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Abstract—This paper proposes that social network data should
be assumed public but treated private. Assuming this rather
confusing requirement means that anonymity models such as k-
anonymity cannot be applied to the most common form of private
data release on the internet, social network APIs. An alternative
anonymity model, q-Anon, is presented, which measures the
probability of an attacker logically deducing previously unknown
information from a social network API while assuming the data
being protected may already be public information. Finally, the
feasibility of such an approach is evaluated suggesting that a
social network site such as Facebook could practically implement
an anonymous API using q-Anon, providing its users with an
anonymous option to the current application model.

I. INTRODUCTION

Traditional anonymity research assumes that data is released
as a research-style microdata set or statistical data set with
well understood data types. Furthermore, it is assumed that
the data provider knows a priori the background knowledge
of possible attackers and how the data will be used. These
models use these assumptions to specify data types as “quasi-
identifiable” or “sensitive”. However, it is not so simple to
make these assumptions about social networks. It is not easy
to predict how applications may use social network data
nor can concrete assumptions be made about the background
knowledge of those who may attack a social network user’s
privacy. As such, all social network data must be treated as
both sensitive (private) and quasi-identifiable (public) which
makes it difficult to apply existing anonymity models to social
networks.

This paper discusses how the interactive data release model,
used by social network APIs, may be utilized to provide
anonymity guarantees without bounding attacker background
knowledge or knowing how the data might be used. It is
demonstrated that this data release model and anonymity
definition provide applications with greater utility and stronger
anonymity guarantees than would be provided by anonymizing
the same data set using traditional methods and releasing it
publicly. We call this anonymity model “q-Anon,” and evaluate
the feasibility of providing such a guarantee with a social
network API.

II. RELATED WORK

Privacy within the context of social networks is becoming
a very hot topic in both research and among the public. This
is largely due to an increase in use of Facebook and a set of
high-profile incidents such as the de-anonymization of public
data sets [1]. However, public concern about privacy has not

necessarily translated into more responsible usage of the exist-
ing privacy mechanisms. It is suggested that this may be due
to the complexity of translating real-world privacy concerns
into online privacy policies, as such it has been suggested
that machine learning techniques could automatically generate
privacy policies for users [2]. Research into anonymizing data
sets (or microdata releases) to protect privacy directly apply to
the work in this paper. Most of this research has taken place
within the database research community. In 2001, Sweeney
published a paper [3] describing the “re-identification” attack
in which multiple public data sources may be combined to
compromise the privacy of an individual. The paper proposes
an anonymity definition called k-anonymity. This definition
was further developed and new approaches to anonymity were
proposed that solved problems with the previous approaches.
These later anonymity definitions include p-sensitivity [4],
`-diversity [5], t-closeness [6], differential privacy [7], and
multi-dimensional k-anonymity [8]. All of these privacy ap-
proaches and their associated terms are discussed in section III.

Methods have been developed that attempt to efficiently
achieve anonymization of data sets under certain anonymity
definitions. Initially simple methods such as suppression (re-
moving data) and generalization have been used to anonymize
data sets. Research has sought to optimize these methods
using techniques such as minimizing information loss while
maximizing anonymity [9]. One approach called “Incognito”
considers all possible generalizations of data throughout the
entire database and chooses the optimal generalization [10].
Another approach called “Injector” uses data mining to model
background knowledge of a possible attacker [11] and then
optimizes the anonymization based on this background knowl-
edge.

It has been shown that checking “perfect privacy” (zero
information disclosure), which applies to measuring differ-
ential privacy and arguably should apply to most anonymity
definitions, is Πp

2-Complete [12]. However, other work has
shown that optimal k-anonymity can be approximated in
reasonable time for large datasets to within O(k log k)
when k is constant, though runtime for such algorithms is
exponential in k. It has been shown that Facebook data can
be modeled as a Boolean expression which when simplified
measures its k-anonymity [13]. Section VIII discusses how
such expressions, constructed from Facebook data, are of a
type that can be simplified in linear time by certain logic
minimization algorithms[14].

Privacy in social networks becomes more complicated
when the social applications integrate with mobile, sensing,



wearable, and generally context-aware information. Many
new mobile social networking applications in industry and
research require the sharing of location or “presence”. For
example, projects such as Serendipity [15] integrate social
network information with location-aware mobile applications.
New mobile social applications such as Foursquare, Gowalla,
etc. . . also integrate mobile and social information. Research
suggests that this trend will continue toward seamlessly in-
tegrating personal information from diverse Internet sources,
including social networks, mobile and environmental sensors,
location and historical behavior [16]. In such mobile social
networks, researchers have begun to explore how location or
presence information may be exchanged without compromis-
ing an application user’s privacy [17], [18]. Furthermore, other
mobile information such as sensors may be used to drive
mobile applications and this brings up issues of data verifi-
cation and trust that are discussed here [19]. Thus, the ideas
introduced in this paper will likely expand in applicability as
social networks are extended into the mobile space.

