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ABSTRACT 

This paper describes an INtrusion-tolerant routing protocol 
for wireless SEnsor NetworkS (INSENS). INSENS 
constructs forwarding tables at each node to facilitate 
communication between sensor nodes and a base station. It  
minimizes computation, communication, storage, and 
bandwidth requirements at the sensor nodes at the expense 
of increased computation, communication, storage, and 
bandwidth requirements at the base station.  INSENS does 
not rely on detecting intrusions, but rather tolerates 
intrusions by bypassing the malicious nodes.  An important 
property of INSENS is that while a malicious node may be 
able to compromise a small number of nodes in its vicinity, 
it cannot cause widespread damage in the network. A 
prototype implementation in the ns2click simulator is 
presented to demonstrate and assess INSENS's tolerance to 
malicious attacks launched by intruder nodes in random and 
grid topologies. 

 
Keywords: Wireless sensor networks, multi-path 
routing, intrusion tolerance, security, resource 
constraints. 
 

1 INTRODUCTION 
 
Wireless sensor networks (WSNs) are rapidly 
emerging as an important new area in mobile 
computing research.  Applications of WSNs are 
numerous and growing, and range from indoor 
deployment scenarios in the home and office to 
outdoor deployment scenarios in natural, military and 
embedded environments.  For military environments, 
dispersal of WSNs into an adversary’s territory 
enables the detection and tracking of enemy soldiers 
and vehicles.  For home/office environments, indoor 
sensor networks offer the ability to monitor the health 
of the elderly and to detect intruders via a wireless 
home security system.   

 

In each of these scenarios, lives and livelihoods may 
depend on the timeliness and correctness of the 
sensor data obtained from dispersed sensor nodes.  As 
a result, such WSNs must be secured to prevent an 
intruder from obstructing the delivery of correct 
sensor data and from forging sensor data.  To address 
the latter problem, end-to-end data integrity 
checksums and post-processing of sensor data can be 
used to identify forged sensor data.  This paper 
focuses on the former problem and develops a secure 
routing system to address the issue of obstructing 
packet delivery, which is an acute problem in sensor 
networks since each individual node can be easily 
compromised and thereby lead to the entire sensor 
network being compromised. 

 
The design and implementation of secure WSNs must 
simultaneously address several difficult research 
challenges.  First, wireless communication among the 
sensor nodes increases the vulnerability of the 
network to eavesdropping, unauthorized access, 
spoofing, replay and denial-of-service (DOS) attacks.  
Second, the sensor nodes themselves are highly 
resource-constrained in terms of limited memory, 
CPU, communication bandwidth, and especially 
battery life.   These resource constraints limit the 
degree of encryption, decryption, and authentication 
that can be implemented on individual sensor nodes, 
and call into question the suitability of traditional 
security mechanisms such as compute-intensive 
public-key cryptography for such resource-
constrained sensor nodes.  Third, WSNs face the 
added physical security risk of individual sensor 
nodes falling into the wrong hands.  Sensor nodes that 
are physically deployed in the field can be obtained 
by an intruder, and can then be subject to attacks from 
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the potentially well-equipped intruder in order to 
compromise a single resource-poor node.  Following 
a successful attack, a compromised sensor node could 
then be used to instigate such malicious activities as 
advertising false routing information, possibly 
unbeknownst to the sensor network, and launching 
DOS attacks from within the sensor network.   

 
The combined threats introduced by increased 
physical security risk and severe resource constraints 
motivate the following design philosophy to achieve 
secure WSNs: concede that a well-equipped intruder 
can compromise individual sensor nodes, but secure 
the overall design of the WSN so that these intrusions 
can be tolerated and the network as a whole remains 
functioning despite such localized intrusions.  More 
precisely, our objective is the design of intrusion-
tolerant secure WSNs that have the property that a 
single compromised node can only disrupt a localized 
portion of the network, and cannot bring down the 
entire sensor network.  This design objective of 
intrusion tolerance for secure WSNs must provide 
protection against two classes of attack that could 
bring down an entire sensor network: DOS-type 
attacks that flood data packets to the entire network; 
and routing attacks that propagate erroneous control 
packets containing false routing information 
throughout the network.   
 
Intrusion tolerance can be designed to take advantage 
of a common architecture found in WSNs, namely the 
asymmetric architecture pictured in Figure 1.  A base 
station functions as a gateway, e.g. an uplink to a 
satellite or a bridge between the wireless world of the 
WSN and the wired infrastructure seeking to process 
and mine the sensor data.  Such a base station 
typically has more resources in terms of power, 
computation, memory, and bandwidth than the 
individual sensor nodes.   
 
To achieve intrusion tolerance given an asymmetric 
topology and resource constraints, this paper presents 
an INtrusion-tolerant routing protocol for wireless 
SEnsor NetworkS (INSENS).  The INSENS secure 
routing system adheres to the following high-level 
design principles.  First, to prevent DOS-style 
flooding attacks, the type of communication is 
constrained.  Individual nodes are not allowed to 
broadcast to the entire network.  Only the base station 
is allowed to broadcast.  We describe later on how 

authentication of the base station is achieved via one-
way hashes, so that individual nodes cannot spoof the 
base station and thereby flood the network.  For 
unicast packets, nodes must first communicate 
through the base station, allowing the base station to 
act as a packet filter to prevent DOS via a single 
node.  INSENS is similarly resilient to distributed 
DOS or DDOS, because multiple nodes will also not 
be able to broadcast to the entire network.  Second, to 
prevent advertisement of false routing data, control 
routing information must be authenticated.  A key 
consequence of this approach is that the base station 
always receives correct partial knowledge of the 
topology.  Though the base station may not receive all 
of the topology discovery information, due to 
localized intrusions, the picture of the network that 
the base station is able to construct is nevertheless 
correct.  Third, to address resource constraints, 
INSENS follows two design decisions: symmetric key 
cryptography is chosen for confidentiality and 
authentication between the base station and each 

resource-constrained sensor nodes, since it is 
considerably less compute-intensive than public key 
cryptography; and, the base station is chosen as the 
central point for computation and dissemination of 
the routing tables.  Fourth, to address the notion of 
compromised nodes, redundant multipath routing is 
built into INSENS to achieve secure routing.  The 
paths are designed to be disjoint, so that even if an 
intruder takes down a single node or path, secondary 

 
 

Figure 1.  Sample asymmetric WSN topology over 10 
sensor nodes with multiple paths to the base station. 
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paths will exist to forward the packet to the correct 
destination. 
 
In the remainder of the paper, we address related 
work in Section 2, provide a detailed description of 
the INSENS system in Section 3, present 
implementation and experimental analysis of INSENS 
in Section 4, and conclude the paper. 
 
