENS takes
advantage of the asymmetric topology of the WSNs.
Since base stations in sensor networks are resource
rich, and sensor nodes are resource constrained, our
protocol minimizes the use of important resources
such as CPU, memory, bandwidth or power at the
sensor nodes at the expense of increased computation,
communication, storage and power requirements at
the base stations. The overall structure of the
protocol for building forwarding table for each node
follows three phases. The base station first sends out
a request message, then collects topology information
from all sensor nodes, and finally computes and
downloads the routing tables (including redundant
paths) into each node. This reduces the role of the
sensor nodes to simply conveying the appropriate
(local) topological information to the base station.

The third principle addresses the issue of damages an
(undetected) intruder may cause while the routing
table is being built. Clearly, if sufficient care is not

taken, intruders can provide false connectivity
information or advertise incorrect routes that will
result in building incorrect routing tables. Also,
intruders can launch DOS attacks by repeatedly
sending many copies of the same message, or by
sending spurious messages. This may delay
indefinitely and even prevent the building of routing
tables. INSENS employs the one-way authentication
mechanism proposed in [Perrig01] to authenticate any
information sent by the base station, and appropriate
integrity mechanisms to ensure that any tampering
with the information being exchanged can be detected
by the intended receiver. Tamper detection ensures
that the base station is able to glean out the correct
(untampered) information from all the messages it
receives from sensor nodes. In addition, INSENS
limits flooding of messages by allowing
communication only between the base station and the
sensor nodes, and by having sensor nodes drop
duplicate messages. These techniques essentially
limit the damage an intruder may cause. Together,
these design choices ensure that an intruder may be
able to take out a small part of the network, but
cannot compromise the entire network.

3.2 Route Discovery

Route discovery ascertains the topology of the sensor
network and builds appropriate forwarding tables at
various nodes. Route discovery is performed in three
rounds. In the first round, the base station floods
(limited flooding) a request message to all the
reachable sensor nodes in the network. In the second
round, sensor nodes send their (local) topology
information using a feedback message to the base
station. In the third round, the base station computes
the forwarding tables for each sensor node based on
the information received in the second round and
sends them to the respective nodes using a routing
update message.

3.2.1 First Round: Route Request

The base station initiates the first round whenever it
needs to construct the forwarding tables of all sensor
nodes. This can be in the beginning when the network
has just been established, or when the network may
have changed substantially due to node mobility. The

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 6

b) Path information. Contains path a�b�c�d�…

OWStype size path MACR

1 216 var 16

Ia Ib Ic Id …

a) Packet format

2 2 2 2

b) Path information. Contains path a�b�c�d�…

OWStype size path MACR

1 216 var 16

OWStype size path MACR

1 216 var 16

Ia Ib Ic Id …

a) Packet format

2 2 2 2

Figure 3. Route request format

base station broadcasts a request message that is
received by all its neighbors. A sensor node that
receives a request message for the first time in turn
broadcasts a request message. A request message
broadcast by a node x includes a path from the base
station to x. When a node receives a request message
for the first time, it forwards (broadcasts) this
message after appending its identity in the path. It
also records the identity of the sender of this message
in its neighbor set. When a node receives duplicate
request messages, the identity of the sender is added
to its neighbor set, but the duplicate request is not
rebroadcast.

Propagation of request messages in this way serves
three purposes: (1) it informs all sensor nodes that the
base station is collecting topology information to
build forwarding tables, (2) it aids in constructing a
path from each sensor node to the base station that is
used in the second round to forward feedback
messages to the base station, and (3) a node receiving
a request message learns that the sender of that
message is its neighbor.

A malicious node in the network can attempt to
launch several attacks in this round. First, it can
attempt to spoof the base station by sending a
spurious request message. Second, it can include a
fake path in the request message it forwards. Third, it
may not forward a request message, or launch a DOS
attack by repeatedly sending several request
messages. We use two mechanisms to counter these
attacks. Both of these mechanisms require sensor
nodes to be pre-configured with appropriate values.

First, we leverage the concept of one-way sequences
proposed by the µTESLA protocol [Perrig01] to
identify a request message initiated by the base
station and to restrict DOS-style flooding attacks.
The base station generates a sequence of numbers

kk nnnnn ,,...,,, 1321 − , such that)(1 ii nFn =+ , where
F is a one-way function, ki <<0 , and 1n is
chosen randomly. F has the property that it is
computationally infeasible to compute 1−kn in a
limited time by knowing kn and F . All sensor nodes
are pre-configured with function F and value kn . The
base station transmits 1−kn (called a One-Way
Sequence (OWS) number) in the first request message
as shown in Figure 3. When the base station needs to
construct forwarding tables again, the second request
message originated by the base station will be
assigned an OWS2=nk-2. The i'th request message will
be assigned OWSi=nk-i. All nodes forwarding the i'th
request message repeat OWSi in the header. A sensor
node receiving the i'th request message will compute
Fj(OWSi) for j=1,2,…,J, where Fj(#) = F(F(...F(#))
applied j times. A sensor node will have saved the
most up to date or freshest OWSfresh that it has seen
from the base station. If OWSfresh is within J
applications of the function F to OWSi from the i'th
request message, then Fj(OWSi)= OWSfresh for some j.
This match enables the sensor node to verify that only
the base station could have generated this OWS. If
there is not a match, then the packet is deemed
spurious and is not forwarded. This policy prevents
propagation of spurious messages. Also, messages
whose OWS is older than OWSfresh are not forwarded.
This policy prevents a node from flooding the
network with out of date messages. For example,
when a sensor node receives the first request
message, it will compare F(OWS1) with OWSfresh =
nk. If there is a match, then the node knows that only
the base station could have produced this next OWS
in the sequence. Otherwise, the message is deemed
spurious and is not forwarded.