2 RELATED WORK 
 

Sensor network security is a critical issue in sensor 
network research [Perrig00, NAI]. Ganesan et al 
propose a redundant "multipath" routing approach for 
a sensor network [Ganesan02] in order to provide 
fault tolerance and reliable data dissemination. Every 
node can have multiple paths to another node. Two 
kinds of multipath are studied: disjointed paths, and 
braided paths. DPSP [Papadimitratos02a] provides a 
fast multipath routing algorithm, based on a novel 
heuristic that picks a set of highly reliable paths. For 
our approach, multipath routing is useful to combat 
intrusions or malicious nodes, but is tightly integrated 
into a complete secure routing system capable of also 
ensuring authentication and data integrity. 
 

Security and intrusion tolerance approaches based on 
Byzantine fault tolerance have been proposed 
[Awerbuch02, Pathak02]. For example, a mechanism 
for distributed authentication that can tolerate 
Byzantine faults has been proposed [Pathak02]. It 
involves a distributed system of mutually 
authenticating semi-trusted parties. While this 
mechanism is well-suited for mobile networks, its 
computational requirements limits its utility for 
resource-constrained WSNs. Byzantine fault-
tolerance algorithms typically require significant 
computation and communication. 
 

In the field of ad hoc wireless networking [Broch98, 
Royer99], previous work on secure routing employs 
public key cryptography to perform authentication 
([Kong01, NAI, Papadimitratos02b, Zhou99, 
Zhang98]). Unfortunately, resource constraints in 
sensor network limit the applicability of these current 
public/asymmetric key standards.  

 

SPINS addresses secure communication in resource-
constrained sensor networks, introducing two low-
level secure building blocks, SNEP and µTESLA 
[Perrig01].  A brief example of secure basic routing 
with these building blocks is described.  We leverage 
some of these concepts to implement intrusion-
tolerant multi-hop routing for WSNs.  For example, 
we utilize keyed message authentication codes 
(MAC) similar to SNEP to verify the integrity of 
control packets.  Keyed MAC's are vital for verifying 
the integrity of topology information delivered to the 
base station.  We also employ the concept of a one-
way hash chain seen in µTESLA, but use the chain to 
provide one-way sequence numbers for loose 
authentication of the base station, rather than as the 
key release mechanism seen in SPINS.  One-way 
sequence numbers are essential for limiting a variety 
of DOS and rushing attacks, as described later. 

 

Instead of a public/private key system, SEADS 
[HuWMCSA02] and Ariadne [HuMobi02] use 
symmetric cryptography, a one-way hash function, 
TESLA [Perrig01], and MACs to build secure 
wireless network routing.  SEADS proposes a secure 
mechanism on top of DSDV. The paper utilizes 
secure one-way hash chains to authenticate metric 
and sequence numbers. The shared secret key 
between neighbor nodes is used to authenticate 
neighbors.  Ariadne provides a secure routing 
mechanism built on top of DSR [Johnson96].  Three 
kinds of mechanisms, e.g. shared secret keys, TESLA, 
and digital signatures, are proposed for 
authentication.  TESLA is used to authenticate the 
path between two nodes.  Ariadne proposes to use 
multipath to thwart the effects of routing 
misbehavior. The multipath is a byproduct of standard 
DSR. These two protocols propose mechanisms to 
build routes between two peer nodes in ad hoc 
wireless networks.  

 

In contrast to a peer-based routing architecture, 
INSENS constructs network routing for an 
asymmetric or hierarchical architecture consisting of 
a base station and sensors.  As a result, INSENS's 
protocol and security architecture are far different.  In 
INSENS, each node shares a secret key only with the 
base station, and not with any other nodes.  This has 
the advantage in case a node is compromised that an 
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intruder will only have access to one secret key, 
rather than the secret keys of neighbors and/or other 
nodes throughout the network.  In addition, setting up 
keys is straightforward in INSENS; each node needs 
to be programmed with only one secret key for 
authenticating itself to the basestation, and one initial 
key for authenticating the basestation to each node.  
The request-response cycle of INSENS's route 
discovery phase follows the basic paradigm of the 
DSR protocol's Route Discovery process.  Our 
contribution is to make such a paradigm secure in a 
resource-constrained wireless sensor network. 

 

3 PROTOCOL DESCRIPTION 
 

3.1 Design Principles 
 

We have designed and implemented a secure and 
INtrusion-tolerant routing protocol for wireless 
SEnsor NetworkS (INSENS).  As noted in Section 1, 
INSENS's design is based on three principles: 
 

• Exploit redundancy to tolerate intrusions 
without any need for detecting the node(s) 
where intrusions have occurred. INSENS 
operates correctly in the presence of 
(undetected) intruders. 

• Perform all heavy-duty computations at the 
base station(s), and minimize the role of 
sensor nodes in building routing tables, or 
dealing with security and intrusion-tolerance 
issues. INSENS minimizes computation, 
storage, and bandwidth requirements at the 
sensor nodes. 

• Limit the scope of damage done by 
(undetected) intruders by limiting flooding 
and using appropriate authentication 
mechanisms. INSENS uses symmetric-key 
cryptography to implement these 
mechanisms. 

 

The first principle addresses the fundamental problem 
of the difficulty of detecting intrusions in a timely 
manner in sensor networks.  The values of some of 
the important parameters, such as normal usage and 
communication patterns, needed for (anomaly-based) 
intrusion detection are typically not known in 
advance in a sensor network, particularly in a critical 

scenario.  Determining these values is time-
consuming, and the presence of intruders can make it 
extremely difficult to determine these values.  Thus, 
anomaly-based intrusion detection techniques cannot 
be used to detect intrusions. Furthermore, signature-
based intrusion detection techniques cannot be 
fruitfully employed here due to a lack of any 
experience with most sensor-network based 
applications and the types of attacks that may be 
launched. 

 

Rather than rely on traditional intrusion-detection 
techniques, INSENS's strategy is to design a routing 
mechanism that is intrusion-tolerant.  The building or 
updating of correct routing tables and the correct 
delivery of messages are performed in a manner that 
is robust to the presence of a small number of 
undetected intruders. 

 

INSENS incorporates redundancy in routing to 
bypass intruders while routing messages. As shown in 
Figure 2, multiple routes are derived between each 
source and destination.  These paths are independent 
of one another in the sense that they share as few 
common nodes/links as possible; ideally, only the 
source and the destination nodes are shared among 
paths.  Each message sent from a source to a 
destination is sent multiple times, once along each 
redundant path.  The presence of one or more 
intruders along some of these paths can jeopardize the 
delivery of some of the copies of a message.  
However, as long as there is at least one path that is 
not affected by an intruder, the destination is will 
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Figure 2: The multipath routing policy selects a 
second path (red) that shares as few common nodes 
with the first path (black) as possible.  
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receive at least one copy of the message that has not 
been tampered with.  Notice that this approach works 
despite the presence of (undetected) intruders.   
 
In Figure 2, the first path between the base station B 
and the node a is chosen as the shortest path.  The 
area shaded gray surrounding the first path consists of 
all nodes that could be affected by a malicious 
intruder.  For example, a malicious node m is shown 
as the neighbor to a node on the first path.  Such a 
node m could disable both a node on the first path as 
well as its own north-south-east-west neighbors.  As a 
result, the set of nodes (gray area in Figure 2) that 
should be removed from consideration for the second 
path consist of all nodes in the first path between the 
source and destination, all of their neighbors, and all 
of their neighbors' neighbors.  A valid second path is 
shown avoiding the first path's set of affected nodes. 
 
An important issue here is enabling a destination 
node to determine which received copies of a 
message are original, and which have been tampered 
with.  This can be addressed by leveraging 
appropriate confidentiality, integrity, and 
authentication mechanisms [Perrig01] while 
exchanging messages. 
 

The second principle addresses the issue of resource 
constraints in sensor networks.  INSENS takes 
advantage of the asymmetric topology of the WSNs.  
Since base stations in sensor networks are resource 
rich, and sensor nodes are resource constrained, our 
protocol minimizes the use of important resources 
such as CPU, memory, bandwidth or power at the 
sensor nodes at the expense of increased computation, 
communication, storage and power requirements at 
the base stations.  The overall structure of the 
protocol for building forwarding table for each node 
follows three phases.  The base station first sends out 
a request message, then collects topology information 
from all sensor nodes, and finally computes and 
downloads the routing tables (including redundant 
paths) into each node.  This reduces the role of the 
sensor nodes to simply conveying the appropriate 
(local) topological information to the base station. 

 

The third principle addresses the issue of damages an 
(undetected) intruder may cause while the routing 
table is being built. Clearly, if sufficient care is not 

taken, intruders can provide false connectivity 
information or advertise incorrect routes that will 
result in building incorrect routing tables. Also, 
intruders can launch DOS attacks by repeatedly 
sending many copies of the same message, or by 
sending spurious messages. This may delay 
indefinitely and even prevent the building of routing 
tables. INSENS employs the one-way authentication 
mechanism proposed in [Perrig01] to authenticate any 
information sent by the base station, and appropriate 
integrity mechanisms to ensure that any tampering 
with the information being exchanged can be detected 
by the intended receiver. Tamper detection ensures 
that the base station is able to glean out the correct 
(untampered) information from all the messages it 
receives from sensor nodes.  In addition, INSENS 
limits flooding of messages by allowing 
communication only between the base station and the 
sensor nodes, and by having sensor nodes drop 
duplicate messages. These techniques essentially 
limit the damage an intruder may cause. Together, 
these design choices ensure that an intruder may be 
able to take out a small part of the network, but 
cannot compromise the entire network. 

  

3.2 Route Discovery 
 

Route discovery ascertains the topology of the sensor 
network and builds appropriate forwarding tables at 
various nodes. Route discovery is performed in three 
rounds. In the first round, the base station floods 
(limited flooding) a request message to all the 
reachable sensor nodes in the network. In the second 
round, sensor nodes send their (local) topology 
information using a feedback message to the base 
station. In the third round, the base station computes 
the forwarding tables for each sensor node based on 
the information received in the second round and 
sends them to the respective nodes using a routing 
update message.  

 
3.2.1 First Round: Route Request 
 

The base station initiates the first round whenever it 
needs to construct the forwarding tables of all sensor 
nodes. This can be in the beginning when the network 
has just been established, or when the network may 
have changed substantially due to node mobility.  The 
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Figure 3. Route request format 

base station broadcasts a request message that is 
received by all its neighbors.  A sensor node that 
receives a request message for the first time in turn 
broadcasts a request message. A request message 
broadcast by a node x includes a path from the base 
station to x. When a node receives a request message 
for the first time, it forwards (broadcasts) this 
message after appending its identity in the path. It 
also records the identity of the sender of this message 
in its neighbor set. When a node receives duplicate 
request messages, the identity of the sender is added 
to its neighbor set, but the duplicate request is not 
rebroadcast. 

 
Propagation of request messages in this way serves 
three purposes: (1) it informs all sensor nodes that the 
base station is collecting topology information to 
build forwarding tables, (2) it aids in constructing a 
path from each sensor node to the base station that is 
used in the second round to forward feedback 
messages to the base station, and (3) a node receiving 
a request message learns that the sender of that 
message is its neighbor. 

 
A malicious node in the network can attempt to 
launch several attacks in this round. First, it can 
attempt to spoof the base station by sending a 
spurious request message. Second, it can include a 
fake path in the request message it forwards. Third, it 
may not forward a request message, or launch a DOS 
attack by repeatedly sending several request 
messages. We use two mechanisms to counter these 
attacks. Both of these mechanisms require sensor 
nodes to be pre-configured with appropriate values. 

 

First, we leverage the concept of one-way sequences 
proposed by the µTESLA protocol [Perrig01] to 
identify a request message initiated by the base 
station and to restrict DOS-style flooding attacks.  
The base station generates a sequence of numbers 

kk nnnnn ,,...,,, 1321 − , such that )(1 ii nFn =+ , where 
F  is a one-way function, ki <<0 , and 1n  is 
chosen randomly.  F has the property that it is 
computationally infeasible to compute 1−kn in a 
limited time by knowing kn and F .  All sensor nodes 
are pre-configured with function F and value kn . The 
base station transmits 1−kn (called a One-Way 
Sequence (OWS) number) in the first request message 
as shown in Figure 3.  When the base station needs to 
construct forwarding tables again, the second request 
message originated by the base station will be 
assigned an OWS2=nk-2.  The i'th request message will 
be assigned OWSi=nk-i.  All nodes forwarding the i'th 
request message repeat OWSi in the header.  A sensor 
node receiving the i'th request message will compute 
Fj(OWSi) for j=1,2,…,J, where Fj(#) = F(F(...F(#)) 
applied j times.  A sensor node will have saved the 
most up to date or freshest OWSfresh that it has seen 
from the base station.  If OWSfresh is within J 
applications of the function F to OWSi from the i'th 
request message, then Fj(OWSi)= OWSfresh for some j.  
This match enables the sensor node to verify that only 
the base station could have generated this OWS.  If 
there is not a match, then the packet is deemed 
spurious and is not forwarded.  This policy prevents 
propagation of spurious messages.  Also, messages 
whose OWS is older than OWSfresh are not forwarded.  
This policy prevents a node from flooding the 
network with out of date messages.  For example, 
when a sensor node receives the first request 
message, it will compare F(OWS1) with OWSfresh = 
nk.  If there is a match, then the node knows that only 
the base station could have produced this next OWS 
in the sequence.  Otherwise, the message is deemed 
spurious and is not forwarded. 