A malicious node cannot generate the next OWS
number in the sequence. This restricts the ability of a
malicious node to spoof the base station. An arbitrary
sensor node cannot therefore flood a new request
message. As mentioned earlier, an intruder is also
prevented from flooding old request messages.
However, it remains possible that a malicious node
could flood a modified request message using the

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 7

m
Base station Malicious node Child of Malicious node

neighbor of Malicious node Child of neighbor of Malicious node

m

(Set A)

(Set B) (Set C)

B

B m
Base station Malicious node Child of Malicious node

neighbor of Malicious node Child of neighbor of Malicious node

m

(Set A)

(Set B) (Set C)

B

B

Figure 4. The damage inflicted by a malicious
node m is confined to a localized portion of the
sensor network, i.e. nodes downstream from m and
downstream from m's neighbors.

current OWS from a valid request message just sent
out by the base station. In such an attack, called a
rushing attack [HuTech02], an attacker tries to
propagate a spurious message before the base station
can propagate its own valid message. Our defensive
countermeasures confine such an attack to the local
subtree of nodes below the malicious node. In such
an attack, the intruder must first wait to hear the
current OWS from the base station before launching
its own attack. Since duplicate requests (same OWS)
are not rebroadcast, nodes in the tree that are closer to
the base station than the malicious node will receive
the valid request message first. These nodes will
drop the intruder's spurious request messages
received later. Moreover, an attacker is restricted to
sending only one such request message per OWS,
since neighboring nodes will forward a request
message as defined by its OWS exactly once. A
malicious node cannot launch a DOS attack by
sending multiple request messages. Of course, the
attacker could pack a long fake path into its only
spurious request message. Regardless, as shown in
Figure 4, the damage of flooding a spurious request
message is locally confined to the nodes nearest to
and downstream from the intruder. In the figure, it is
assumed that the rest of the network hears the valid
request message from the basestation first.

The second mechanism that we use to defend against
intrusions, in addition to the one-way sequences, is a
keyed MAC algorithm. Each sensor node is
configured with a separate secret key that is shared
only with the base station. Before forwarding a
request message, a node x generates a 16-byte
MACRequest (MACRx) by applying a keyed MAC
algorithm. This MAC is applied to the complete path
consisting of the current node x's identity appended to
the path from the incoming request message. This
16-byte field is compatible with standard 128-bit
MAC algorithms and its overhead is incurred only
during the route discovery phase. The correctness of
INSENS is not dependent on a specific MAC length.
Though increased memory will be needed to store
multiple 16-byte MAC's, the current ATMEL
processors for the Motes support 128 KB of memory,
up from the 8 KB that was the design constraint for
SPINS [Perrig01]. Also, another design constraint of
the Mote architecture is the 30-byte length of each
packet. We assume that future sensor architectures

will be able to accommodate variable-length packets
with the above MAC lengths.

The secret key of the node is used to generate the
following MACR:

),||(xx KeytypeOWSpathsizeMACMACR =

where "|" denotes concatenation. This MACR is
included in the request message as shown in Figure
3(a). It is used to check the integrity of the path in
the second round when the nodes receiving the
request message need to forward a feedback message
to the base station along this path (in the reverse
direction). As we shall see, a fake path included by a
malicious node cannot be verified in the absence of a
correct MAC as the feedback message is forwarded
towards the base station, and as a result, the spurious
feedback message will be dropped.

The overall effect of these security mechanisms is
that a malicious node can attack in the first round
only by localized flooding, by not forwarding a
request message, and by sending fake path in the
request which is later on detected in the second
round. The latter two attacks will result in some of
the nodes downstream from the malicious node not
getting a request message or not being able to forward
their feedback message to the base station in the
second round. Again, a malicious node may be able to
compromise a small number of nodes in its vicinity

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 8

size pathx MACRxIx

c) path_info (to node x)

2 2 var 16

OWStype nbr_infopath_info

1 16 var16 var

a) Feedback packet format

MACF

16

MACRp

b) parent_info (parent p)

16

parent_info

Ic MACRcMACRaIa

d) nbr_info: neighbor information

2 2 1616

MACRbIb etc…

var2 16

size

2

size pathx MACRxIx

c) path_info (to node x)

2 2 var 16

OWStype nbr_infopath_info

1 16 var16 var

a) Feedback packet format

MACF

16

MACRp

b) parent_info (parent p)

16

parent_info

Ic MACRcMACRaIa

d) nbr_info: neighbor information

2 2 1616

MACRbIb etc…

var2 16

size

2

Ic MACRcMACRaIa

d) nbr_info: neighbor information

2 2 1616

MACRbIb etc…

var2 16

size

2

Figure 5. Route feedback message from node x.

by employing these types of attacks, but cannot
jeopardize the security of the complete network.

Figure 3(a) details the format of a request message
along with the size (in number of bytes) of each field
in the format. The type field indicates whether the
message is a request, feedback, routing, or data
message. The OWS field contains the one-way
sequence number. The path field contains the path
(sequence of node identities as shown in Figure 3(b))
from the base station to the current node (the node
that sends this request message). The size field
contains the length of this path. The MACR field
contains a MAC (message authentication code) of
size, path, OWS and type as described above.