 

A malicious node cannot generate the next OWS 
number in the sequence.  This restricts the ability of a 
malicious node to spoof the base station.  An arbitrary 
sensor node cannot therefore flood a new request 
message.  As mentioned earlier, an intruder is also 
prevented from flooding old request messages.  
However, it remains possible that a malicious node 
could flood a modified request message using the 
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Figure 4.  The damage inflicted by a malicious 
node m is confined to a localized portion of the 
sensor network, i.e. nodes downstream from m and 
downstream from m's  neighbors. 

current OWS from a valid request message just sent 
out by the base station.  In such an attack, called a 
rushing attack [HuTech02], an attacker tries to 
propagate a spurious message before the base station 
can propagate its own valid message.  Our defensive 
countermeasures confine such an attack to the local 
subtree of nodes below the malicious node.  In such 
an attack, the intruder must first wait to hear the 
current OWS from the base station before launching 
its own attack.  Since duplicate requests (same OWS) 
are not rebroadcast, nodes in the tree that are closer to 
the base station than the malicious node will receive 
the valid request message first.  These nodes will 
drop the intruder's spurious request messages 
received later.  Moreover, an attacker is restricted to 
sending only one such request message per OWS, 
since neighboring nodes will forward a request 
message as defined by its OWS exactly once.  A 
malicious node cannot launch a DOS attack by 
sending multiple request messages.  Of course, the 
attacker could pack a long fake path into its only 
spurious request message.  Regardless, as shown in 
Figure 4, the damage of flooding a spurious request 
message is locally confined to the nodes nearest to 
and downstream from the intruder.  In the figure, it is 
assumed that the rest of the network hears the valid 
request message from the basestation first. 

 

The second mechanism that we use to defend against 
intrusions, in addition to the one-way sequences, is a 
keyed MAC algorithm.  Each sensor node is 
configured with a separate secret key that is shared 
only with the base station.  Before forwarding a 
request message, a node x generates a 16-byte 
MACRequest (MACRx) by applying a keyed MAC 
algorithm.  This MAC is applied to the complete path 
consisting of the current node x's identity appended to 
the path from the incoming request message.  This 
16-byte field is compatible with standard 128-bit 
MAC algorithms and its overhead is incurred only 
during the route discovery phase.  The correctness of 
INSENS is not dependent on a specific MAC length.  
Though increased memory will be needed to store 
multiple 16-byte MAC's, the current ATMEL 
processors for the Motes support 128 KB of memory, 
up from the 8 KB that was the design constraint for 
SPINS [Perrig01].  Also, another design constraint of 
the Mote architecture is the 30-byte length of each 
packet.  We assume that future sensor architectures 

will be able to accommodate variable-length packets 
with the above MAC lengths. 

 

The secret key of the node is used to generate the 
following MACR: 

),||( xx KeytypeOWSpathsizeMACMACR =  

where "|" denotes concatenation.  This MACR is 
included in the request message as shown in Figure 
3(a).  It is used to check the integrity of the path in 
the second round when the nodes receiving the 
request message need to forward a feedback message 
to the base station along this path (in the reverse 
direction).  As we shall see, a fake path included by a 
malicious node cannot be verified in the absence of a 
correct MAC as the feedback message is forwarded 
towards the base station, and as a result, the spurious 
feedback message will be dropped. 

 

The overall effect of these security mechanisms is 
that a malicious node can attack in the first round 
only by localized flooding, by not forwarding a 
request message, and by sending fake path in the 
request which is later on detected in the second 
round.  The latter two attacks will result in some of 
the nodes downstream from the malicious node not 
getting a request message or not being able to forward 
their feedback message to the base station in the 
second round. Again, a malicious node may be able to 
compromise a small number of nodes in its vicinity 
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Figure 5.  Route feedback message from node x. 

by employing these types of attacks, but cannot 
jeopardize the security of the complete network. 

 

Figure 3(a) details the format of a request message 
along with the size (in number of bytes) of each field 
in the format. The type field indicates whether the 
message is a request, feedback, routing, or data 
message. The OWS field contains the one-way 
sequence number. The path field contains the path 
(sequence of node identities as shown in Figure 3(b)) 
from the base station to the current node (the node 
that sends this request message).  The size field 
contains the length of this path.  The MACR field 
contains a MAC (message authentication code) of 
size, path, OWS and type as described above. 

 

3.2.2 Second Round: Route Feedback 
 

In the second round, each sensor node sends its local 
connectivity information (a set of identities of its 
neighbor nodes as well as the path to itself from the 
base station) back to the base station using a feedback 
message.  After a node has forwarded its request 
message in round one, a node will wait a certain 

timeout interval before generating a feedback 
message.   This interval allows a node to listen to the 
local broadcasts of its neighbors, who will also be 
forwarding the same request message.  A node will 
hear the request messages from its upstream, peer and 
downstream neighbors. 

 

As shown in Figure 5a), a feedback message 
generated by a node contains its neighborhood 
information (a set of identities Ii of all its i neighbors, 
denoted by nbr_info), as well as the path to that node 

from the base station (path_info).  The path listed in 
path_info is the path through the upstream neighbor 
who first broadcast this particular request message to 
the node. This upstream neighbor is denoted as parent 
p in the ensuing discussion.  For example, if node x 
receives the first request message for the current 
OWS from neighbor c, then neighbor c becomes the 
parent of neighbor x, namely px=c.  If this first request 
message from c contained the path base�a�b�c, 
then the path returned in node x's path_info will be 
base�a�b�c�x. 

 

The integrity of the topology data returned to the base 
station by each node in its feedback message must be 
protected, so that the base station is able to correctly 
reconstruct the topology of the network.  
Accordingly, both the list of neighbors nbr_info as 
well as the path path_info to node x are protected by 
the following keyed MACFeedbackx: 

 

),

||_|_(

x

x

Keytype

OWSinfonbrofinpathMACMACF =

 

The MACF ensures that the base station will 
construct a correct topology, though it may be 
incomplete due to malicious nodes that may drop or 
tamper with feedback messages.  The messages that 
reach the base station are guaranteed after verification 
to be correct and secure from tampering.  It is still 
possible that a compromised node originates a 
message that passes tamper inspection, but still 
provides false neighbor information, i.e. omits some 
neighbors.  This inconsistency will be detected by the 
base station after round two and prior to round three 
when the compromised node's neighbor list is 
compared with the neighbors listed in feedback 
messages from all the neighbors of the compromised 
node.  It is at this point that the MACR's of each 
neighbor contained in nbr_info (Figure 5d) are used 
for consistency checks. 

 

Our remaining task is to route the feedback message 
from node x back to the base station.  In the absence 
of malicious nodes, it is straightforward for the 
feedback message to follow the reverse path taken by 
the request message that initiated the feedback 
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response.  As mentioned earlier, each child node will 
have already identified its parent as the first of its 
upstream neighbors to send the child a request 
message with the current OWS.  The linked chain of 
child-parent pairs creates a reverse unicast path from 
node x back to the base station (multiple paths are not 
available until after round three).  Though it may be 
more reliable to flood the feedback message back to 
the base station given intruders, our design has 
deliberately avoided giving sensor nodes the 
capability of initiating a flooded message.  This is 
done to prevent global DOS attacks.  Sensor nodes 
are only allowed to unicast and controlled multicast 
back to the base station. As a result, route feedback 
messages are subject to attacks that drop unicast 
packets, though the damage is again confined locally, 
similar to Figure 4.  

 

Before forwarding a feedback message, a child node 
should place parent identification information into the 
parent_info field of the feedback message.  This 
parent_info determines which of a child's upstream 
neighbors is the parent who should forward the 
feedback message.  However, simply using the parent 
address Ip doesn't require the casual attacker to have 
any knowledge of the local topology nor of the 
current state of the topology discovery process.  
Instead, INSENS requires a child node to place its 
parent's MACRp into the parent_info field.  A child 
node will already have on hand the MACRp of its 
parent p from the parent's original request message, 
i.e. from the first request message received by the 
child.  This MACRp is tightly linked with the current 
state of the OWS request-feedback cycle, and also to 
the path to the child node.   Thus, the MACRp serves 
a security function, in addition to an addressing 
function.  A casual attacker that only knows node ID's 
would be unable to forward a spurious feedback 
message because it won't be able to provide a valid 
address of any of the upstream nodes.  A more adept 
intruder would have to know the up to date MACRp 
corresponding to the current OWS in order to launch 
an attack and have its spurious feedback message be 
accepted by an upstream node.   

 

The MACRp's addressing function selects the specific 
parent from all upstream nodes to forward this 
feedback message.  When an upstream node hears the 

local broadcast of a feedback message whose MACRp 
does not match its own MACR that it originally sent 
with this OWS, then that upstream node knows that it 
is not the parent, and should not forward this 
feedback packet.  If the two MACR's match, then the 
upstream node knows that it has been selected as the 
child's parent and should forward the feedback 
packet.  In the absence of intruders, only the nodes 
listed in node x's path_info will engage in forwarding 
the feedback message along the reverse path back to 
the base station. 

 

The basic mechanism presented thus far for 
forwarding of the feedback packet is relatively 
lightweight in terms of computation at each node.  
The only new computation that must be performed is 
generation of the MACF by the originating node.  
Intermediate nodes may have to apply the one-way 
function F to an OWS that they don't recognize to 
determine whether it is valid.  Otherwise, 
intermediate nodes don't have to recalculate a MAC 
and simply engage in logic comparisons of MACR's 
as well as memory copies of the new MACRp into the 
parent_info field.  This is the only field of the 
feedback packet that is modified in transit.  The 
path_info and nbr info in the feedback message aren't 
changed as the message is propagated back. 

 

Having established the basic format of the feedback 
message as well as the basic structure for forwarding 
of the feedback message, we observe that a malicious 
intruder could still launch several attacks.  First, an 
intruder could launch a DOS-style attack and send 
multiple feedback messages to each of its upstream 
neighbors.  Second, an intruder could eavesdrop and 
learn topology information, i.e. the identities and 
MACR's of neighbors to a remote node x as well as 
the path to node x.  Third, an intruder could divert a 
feedback message to the wrong upstream node. 

 

To address the first DOS-style attack, we employ two 
defense mechanisms.  First, to prevent repetitive 
transmissions of a feedback packet from the same 
originating node, all nodes follow the policy of not 
forwarding duplicate feedback messages.  When an 
intermediate node receives a feedback message 
originating from a node x for the current OWS, it 
checks to see if it has already seen such a message 
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from node x based only on the Type, OWS and 
Identity (from path_info) fields.  If such a message 
has already been seen, then the message is not 
forwarded.  This limits a malicious node to sending 
only one feedback message per originating node per 
neighborhood.  Once a child node, malicious or not, 
has sent its first feedback message labeled as 
originating from node x, then all of the child node's 
upstream neighbors will remember that they have 
seen such a message and will not forward any 
subsequent feedback messages with the same 
originating node and same valid OWS.   

 

Two types of attacks can be launched against our 
policy of suppressing duplicate feedback messages: 
memory exhaustion attacks and rushing attacks.  To 
combat memory exhaustion attacks, we store only 1 
bit per node to flag whether an originating ID has 
been seen before; given a 16-bit address space, this 
will consume 8 KB per OWS, and the node may 
choose to save a history of the most recent N OWS 
numbers; N=3 will consume 24 KB.  If memory 
trends continue, e.g. Motes currently support 128 KB 
for code (not data), a malicious node will not be able 
to overflow this fixed and compact memory 
allocation.  If needed, some other clever strategies can 
further reduce this memory requirement, e.g. node 
addresses can be hashed to a much smaller-sized hash 
table. This hashing strategy may miss catching some 
feedback messages that hash to the same value.  
INSENS's defense against rushing attacks in the 
feedback phase is somewhat limited.  In contrast to 
the request phase where a rushing attack must wait 
until an up to date OWS has been received, an 
intruder need not wait for the corresponding feedback 
message.  After receiving a valid OWS in a request, 
an attack can be launched immediately on the 
upstream nodes by sending false feedback messages, 
in advance of any valid feedback messages, thereby 
causing valid feedback packets to be dropped as 
duplicates.  Such an attack would however terminate 
at the base station, and would be confined to a 
localized portion of the network. 

 

The second defense mechanism against DOS-style 
attacks is to employ rate control to prevent 
transmissions of feedback packets from many 
thousands of phantom originating nodes.  Note that 

unlike the propagation of request messages in the first 
round, a node may in fact forward many feedback 
messages in the second round.  A malicious child 
node can exploit this to launch a DOS attack by 
repeatedly sending spurious feedback messages that 
contain a valid OWS number, any originating ID, and 
a valid MACRp of any upstream node. An upstream 
node (except the base station) has no way of 
distinguishing between an authentic feedback 
message and a spurious feedback message generated 
in the above-mentioned way. A DOS attack in this 
way will congest the path from the malicious node to 
the base station.  INSENS imposes a rate control 
mechanism that restricts the rate at which a node may 
send messages. If a malicious node attempts to send 
messages at a very fast rate, the upstream (correct) 
node will forward those messages only at a slower 
(legitimate) rate. This will prevent congestion on all 
the further upstream nodes. For example, if the 
maximum sending rate allowed for a node is 1 kb/s, a 
correct node will only send at 1 kb/s, irrespective of 
the rate at which it receives messages from its 
downstream nodes. Even if a downstream node 
spoofs 1000 nodes, each sending at 1 kb/s, the 
upstream node will only send at 1 kb/s, rather than 
1000 kb/s.  