3.2.2 Second Round: Route Feedback

In the second round, each sensor node sends its local
connectivity information (a set of identities of its
neighbor nodes as well as the path to itself from the
base station) back to the base station using a feedback
message. After a node has forwarded its request
message in round one, a node will wait a certain

timeout interval before generating a feedback
message. This interval allows a node to listen to the
local broadcasts of its neighbors, who will also be
forwarding the same request message. A node will
hear the request messages from its upstream, peer and
downstream neighbors.

As shown in Figure 5a), a feedback message
generated by a node contains its neighborhood
information (a set of identities Ii of all its i neighbors,
denoted by nbr_info), as well as the path to that node

from the base station (path_info). The path listed in
path_info is the path through the upstream neighbor
who first broadcast this particular request message to
the node. This upstream neighbor is denoted as parent
p in the ensuing discussion. For example, if node x
receives the first request message for the current
OWS from neighbor c, then neighbor c becomes the
parent of neighbor x, namely px=c. If this first request
message from c contained the path base�a�b�c,
then the path returned in node x's path_info will be
base�a�b�c�x.

The integrity of the topology data returned to the base
station by each node in its feedback message must be
protected, so that the base station is able to correctly
reconstruct the topology of the network.
Accordingly, both the list of neighbors nbr_info as
well as the path path_info to node x are protected by
the following keyed MACFeedbackx:

),

||_|_(

x

x

Keytype

OWSinfonbrofinpathMACMACF =

The MACF ensures that the base station will
construct a correct topology, though it may be
incomplete due to malicious nodes that may drop or
tamper with feedback messages. The messages that
reach the base station are guaranteed after verification
to be correct and secure from tampering. It is still
possible that a compromised node originates a
message that passes tamper inspection, but still
provides false neighbor information, i.e. omits some
neighbors. This inconsistency will be detected by the
base station after round two and prior to round three
when the compromised node's neighbor list is
compared with the neighbors listed in feedback
messages from all the neighbors of the compromised
node. It is at this point that the MACR's of each
neighbor contained in nbr_info (Figure 5d) are used
for consistency checks.

Our remaining task is to route the feedback message
from node x back to the base station. In the absence
of malicious nodes, it is straightforward for the
feedback message to follow the reverse path taken by
the request message that initiated the feedback

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 9

response. As mentioned earlier, each child node will
have already identified its parent as the first of its
upstream neighbors to send the child a request
message with the current OWS. The linked chain of
child-parent pairs creates a reverse unicast path from
node x back to the base station (multiple paths are not
available until after round three). Though it may be
more reliable to flood the feedback message back to
the base station given intruders, our design has
deliberately avoided giving sensor nodes the
capability of initiating a flooded message. This is
done to prevent global DOS attacks. Sensor nodes
are only allowed to unicast and controlled multicast
back to the base station. As a result, route feedback
messages are subject to attacks that drop unicast
packets, though the damage is again confined locally,
similar to Figure 4.

Before forwarding a feedback message, a child node
should place parent identification information into the
parent_info field of the feedback message. This
parent_info determines which of a child's upstream
neighbors is the parent who should forward the
feedback message. However, simply using the parent
address Ip doesn't require the casual attacker to have
any knowledge of the local topology nor of the
current state of the topology discovery process.
Instead, INSENS requires a child node to place its
parent's MACRp into the parent_info field. A child
node will already have on hand the MACRp of its
parent p from the parent's original request message,
i.e. from the first request message received by the
child. This MACRp is tightly linked with the current
state of the OWS request-feedback cycle, and also to
the path to the child node. Thus, the MACRp serves
a security function, in addition to an addressing
function. A casual attacker that only knows node ID's
would be unable to forward a spurious feedback
message because it won't be able to provide a valid
address of any of the upstream nodes. A more adept
intruder would have to know the up to date MACRp
corresponding to the current OWS in order to launch
an attack and have its spurious feedback message be
accepted by an upstream node.

The MACRp's addressing function selects the specific
parent from all upstream nodes to forward this
feedback message. When an upstream node hears the

local broadcast of a feedback message whose MACRp
does not match its own MACR that it originally sent
with this OWS, then that upstream node knows that it
is not the parent, and should not forward this
feedback packet. If the two MACR's match, then the
upstream node knows that it has been selected as the
child's parent and should forward the feedback
packet. In the absence of intruders, only the nodes
listed in node x's path_info will engage in forwarding
the feedback message along the reverse path back to
the base station.

The basic mechanism presented thus far for
forwarding of the feedback packet is relatively
lightweight in terms of computation at each node.
The only new computation that must be performed is
generation of the MACF by the originating node.
Intermediate nodes may have to apply the one-way
function F to an OWS that they don't recognize to
determine whether it is valid. Otherwise,
intermediate nodes don't have to recalculate a MAC
and simply engage in logic comparisons of MACR's
as well as memory copies of the new MACRp into the
parent_info field. This is the only field of the
feedback packet that is modified in transit. The
path_info and nbr info in the feedback message aren't
changed as the message is propagated back.

Having established the basic format of the feedback
message as well as the basic structure for forwarding
of the feedback message, we observe that a malicious
intruder could still launch several attacks. First, an
intruder could launch a DOS-style attack and send
multiple feedback messages to each of its upstream
neighbors. Second, an intruder could eavesdrop and
learn topology information, i.e. the identities and
MACR's of neighbors to a remote node x as well as
the path to node x. Third, an intruder could divert a
feedback message to the wrong upstream node.

To address the first DOS-style attack, we employ two
defense mechanisms. First, to prevent repetitive
transmissions of a feedback packet from the same
originating node, all nodes follow the policy of not
forwarding duplicate feedback messages. When an
intermediate node receives a feedback message
originating from a node x for the current OWS, it
checks to see if it has already seen such a message

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 10

from node x based only on the Type, OWS and
Identity (from path_info) fields. If such a message
has already been seen, then the message is not
forwarded. This limits a malicious node to sending
only one feedback message per originating node per
neighborhood. Once a child node, malicious or not,
has sent its first feedback message labeled as
originating from node x, then all of the child node's
upstream neighbors will remember that they have
seen such a message and will not forward any
subsequent feedback messages with the same
originating node and same valid OWS.

Two types of attacks can be launched against our
policy of suppressing duplicate feedback messages:
memory exhaustion attacks and rushing attacks. To
combat memory exhaustion attacks, we store only 1
bit per node to flag whether an originating ID has
been seen before; given a 16-bit address space, this
will consume 8 KB per OWS, and the node may
choose to save a history of the most recent N OWS
numbers; N=3 will consume 24 KB. If memory
trends continue, e.g. Motes currently support 128 KB
for code (not data), a malicious node will not be able
to overflow this fixed and compact memory
allocation. If needed, some other clever strategies can
further reduce this memory requirement, e.g. node
addresses can be hashed to a much smaller-sized hash
table. This hashing strategy may miss catching some
feedback messages that hash to the same value.
INSENS's defense against rushing attacks in the
feedback phase is somewhat limited. In contrast to
the request phase where a rushing attack must wait
until an up to date OWS has been received, an
intruder need not wait for the corresponding feedback
message. After receiving a valid OWS in a request,
an attack can be launched immediately on the
upstream nodes by sending false feedback messages,
in advance of any valid feedback messages, thereby
causing valid feedback packets to be dropped as
duplicates. Such an attack would however terminate
at the base station, and would be confined to a
localized portion of the network.

The second defense mechanism against DOS-style
attacks is to employ rate control to prevent
transmissions of feedback packets from many
thousands of phantom originating nodes. Note that

unlike the propagation of request messages in the first
round, a node may in fact forward many feedback
messages in the second round. A malicious child
node can exploit this to launch a DOS attack by
repeatedly sending spurious feedback messages that
contain a valid OWS number, any originating ID, and
a valid MACRp of any upstream node. An upstream
node (except the base station) has no way of
distinguishing between an authentic feedback
message and a spurious feedback message generated
in the above-mentioned way. A DOS attack in this
way will congest the path from the malicious node to
the base station. INSENS imposes a rate control
mechanism that restricts the rate at which a node may
send messages. If a malicious node attempts to send
messages at a very fast rate, the upstream (correct)
node will forward those messages only at a slower
(legitimate) rate. This will prevent congestion on all
the further upstream nodes. For example, if the
maximum sending rate allowed for a node is 1 kb/s, a
correct node will only send at 1 kb/s, irrespective of
the rate at which it receives messages from its
downstream nodes. Even if a downstream node
spoofs 1000 nodes, each sending at 1 kb/s, the
upstream node will only send at 1 kb/s, rather than
1000 kb/s.

To provide confidentiality against eavesdropping by a
malicious node, the path_info and nbr_info is
encrypted using the originating node x's secret key,
with the caveat that the identity field of the
originating node in path_info is left unencrypted.
Thus, for each feedback packet, only the Type, OWS,
parent_info MACRp, and identity of the originating
node or sender are in the clear. No topology
information in terms of path or neighbor information
is revealed to any intermediate node. The identity of
the originating node must be in plain sight so that 1)
the base station can determine to whom the topology
information in the feedback packet belongs, and 2)
duplicate feedback packets can be spotted.

INSENS's defense against diversion of a feedback
message to a "wrong" upstream node, i.e. an upstream
node that is not listed in the path contained in
path_info, is based on the principle that it doesn't
matter by which path the topology information
reaches the base station. In our current approach, an

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 11

attacker could substitute the MACR of any of its non-
parental upstream nodes. This would divert the
feedback packet away from its one valid parent. Even
if a malicious node diverts a feedback packet off of
the reverse path taken by the request packet, the
feedback packet will simply follow another path of
linked child-parent pairs that lead back to the base
station. Also, because of the broadcast nature of
wireless medium, the other upstream nodes will hear
this feedback message and will suppress any
duplicates. This prevents a malicious child node from
sending spurious feedback messages with originating
node x to each of its upstream neighbors.

The overall effect of these security mechanisms is
that a malicious node is limited in the damage it can
inflict, whether attacking by DOS attack, by not
forwarding a feedback messages or by modifying the
neighborhood information of nodes, which can be
detected at the base station. The rate-controlled DOS
attack will affect upstream nodes, but only in a
limited way. The latter two attacks will result in
some of the nodes downstream from the malicious
node not being able to provide their correct
connectivity information to the base station. Though a
malicious node could launch a battery-drain attack by
persistently sending spurious feedback messages at
the rate-controlled limit, such an attack would still
affected a limited number of upstream nodes. In
summary, a malicious node may be able compromise
a small number of nodes in its vicinity using these
attacks, as in Figure 4.

3.2.3 Third Round: Routing Table Propagation

After sending the request message in the first round,
the base station waits for a certain period of time to
collect all the connectivity information received via
feedback messages. A very important consequence of
the security mechanisms used in the first two rounds
is that the base station can glean out all the
connectivity information that has not been tampered
with. After receiving a feedback message, the base
station recomputes MACFx and verifies that there is a
match. If there is a match, then the base station
attempts to match the nodes listed as neighbors with
prior information received by the base station. The
MACR's in nbr_info received from neighbors should

be consistent with the MACR's reported back to the
base station. The MACR is proof that the neighbors
heard each others' individualized rebroadcasts of the
request message, and that phantom node identities
were not simply listed as neighbors. For example,
suppose that node y first reports back that node x is its
neighbor, and provides the MACRx contained in x's
rebroadcast of the current request message. Later,
node x's feedback message arrives at the base station.
At this point, to verify that node y is the neighbor of
x, the base station matches the MACRx reported by x
with the MACRx reported observed by y. If the two
match, then there is consistency. Further, the base
station matches the MACRy reported by y with the
MACRy observed by x. If the two match, then there
is complete agreement that the two are neighbors in
the topology.