 

To provide confidentiality against eavesdropping by a 
malicious node, the path_info and nbr_info is 
encrypted using the originating node x's secret key, 
with the caveat that the identity field of the 
originating node in path_info is left unencrypted.  
Thus, for each feedback packet, only the Type, OWS, 
parent_info MACRp, and identity of the originating 
node or sender are in the clear.  No topology 
information in terms of path or neighbor information 
is revealed to any intermediate node.  The identity of 
the originating node must be in plain sight so that 1) 
the base station can determine to whom the topology 
information in the feedback packet belongs, and 2) 
duplicate feedback packets can be spotted. 

 

INSENS's defense against diversion of a feedback 
message to a "wrong" upstream node, i.e. an upstream 
node that is not listed in the path contained in 
path_info, is based on the principle that it doesn't 
matter by which path the topology information 
reaches the base station.   In our current approach, an 
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attacker could substitute the MACR of any of its non-
parental upstream nodes.  This would divert the 
feedback packet away from its one valid parent.  Even 
if a malicious node diverts a feedback packet off of 
the reverse path taken by the request packet, the 
feedback packet will simply follow another path of 
linked child-parent pairs that lead back to the base 
station.  Also, because of the broadcast nature of 
wireless medium, the other upstream nodes will hear 
this feedback message and will suppress any 
duplicates.  This prevents a malicious child node from 
sending spurious feedback messages with originating 
node x to each of its upstream neighbors. 

 

The overall effect of these security mechanisms is 
that a malicious node is limited in the damage it can 
inflict, whether attacking by DOS attack, by not 
forwarding a feedback messages or by modifying the 
neighborhood information of nodes, which can be 
detected at the base station.  The rate-controlled DOS 
attack will affect upstream nodes, but only in a 
limited way.  The latter two attacks will result in 
some of the nodes downstream from the malicious 
node not being able to provide their correct 
connectivity information to the base station. Though a 
malicious node could launch a battery-drain attack by 
persistently sending spurious feedback messages at 
the rate-controlled limit, such an attack would still 
affected a limited number of upstream nodes.  In 
summary, a malicious node may be able compromise 
a small number of nodes in its vicinity using these 
attacks, as in Figure 4. 

 

3.2.3 Third Round: Routing Table Propagation 
 

After sending the request message in the first round, 
the base station waits for a certain period of time to 
collect all the connectivity information received via 
feedback messages.  A very important consequence of 
the security mechanisms used in the first two rounds 
is that the base station can glean out all the 
connectivity information that has not been tampered 
with.  After receiving a feedback message, the base 
station recomputes MACFx and verifies that there is a 
match.  If there is a match, then the base station 
attempts to match the nodes listed as neighbors with 
prior information received by the base station.  The 
MACR's in nbr_info received from neighbors should 

be consistent with the MACR's reported back to the 
base station.  The MACR is proof that the neighbors 
heard each others' individualized rebroadcasts of the 
request message, and that phantom node identities 
were not simply listed as neighbors.  For example, 
suppose that node y first reports back that node x is its 
neighbor, and provides the MACRx contained in x's 
rebroadcast of the current request message.  Later, 
node x's feedback message arrives at the base station.  
At this point, to verify that node y is the neighbor of 
x, the base station matches the MACRx reported by x 
with the MACRx reported observed by y.  If the two 
match, then there is consistency.  Further, the base 
station matches the MACRy reported by y with the 
MACRy observed by x.  If the two match, then there 
is complete agreement that the two are neighbors in 
the topology. 

 

From this connectivity information, the base station 
then computes the forwarding tables of each node in 
the network. In addition to being able to authenticate 
the connectivity information, there are several other 
advantages of this strategy of base station computing 
all the forwarding tables. First, since computing 
forwarding table involves additional computations, 
this strategy reduces computation at the sensor nodes. 
Second, since the base station has the complete 
information about the network, it can do a better job 
in selecting appropriate routes in terms of balancing 
the routing load on the sensor nodes and using 
appropriate algorithms to select redundant routes that 
minimize the extent of damage a malicious node may 
cause. 

 

An important goal of INSENS is to minimize the 
damage a malicious node may inflict. In particular, a 
malicious node has a greater chance of inflicting 
damage on nearby nodes, for example by launching a 
DOS attack. So, INSENS attempts to choose two 
independent paths in such a way that the nodes in the 
two paths are far apart. The first path is chosen using 
Dijkstra’s shortest path algorithm as described above. 
The second path is computed as follows.  Referencing 

OWStype size Forwarding table MAC

1 216 var 16

OWStype size Forwarding table MAC

1 216 var 16

 
Figure 6.  Routing table update message. 
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Figure 2, remove the set S1 of all nodes that belong to 
the first path from the connectivity information.  
Next, remove the set S2 of all nodes that are neighbors 
of the nodes in S1. Next, remove the set S3 of all nodes 
that are neighbors of the nodes in S2.  Now compute a 
shortest path from this updated network connectivity 
information. If a path is found, it will be the second 
path.  If no path is found in this step, put back the 
nodes of set S3 and the corresponding edges in the 
network connectivity information, and compute a 
shortest path.  If a path is found, it will be the second 
path. Again, if no path is found in this step, put back 
the nodes of set S2 and the corresponding edges in the 
network connectivity information, and compute a 
shortest path. If a path is found, it will be the second 
path. Depending on the network topology, it is 
possible that no second path is found. In that case, the 
current implementation of INSENS maintains only a 
single path. Notice that there are other interesting 
strategies possible for finding multiple redundant 
paths that may not include a shortest path. One future 
direction of our research is to investigate these 
strategies. 

 

After computing the redundant paths for each node, 
the base station computes the forwarding tables of 
each node. These forwarding tables are propagated to 
the respective nodes in an breadth-first manner. The 
base station first sends the forwarding tables of all 
nodes that are its immediate neighbors.  It then sends 
the forwarding tables of nodes that are at a distance of 
two hops from it, and so on. This mechanism cleverly 
uses the redundant routing mechanism just built to 
distribute the forwarding tables. Standard security 
techniques such as those proposed in [Perrig01] can 
be used to distribute these forwarding tables in a 
secure manner.  

 

The structure of these forwarding tables is described 
in the next subsection. Figure 6 shows the format of 
the routing table message used to propagate the 
forwarding tables. Fields Type and OWS are the same 
as those in the corresponding request or feedback 
messages. Dest contains the address ID of the 
destination node x.  Size contains the length of the 
message, and forwarding table contains the 
forwarding table for node x.  The forwarding table 
entry is encrypted using the secret key of x. The MAC 

contains the MAC of the complete message generated 
using the secret key of x.  If a routing table message is 
too long, the base station can segment it and send 
each segment separately. 