From this connectivity information, the base station
then computes the forwarding tables of each node in
the network. In addition to being able to authenticate
the connectivity information, there are several other
advantages of this strategy of base station computing
all the forwarding tables. First, since computing
forwarding table involves additional computations,
this strategy reduces computation at the sensor nodes.
Second, since the base station has the complete
information about the network, it can do a better job
in selecting appropriate routes in terms of balancing
the routing load on the sensor nodes and using
appropriate algorithms to select redundant routes that
minimize the extent of damage a malicious node may
cause.

An important goal of INSENS is to minimize the
damage a malicious node may inflict. In particular, a
malicious node has a greater chance of inflicting
damage on nearby nodes, for example by launching a
DOS attack. So, INSENS attempts to choose two
independent paths in such a way that the nodes in the
two paths are far apart. The first path is chosen using
Dijkstra’s shortest path algorithm as described above.
The second path is computed as follows. Referencing

OWStype size Forwarding table MAC

1 216 var 16

OWStype size Forwarding table MAC

1 216 var 16

Figure 6. Routing table update message.

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 12

Figure 2, remove the set S1 of all nodes that belong to
the first path from the connectivity information.
Next, remove the set S2 of all nodes that are neighbors
of the nodes in S1. Next, remove the set S3 of all nodes
that are neighbors of the nodes in S2. Now compute a
shortest path from this updated network connectivity
information. If a path is found, it will be the second
path. If no path is found in this step, put back the
nodes of set S3 and the corresponding edges in the
network connectivity information, and compute a
shortest path. If a path is found, it will be the second
path. Again, if no path is found in this step, put back
the nodes of set S2 and the corresponding edges in the
network connectivity information, and compute a
shortest path. If a path is found, it will be the second
path. Depending on the network topology, it is
possible that no second path is found. In that case, the
current implementation of INSENS maintains only a
single path. Notice that there are other interesting
strategies possible for finding multiple redundant
paths that may not include a shortest path. One future
direction of our research is to investigate these
strategies.

After computing the redundant paths for each node,
the base station computes the forwarding tables of
each node. These forwarding tables are propagated to
the respective nodes in an breadth-first manner. The
base station first sends the forwarding tables of all
nodes that are its immediate neighbors. It then sends
the forwarding tables of nodes that are at a distance of
two hops from it, and so on. This mechanism cleverly
uses the redundant routing mechanism just built to
distribute the forwarding tables. Standard security
techniques such as those proposed in [Perrig01] can
be used to distribute these forwarding tables in a
secure manner.

The structure of these forwarding tables is described
in the next subsection. Figure 6 shows the format of
the routing table message used to propagate the
forwarding tables. Fields Type and OWS are the same
as those in the corresponding request or feedback
messages. Dest contains the address ID of the
destination node x. Size contains the length of the
message, and forwarding table contains the
forwarding table for node x. The forwarding table
entry is encrypted using the secret key of x. The MAC

contains the MAC of the complete message generated
using the secret key of x. If a routing table message is
too long, the base station can segment it and send
each segment separately.

3.3 Forwarding Data

Using the forwarding tables built in the route
discovery phase, data is forwarded from source
(sensor) nodes to the base station, and from base
station to the destination (sensor) node. A node
maintains a forwarding table that has several entries,
one for each route to which the node belongs. Each
entry is a 3-tuple: destination, source, and immediate
sender. Destination is the node id of the destination
node to which a data packet is sent, source is the node
id of the node that created this data packet, and
immediate sender is the node id of the node that just
forwarded this packet. For example, given a route
from node S to D: S�a�b�c�D, the forwarding
table of node a will contain an entry <D, S, S>,
forwarding table of b will contain an entry <D, S, a>,
and the forwarding table of c will contain an entry
<D, S, b>. The reason for including the node id of the
immediate sender in a forwarding table entry is that a
node may receive a packet with the same source and
destination node many times, because each packet is
forwarded over multiple routes. For example, if the
other route from S to D is S�e�f�g�h�D, and b
and h are neighbors, b will receive the data packet
forwarded by h, which it should not forward. This is
accomplished by including the immediate sender
field.

With forwarding tables constructed in this way,
forwarding data packets is quite simple. On receiving
a data packet, a node searches for a matching entry
(destination, source, immediate sender) in its
forwarding table. If it finds a match, it forwards
(broadcasts) the data packet.

4 IMPLEMENTATION AND PERFORMANCE

We have simulated INSENS on ns2click, a network
simulation tool that combines the ns-2 network
simulator [4] with the Click Modular Router[5].
Ns2click was developed in the Computer Science

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 13

Figure 7. Routing overhead of secure multipath
three-phase protocol versus a highly optimistic
insecure single-path one-phase protocol.

Figure 8. As transmission range decreases, the
network becomes less dense and more multi-hop,
increasing the routing table size but decreasing the
size of the feedback packet. Deviation bars are
shown. Department at the University of Colorado, Boulder,

and has been used to experiment with several routing
protocols in wireless and mobile networks. While ns-
2 is a popular network simulator that has been used
by many researchers, click is a relatively new routing
emulator developed at MIT. Ns2click provides an
easy way to develop, debug, experiment with, and
deploy network protocols, since the same Click code
can be run on an actual system as well as under the
simulator ns2.

In our simulation, we implemented our own Click
element to simulate the behavior of INSENS on
sensor nodes and the base station. Ns-2 was used to
simulate the wireless network environment, including
the MAC (Medium Access Control) protocol and the
lower layers of the wireless network, as well as the
geographic distribution of nodes.

Based on this simulation, we have analyzed four
aspects of INSENS: (1) overhead of the protocol in
terms of number of packets exchanged, packet size,
and total number of bytes transmitted, (2) its ability to
withstand malicious attacks during route discovery,
(3) withstanding malicious attacks during data
forwarding, (4) performance against DOS attacks.

4.1 Protocol Overhead

We have performed two sets of experiments to
measure the overhead of INSENS. The first set of
experiments measure the total number of packets (as
part of request, feedback, and routing update
messages) exchanged during route discovery. We
have measured this for many sensor networks

consisting of different numbers of nodes. Figure 7
plots the average number of packets exchanged
during route discovery as a function of the number of
sensor nodes in the network. For a given number of
nodes, we generated 20 different network topologies
at random. All these topologies maintain the same
node density (100 nodes per 1700 * 1700 m2). The
transmission range was set to 250 m. The average
number shown by dots in Figure 7 is the average
number of packets exchanged over these 20 different
network topologies, and the vertical lines along these
dots show the variance.

To provide a benchmark for comparison, we designed
a trivial routing protocol that has no security or
intrusion tolerance. In this protocol, the base station
sends a request message that is forwarded by all
sensor nodes exactly once. In addition, each node
records the identity of the node from which it receives
the request message first time as its parent node.
After an interval, nodes begin to send “feedback”
message to its parent node. As the feedback message
is propagated towards the base station, each sensor
node updates its forwarding table. A node forwards a
feedback message to its parent after appending its
children information. Eventually, the base station
receives feedback messages from all its neighbors and
computes the complete topology of the network. The
total number of packets exchanged in this trivial
protocol is 2N, where N is the number of sensor
nodes.

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 14

Average Histogram: Dropping Feedback Msgs

0
4
8

12
16
20
24
28
32
36

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Blocked Nodes

%
 o

f
N

o
d

es

Passive Attack

Active Attack

Figure 9. For a given topology of 100 nodes, each node becomes the intruder dropping the feedback messages,
and the # of blocked nodes is counted. This creates a histogram. We generate 20 such topologies and plot the
averaged histogram.

We compare INSENS with this trivial protocol in
Figure 7. It is clear that INSENS sends more packets
than the trivial protocol, and the difference increases
with increasing numbers of nodes in the network.
This difference is attributed to the overhead involved
in dealing with security and intrusion-tolerance
issues.

In the second set of experiments, we measure the
effect of node connectivity on protocol overhead. To

do this, we deploy 100 nodes in a 2300300 m× area
and generate a node layout at random. We change the
connectivity of the nodes by changing the
transmission range from 250m to 40m. Note that a
larger transmission range implies higher connectivity.
We have measured the size of feedback and routing
update packets in these experiments. Figure 8 plots
these packet sizes averaged over 20 different
topologies as a function of transmission range. For
both types of messages, we report the average packet
size, and average of the largest packets over the 20
topologies. This figure shows that as the node
connectivity increases, the feedback packet size
increases and the routing update packet size
decreases. The reason for increase in feedback packet
size is that with increase in node connectivity, the
size of neighbor-union increases; each node has more
number of neighbors. The reason for decrease in the
routing update packet size is that with increase in
node connectivity, the distance between a node and
the base station becomes smaller. As a result, the

number routes to which a node belongs also becomes
smaller.

4.2 Malicious Attacks during Route Discovery

As mentioned in Section 3, a malicious node may be
able to compromise a small set of nodes in its vicinity
during route discovery. We performed a set of
experiments to measure the extent of damage a
malicious node can cause during route discovery. We
have simulated two types of attacks a malicious node
may launch. In the passive attack, a malicious node
either drops feedback messages or modifies the
neighbor information in the feedback message before
forwarding (recall that this tampering is later on
detected by the base station). The effect of passive
attack is that some of the nodes may not be able to
convey their connectivity information to the base
station and hence will not be included in the network
topology constructed by the base station.

In the active attack, a malicious node launches a man-
in-the-Middle attack. Using this attack, a malicious
node may lead two of its neighbors to believe that
there is a direct link between them. This attack is a
special case of a wormhole attack, in which an
attacker creates a tunnel between two nodes to
mislead neighbors and/or inject false packets. Note
that a man-in-the-middle attack can be avoided by a
clever mac-layer design. Figure 9 reports the
maximum damage a malicious node may cause by

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 15

1 path vs. 2 paths (100 nodes)

0

10

20

30

40

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40
of Attacking Nodes

%
 o

f
B

lo
ck

ed
 N

o
d

es

one path

tw o paths
1 path vs. 2 paths (200 nodes)

0

10

20

30

40

50

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

of Attacking Nodes

%
 o

f
B

lo
ck

ed
 N

o
d

es

one path

tw o paths

Figure 10. Multi-node attack on a sensor network that has secure single path and multipath routing. Left graph
shows 100 nodes, and right graph shows 200 nodes. X axis: # of attacking nodes. Y axis: # blocked nodes unable
to send packets. This passive attack corresponds with tolerating faulty nodes.

launching active and passive attacks. The x-axis in
this graph records the maximum number of nodes that
may be compromised by a single malicious node, and
the y-axis records the number of such (malicious)
nodes. For example, the red/dark bar on x-axis with
value=6 shows that there are four nodes in the
network, such that if any of these four nodes turns
malicious and launches an active attack, it can
compromise a maximum of 6 nodes in its vicinity.