 

3.3  Forwarding Data 
 

Using the forwarding tables built in the route 
discovery phase, data is forwarded from source 
(sensor) nodes to the base station, and from base 
station to the destination (sensor) node.  A node 
maintains a forwarding table that has several entries, 
one for each route to which the node belongs. Each 
entry is a 3-tuple: destination, source, and immediate 
sender. Destination is the node id of the destination 
node to which a data packet is sent, source is the node 
id of the node that created this data packet, and 
immediate sender is the node id of the node that just 
forwarded this packet. For example, given a route 
from node S to D: S�a�b�c�D, the forwarding 
table of node a will contain an entry <D, S, S>, 
forwarding table of b will contain an entry <D, S, a>, 
and the forwarding table of c will contain an entry 
<D, S, b>. The reason for including the node id of the 
immediate sender in a forwarding table entry is that a 
node may receive a packet with the same source and 
destination node many times, because each packet is 
forwarded over multiple routes. For example, if the 
other route from S to D is S�e�f�g�h�D, and b 
and h are neighbors, b will receive the data packet 
forwarded by h, which it should not forward. This is 
accomplished by including the immediate sender 
field. 

 

With forwarding tables constructed in this way, 
forwarding data packets is quite simple. On receiving 
a data packet, a node searches for a matching entry 
(destination, source, immediate sender) in its 
forwarding table. If it finds a match, it forwards 
(broadcasts) the data packet. 

 

4 IMPLEMENTATION AND PERFORMANCE 
 
We have simulated INSENS on ns2click, a network 
simulation tool that combines the ns-2 network 
simulator [4] with the Click Modular Router[5]. 
Ns2click was developed in the Computer Science 
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Figure 7.  Routing overhead of secure multipath 
three-phase protocol versus a highly optimistic 
insecure single-path one-phase protocol.  

 

 
Figure 8.  As transmission range decreases, the 
network becomes less dense and more multi-hop, 
increasing the routing table size but decreasing the 
size of the feedback packet.  Deviation bars are 
shown. Department at the University of Colorado, Boulder, 

and has been used to experiment with several routing 
protocols in wireless and mobile networks.  While ns-
2 is a popular network simulator that has been used 
by many researchers, click is a relatively new routing 
emulator developed at MIT. Ns2click provides an 
easy way to develop, debug, experiment with, and 
deploy network protocols, since the same Click code 
can be run on an actual system as well as under the 
simulator ns2.  
 
In our simulation, we implemented our own Click 
element to simulate the behavior of INSENS on 
sensor nodes and the base station.  Ns-2 was used to 
simulate the wireless network environment, including 
the MAC (Medium Access Control) protocol and the 
lower layers of the wireless network, as well as the 
geographic distribution of nodes. 
 
Based on this simulation, we have analyzed four 
aspects of INSENS: (1) overhead of the protocol in 
terms of number of packets exchanged, packet size, 
and total number of bytes transmitted, (2) its ability to 
withstand malicious attacks during route discovery, 
(3) withstanding malicious attacks during data 
forwarding, (4) performance against DOS attacks. 
 

4.1 Protocol Overhead 
 
We have performed two sets of experiments to 
measure the overhead of INSENS. The first set of 
experiments measure the total number of packets (as 
part of request, feedback, and routing update 
messages) exchanged during route discovery. We 
have measured this for many sensor networks 

consisting of different numbers of nodes. Figure 7 
plots the average number of packets exchanged 
during route discovery as a function of the number of 
sensor nodes in the network. For a given number of 
nodes, we generated 20 different network topologies 
at random. All these topologies maintain the same 
node density (100 nodes per 1700 * 1700 m2). The 
transmission range was set to 250 m. The average 
number shown by dots in Figure 7 is the average 
number of packets exchanged over these 20 different 
network topologies, and the vertical lines along these 
dots show the variance. 
  
To provide a benchmark for comparison, we designed 
a trivial routing protocol that has no security or 
intrusion tolerance. In this protocol, the base station 
sends a request message that is forwarded by all 
sensor nodes exactly once. In addition, each node 
records the identity of the node from which it receives 
the request message first time as its parent node. 
After an interval, nodes begin to send “feedback” 
message to its parent node. As the feedback message 
is propagated towards the base station, each sensor 
node updates its forwarding table. A node forwards a 
feedback message to its parent after appending its 
children information. Eventually, the base station 
receives feedback messages from all its neighbors and 
computes the complete topology of the network. The 
total number of packets exchanged in this trivial 
protocol is 2N, where N is the number of sensor 
nodes. 
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Figure 9.  For a given topology of 100 nodes, each node becomes the intruder dropping the feedback messages, 
and the # of blocked nodes is counted.   This creates a histogram.  We generate 20 such topologies and plot the 
averaged histogram. 

 
We compare INSENS with this trivial protocol in 
Figure 7. It is clear that INSENS sends more packets 
than the trivial protocol, and the difference increases 
with increasing numbers of nodes in the network. 
This difference is attributed to the overhead involved 
in dealing with security and intrusion-tolerance 
issues. 
 
In the second set of experiments, we measure the 
effect of node connectivity on protocol overhead. To 

do this, we deploy 100 nodes in a 2300300 m× area 
and generate a node layout at random. We change the 
connectivity of the nodes by changing the 
transmission range from 250m to 40m. Note that a 
larger transmission range implies higher connectivity. 
We have measured the size of feedback and routing 
update packets in these experiments. Figure 8 plots 
these packet sizes averaged over 20 different 
topologies as a function of transmission range. For 
both types of messages, we report the average packet 
size, and average of the largest packets over the 20 
topologies. This figure shows that as the node 
connectivity increases, the feedback packet size 
increases and the routing update packet size 
decreases. The reason for increase in feedback packet 
size is that with increase in node connectivity, the 
size of neighbor-union increases; each node has more 
number of neighbors. The reason for decrease in the 
routing update packet size is that with increase in 
node connectivity, the distance between a node and 
the base station becomes smaller. As a result, the 

number routes to which a node belongs also becomes 
smaller. 
 
4.2 Malicious Attacks during Route Discovery 
 
As mentioned in Section 3, a malicious node may be 
able to compromise a small set of nodes in its vicinity 
during route discovery. We performed a set of 
experiments to measure the extent of damage a 
malicious node can cause during route discovery. We 
have simulated two types of attacks a malicious node 
may launch. In the passive attack, a malicious node 
either drops feedback messages or modifies the 
neighbor information in the feedback message before 
forwarding (recall that this tampering is later on 
detected by the base station). The effect of passive 
attack is that some of the nodes may not be able to 
convey their connectivity information to the base 
station and hence will not be included in the network 
topology constructed by the base station.  
 
In the active attack, a malicious node launches a man-
in-the-Middle attack.  Using this attack, a malicious 
node may lead two of its neighbors to believe that 
there is a direct link between them.  This attack is a 
special case of a wormhole attack, in which an 
attacker creates a tunnel between two nodes to 
mislead neighbors and/or inject false packets.  Note 
that a man-in-the-middle attack can be avoided by a 
clever mac-layer design. Figure 9 reports the 
maximum damage a malicious node may cause by 
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Figure 10.  Multi-node attack on a sensor network that has secure single path and multipath routing.  Left graph 
shows 100 nodes, and right graph shows 200 nodes. X axis: # of attacking nodes. Y axis: # blocked nodes unable 
to send packets.  This passive attack corresponds with tolerating faulty nodes. 

 

launching active and passive attacks. The x-axis in 
this graph records the maximum number of nodes that 
may be compromised by a single malicious node, and 
the y-axis records the number of such (malicious) 
nodes. For example, the red/dark bar on x-axis with 
value=6 shows that there are four nodes in the 
network, such that if any of these four nodes turns 
malicious and launches an active attack, it can 
compromise a maximum of 6 nodes in its vicinity.  
 
The numbers reported in this figure are averaged over 
100 different randomly generated topologies of 100 

nodes distributed over a 220002000 m× space. In 
case of active attack, we have calculated this damage 
by counting all the nodes downstream from the 
malicious node, its neighbors, and the neighbors’ 
downstream nodes. In case of passive attack, we have 
calculated this damage by counting all the nodes 
downstream from the malicious node. 
 
From this figure, we can see that an active attack 
compromises more nodes than the passive attack, and 
a significant majority of the nodes can compromise 
only a small number of nodes. For example, 75% of 
the nodes can only compromise less than 4 nodes 
using a passive attack. 

 
4.3 Malicious Attacks during Data Forwarding 
 
INSENS builds multiple paths to bypass malicious 
nodes. With two independent routes available 

between every node and the base station, our 
protocol's goal is to route messages correctly in the 
presence of a single malicious node.  Interestingly, 
our protocol deals quite well with multiple malicious 
nodes as well. We have performed a set of 
experiments to measure the number of nodes that can 
be blocked when a set of multiple nodes turn 
malicious and drop data packets.  Figure 10 shows the 
average number of nodes that can be blocked as a 
function of the number of malicious nodes. For 
comparison, we have also calculated this number 
when a single-path routing algorithm is used instead. 
 

These results are based on a network of 100 nodes 
and 200 nodes randomly distributed over a 

215001500 m×  space. The numbers reported in this 
figure are averaged over 50 different combinations of 
nodes randomly selected to be malicious. For 
example, for 10 malicious nodes, we measured the 
number of blocked nodes for 50 different 
combinations selected randomly of 10 nodes turning 
malicious.  For each test, 20 random topologies were 
chosen. 

  
This figure shows that INSENS does reduce the 
number of nodes that can be blocked over a single-
path routing protocol. Also, even when a relatively 
large number of nodes are malicious, only a relatively 
small number of nodes are blocked. For example, in 
both tests, when 10% of nodes turn malicious, they 
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Figure 11.  The histogram of DOS simulation with single and multiple paths. Each node becomes the DOS 
intruder, and the percentage of other blocked nodes is counted given secure single-path and multipath routing. 
This generates a histogram per topology.  For both random and grid topologies, we generate 50 such topologies 
and plot the averaged histogram. 

 

can block only another 10% or less number of nodes 
in the network. 
 
4.4 DOS Attacks 
 
Finally, we have performed a set of experiments to 
analyze the effect of DOS attacks that a malicious 
node may launch. The DOS attack we have simulated 
in these experiments is comprised of repeatedly 
sending data packets to the base station to block the 
wireless medium and not allow other nodes to send 
their data packets. DOS attacks are difficult to 
address completely at the network level. In our 
opinion, these attacks must be addressed at multiple 
levels. In our analysis, we have assumed the 
following: (1) Sensor nodes use an appropriate rate-
based control mechanism while forwarding data 
packets. This implies that a malicious node that 
repeatedly sends data packets will be able to block its 

neighbors, but not other (upstream) nodes. (2) The 
base station has sufficiently large bandwidth available 
so that a malicious sensor node in its vicinity cannot 
block the base station by using a DOS attack. 
 

Figure 11 shows the damage a malicious node may 
cause by launching a DOS attack. The damage caused 
by a DOS attack depends on the effectiveness of 
multipath routing, the density of interconnection of 
the sensor network, and the topology of the graph.  In 
this experiment, two network densities (sparse and 
dense) and two topologies (random and grid) are 
tested. In random generated topologies, the position 
of each node is randomly selected, and the base 
station is positioned in the center. The total number of 
nodes is 200.  In the grid topology, each node is 
placed on a square grid. To accommodate the 
simulator, it was necessary to perturb each position to 
a small region around each vertex in a square grid 
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graph.  In this way, random topologies could be 
generated even for a nearly uniform square grid.  The 
total number of nodes is 195. 
  
Figure 11 reveals the performance of INSENS against 
this type of DOS attack.  The x-axis records the 
percentage of nodes that may be blocked by DOS 
attack launched by a single malicious node, and y-
axis records the percentage of such (malicious) nodes. 
From this figure, we can see that the protection 
against DOS attacks varies significantly across 
different network densities and different topologies.  
As expected, in all cases, the multipath algorithm 
provides better protection against DOS attacks than 
the single path approach.  The multipath approach 
performs far better than single path for the grid 
topology, because the grid nearly always offers a 
valid redundant second path.  The best performance 
of the multipath approach is obtained for sparse grids 
(upper right graph), where 85% of intruder nodes are 
limited to blocking five or fewer nodes.  The 
sparseness limits an intruder to blocking only a few 
nodes, while the grid almost always offers the sender 
a valid secondary path.  The worst performance of the 
multipath approach is obtained for sparse random 
topologies (upper left graph), in which nodes have 
few neighbors and there are few alternative paths 
(usually only one path) to the base station.  This 
prohibitively limits the multipath approach, which 
performs only slightly better than single path routing 
in this case. 

 

As the network becomes denser, moving from the top 
row of graphs to the bottom row in Figure 11, 
attackers are able to block increasing numbers of 
nodes, and the histograms shift to the right.  This is 
true for both random and grid topologies.   

 

5 CONCLUSIONS 
 

In this paper, we have developed INSENS, a secure 
and INtrusion-tolerant routing protocol for wireless 
SEnsor NetworkS.  Redundant multipath routing 
improves intrusion tolerance by bypassing malicious 
nodes.  INSENS operates correctly in the presence of 
(undetected) intruders.  To address resource 
constraints, computation on the sensor nodes is 
offloaded to resource-rich base stations, e.g. 

computing routing tables, while low-complexity 
security methods are applied, e.g. symmetric key 
cryptography and one-way hash functions.  The scope 
of damage inflicted by (undetected) intruders is 
further limited by restricting flooding to the base 
station and by having the base station order its 
packets using one-way sequence numbers.  An 
important property of INSENS is that while a 
malicious node may be able to compromise a small 
number of nodes in its vicinity, it cannot cause wide-
spread damage in the network.  Performance 
measured from a prototype implementation using the 
ns2click simulation tool shows that INSENS tolerates 
malicious attacks launched by intruder nodes, and 
functions correctly over a variety of sparse, dense, 
random and grid topologies  despite intrusions. 
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