The numbers reported in this figure are averaged over
100 different randomly generated topologies of 100

nodes distributed over a 220002000 m× space. In
case of active attack, we have calculated this damage
by counting all the nodes downstream from the
malicious node, its neighbors, and the neighbors’
downstream nodes. In case of passive attack, we have
calculated this damage by counting all the nodes
downstream from the malicious node.

From this figure, we can see that an active attack
compromises more nodes than the passive attack, and
a significant majority of the nodes can compromise
only a small number of nodes. For example, 75% of
the nodes can only compromise less than 4 nodes
using a passive attack.

4.3 Malicious Attacks during Data Forwarding

INSENS builds multiple paths to bypass malicious
nodes. With two independent routes available

between every node and the base station, our
protocol's goal is to route messages correctly in the
presence of a single malicious node. Interestingly,
our protocol deals quite well with multiple malicious
nodes as well. We have performed a set of
experiments to measure the number of nodes that can
be blocked when a set of multiple nodes turn
malicious and drop data packets. Figure 10 shows the
average number of nodes that can be blocked as a
function of the number of malicious nodes. For
comparison, we have also calculated this number
when a single-path routing algorithm is used instead.

These results are based on a network of 100 nodes
and 200 nodes randomly distributed over a

215001500 m× space. The numbers reported in this
figure are averaged over 50 different combinations of
nodes randomly selected to be malicious. For
example, for 10 malicious nodes, we measured the
number of blocked nodes for 50 different
combinations selected randomly of 10 nodes turning
malicious. For each test, 20 random topologies were
chosen.

This figure shows that INSENS does reduce the
number of nodes that can be blocked over a single-
path routing protocol. Also, even when a relatively
large number of nodes are malicious, only a relatively
small number of nodes are blocked. For example, in
both tests, when 10% of nodes turn malicious, they

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 16

Random (2560X2560m2)

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70

% of Blocked Nodes

%
 o

f
N

o
d

es

one path
two paths

Grid (2860X2860m2)

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70
% of Blocked Nodes

%
 o

f
N

o
d

es

one path
two paths

Random (1280 X 1280 m2)

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

% o f B lo cked N o des

%
 o

f
N

o
d

es

one path
two paths

Grid (1430 X 1430m2)

0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50 55 60 65 70
% of Blocked Nodes

%
 o

f
N

o
d

es

one path
two paths

Figure 11. The histogram of DOS simulation with single and multiple paths. Each node becomes the DOS
intruder, and the percentage of other blocked nodes is counted given secure single-path and multipath routing.
This generates a histogram per topology. For both random and grid topologies, we generate 50 such topologies
and plot the averaged histogram.

can block only another 10% or less number of nodes
in the network.

4.4 DOS Attacks

Finally, we have performed a set of experiments to
analyze the effect of DOS attacks that a malicious
node may launch. The DOS attack we have simulated
in these experiments is comprised of repeatedly
sending data packets to the base station to block the
wireless medium and not allow other nodes to send
their data packets. DOS attacks are difficult to
address completely at the network level. In our
opinion, these attacks must be addressed at multiple
levels. In our analysis, we have assumed the
following: (1) Sensor nodes use an appropriate rate-
based control mechanism while forwarding data
packets. This implies that a malicious node that
repeatedly sends data packets will be able to block its

neighbors, but not other (upstream) nodes. (2) The
base station has sufficiently large bandwidth available
so that a malicious sensor node in its vicinity cannot
block the base station by using a DOS attack.

Figure 11 shows the damage a malicious node may
cause by launching a DOS attack. The damage caused
by a DOS attack depends on the effectiveness of
multipath routing, the density of interconnection of
the sensor network, and the topology of the graph. In
this experiment, two network densities (sparse and
dense) and two topologies (random and grid) are
tested. In random generated topologies, the position
of each node is randomly selected, and the base
station is positioned in the center. The total number of
nodes is 200. In the grid topology, each node is
placed on a square grid. To accommodate the
simulator, it was necessary to perturb each position to
a small region around each vertex in a square grid

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 17

graph. In this way, random topologies could be
generated even for a nearly uniform square grid. The
total number of nodes is 195.

Figure 11 reveals the performance of INSENS against
this type of DOS attack. The x-axis records the
percentage of nodes that may be blocked by DOS
attack launched by a single malicious node, and y-
axis records the percentage of such (malicious) nodes.
From this figure, we can see that the protection
against DOS attacks varies significantly across
different network densities and different topologies.
As expected, in all cases, the multipath algorithm
provides better protection against DOS attacks than
the single path approach. The multipath approach
performs far better than single path for the grid
topology, because the grid nearly always offers a
valid redundant second path. The best performance
of the multipath approach is obtained for sparse grids
(upper right graph), where 85% of intruder nodes are
limited to blocking five or fewer nodes. The
sparseness limits an intruder to blocking only a few
nodes, while the grid almost always offers the sender
a valid secondary path. The worst performance of the
multipath approach is obtained for sparse random
topologies (upper left graph), in which nodes have
few neighbors and there are few alternative paths
(usually only one path) to the base station. This
prohibitively limits the multipath approach, which
performs only slightly better than single path routing
in this case.

As the network becomes denser, moving from the top
row of graphs to the bottom row in Figure 11,
attackers are able to block increasing numbers of
nodes, and the histograms shift to the right. This is
true for both random and grid topologies.

5 CONCLUSIONS

In this paper, we have developed INSENS, a secure
and INtrusion-tolerant routing protocol for wireless
SEnsor NetworkS. Redundant multipath routing
improves intrusion tolerance by bypassing malicious
nodes. INSENS operates correctly in the presence of
(undetected) intruders. To address resource
constraints, computation on the sensor nodes is
offloaded to resource-rich base stations, e.g.

computing routing tables, while low-complexity
security methods are applied, e.g. symmetric key
cryptography and one-way hash functions. The scope
of damage inflicted by (undetected) intruders is
further limited by restricting flooding to the base
station and by having the base station order its
packets using one-way sequence numbers. An
important property of INSENS is that while a
malicious node may be able to compromise a small
number of nodes in its vicinity, it cannot cause wide-
spread damage in the network. Performance
measured from a prototype implementation using the
ns2click simulation tool shows that INSENS tolerates
malicious attacks launched by intruder nodes, and
functions correctly over a variety of sparse, dense,
random and grid topologies despite intrusions.

6 REFERENCES
[Awerbuch02] B. Awerbuch, D. Holmer, C. Nita-Rotaru
and H. Rubens, "An On-Demand Secure Routing Protocol
Resilent to Byzantine Failures," ACM Workshop on
Wireless Security (WISE) 2002, pp. 21-30.

[Bellare96] M. Bellare, R. Canetti and H. Krawczyk,
"Keying hash functions for message authentication,
"Advances in Cryptology -- CRYPTO '96, Lecture Notes in
Computer Science, vol. 1109, Springer-Verlag, 1996, pp. 1-
-15.

[Broch98] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J.
Jetcheva, ``A Performance Comparison of Multi-Hop
Wireless Ad Hoc Network Routing Protocols.'' Proc. of
MobiCom '98, Oct. 1998, pp. 85-97.

[Click] Click Web Site, http://www.pdos.lcs.mit.edu/click/.

[Ganesan02] D. Ganesan, R. Govindan, S. Shenker and D.
Estrin, "Highly Resilient, Energy Efficient Multipath
Routing in Wireless Sensor Networks," Mobile Computing
and Communication Review (MC2R) Vol 1., No.2. 2002.

[HuMobi02] Y. Hu, A. Perrig, D. Johnson, "Ariadne: A
Secure On-Demand Routing Protocol for Ad Hoc
Networks," Proceedings of the Eighth Annual International
Conference on Mobile Computing and Networking
(MobiCom 2002).

[HuTech02] Y. Hu, A. Perrig, D. Johnson, "Rushing
Attacks and Defense in Wireless Ad Hoc Network Routing
Protocols," Technical Report TR01-384, Department of
Computer Science, Rice University, June 2002.

[HuWMCSA02] Y. Hu, D. Johnson, A. Perrig, "SEAD:
Secure Efficient Distance Vector Routing for Mobile
Wireless Ad Hoc Networks," Fourth IEEE Workshop on

University of Colorado, Department of Computer Science Technical Report CU-CS-939-02

 18

Mobile Computing Systems and Applications (WMCSA
'02).

[Johnson96] D. Johnson and D. Maltz. "Dynamic Source
Routing in Ad Hoc Wireless Networks," In Mobile
Computing, edited by Tomasz Imielinski and Hank Korth,
Chapter 5, pages 153-181, Kluwer Academic Publishers,
1996.

[Kong01] J Jiejun Kong, P. Zerfos, H. Luo, S. Lu, Lixia
Zhang, "Providing Robust and Ubiquitous Security Support
for Mobile Ad-Hoc Networks," International Conference on
Network Protocols (ICNP 2001).

[NAI] NAI Lab, http://www.nai.com/nai_labs/asp_set/

crypto/crypt_senseit.asp.

[NS] NS2 Web Site, http://www.isi.edu/nsnam/ns/.

[ns2click] NS2Click software simulator Web Site,
http://systems.cs.colorado.edu/Networking/ns2click.html.

[Papadimitratos02a] P. Papadimitratos, Z. Haas, E. Sirer,
"Path Set Selection in Mobile Ad Hoc Networks," The 3rd
ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 2002).

[Papadimitratos02b] P. Papadimitratos, Z. Haas, "Secure
Routing for Mobile Ad hoc Networks," Proceedings of the
SCS Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS 2002).

[Pathak02] Pathak, Iftode, "Byzantine Fault Tolerant
Authentication," Poster at ACM WISE Workshop, 2002.

[Perrig00] A. Perrig, R. Szewczyk, V. Wen, A. Woo,
"Security for SmartDust Sensor Network,"
http://www.cs.berkeley.edu/~vwen/classes/f2000/cs261/pro
ject/sensor_security.html .

[Perrig01] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D.
Tygar, "SPINS: Security Protocols for Sensor Networks,"
Proceedings of Seventh Annual International Conference on
Mobile Computing and Networks MOBICOM 2001, July
2001.

[Rivest92] R.Rivest. "The MD5 Message-Digest
Algorithm." Request For Comments: 1321, April 1992.

[Royer99] E. Royer, C. Toh, "A Review of Current
Routing Protocols for Ad Hoc Mobile Wireless Networks,"
IEEE Personal Communications, vol. 6 no. 2, April 1999.

[Zhang98] K. Zhang. "Efficient protocols for signing
routing messages." In Proceedings of the Symposium on
Network and Distributed Systems Security (NDSS '98), San
Diego, California, March 1998.

[Zhou99] L. Zhou and Z. J. Haas, "Securing Ad Hoc
Networks," IEEE Network Magazine, vol. 13, no.6,
November/December 1999.