III. DEFINING ANONYMITY

This section discusses the basic terms used in this paper.
It breaks them up into data types, anonymity definitions, and
anonymization techniques.

A. Data Types

The data sets most often considered in anonymization
research usually take the form of a table with at least three
columns that usually include zip code, age, (sometimes gen-
der), and a health condition. This data set is convenient for
many reasons, including its simplicity, but also contains (and
doesn’t contain) representative data types that are important to
anonymization. First, it does not contain any unique identifiers
such as Social Security numbers. The first step in anonymizing
a data set is removing the unique identifiers. The most common
unique identifiers discussed in this paper are social network
user IDs (Facebook ID or username). The data set also contains
a set of quasi-identifiers - age, zip code, and gender are the
most common. Data may be considered a quasi-identifier if
it can be matched with other data (external to the data set)
which maps to some unique identifier. The re-identification
attack consists of matching a set of quasi-identifiers from
an anonymized data set to a public data set (such as census
or voting records) effectively de-anonymizing the anonymous
data set. It is important to note that quasi-identifiers are
assumed to be public (or possibly public) by definition and
as such are not the primary data to be protected. The data
that are to be protected from re-identification are termed
sensitive attributes. Sensitive attributes are not assumed to
be publicly associated with a unique identifier and as such
their relationship to the quasi-identifiers within a data set is
what concerns most anonymity definitions. In most research
examples health conditions or disease attributes are considered
sensitive attributes. A set of sensitive attributes that share the
same set of quasi-identifiers are, together with their quasi-
identifier set, called an equivalence class. For example, the

health conditions associated with 25 year old males living in
a particular zip code would be an equivalence class.

Furthermore, the {zip code, gender, age, disease} data
set is useful because its data exhibit different characteris-
tics. Zip codes are structured hierarchically and ages are
naturally ordered. The rightmost digits in zip codes can be
removed for generalization and ages can be grouped into
ranges. Gender presents a binary attribute which cannot be
generalized because doing so would render it meaningless.
Finally, using disease as the sensitive value is convenient since
health records are generally considered to be private. Also,
disease is usually represented as a text string which presents
semantic challenges to anonymization such as understanding
the relationship between different diseases.

B. Anonymity Definitions

K-Anonymity [3] states that a data set is k-anonymous
if every equivalence class is of size k (includes at least
k records). However, it was observed that if the sensitive
attribute was the same for all records in an equivalence
class then the size of the equivalence class did not provide
anonymity since mapping a unique identifier to the equivalence
class was sufficient to also map it to the sensitive attribute; this
is called attribute disclosure.

p-sensitivity [4] was suggested to defend against attribute
disclosure while complementing k-anonymity. It states that
along with k-anonymity there must also be at least p different
values for each sensitive attribute within a given equivalence
class. In this case, an attacker that mapped a unique identifier
to an equivalence class would have at least p different values
from which only one correctly applied to the unique identifier.
One weakness of p-sensitivity is that the size and diversity of
the anonymized data set is limited to the diversity of values
in the sensitive attribute. If the values of the sensitive attribute
are not uniformly distributed across the equivalence classes
there will be significant data loss even for small p values.

`-diversity [5] was suggested to prevent attribute disclosure
through either requiring a minimum of “entropy” in the
values of the sensitive attribute or by placing a minimum
and maximum on how often a particular value may occur
within an equivalence class. While preventing direct attribute
disclosure such an anonymization may result in the distribution
of sensitive attribute values being significantly skewed. If the
distribution of a sensitive attribute is known, this knowledge
could be used to calculate the probability of a particular sen-
sitive attribute value being associated with a unique identifier.
For instance, while only 5/1000 records in a data set contain
a particular disease, there may exist an equivalence class in
the anonymized data set for which half the records contain the
disease, implying that members of the equivalence class are
20 times more likely to have the disease.

t-closeness [6] approaches the problem of skewness by
bounding the distance between the distribution of sensitive
attribute values in the entire data set and their distribution
within each equivalence class. The problem (or trade-off)
with t-closeness is that it achieves anonymity by limiting the



statistical difference between equivalence classes and in doing
so minimizes any interesting correlations or statistics that
could be drawn from the anonymized data set. Furthermore, it
is not clear that there is any efficient way to enforce t-closeness
on a large data set [20].

Defending against skewness attacks presents a paradox -
data sets are useful because they contain correlations that say
something about the world outside of the data set, which is
what a skewness attack does. In this sense the utility of a data
set and its danger to privacy are correlated. Skewness attacks
should therefore be approached practically, considering the
nature of the sensitive attributes in terms of the danger of their
compromise and the utility they provide by being released.

Multi-Dimensional K-Anonymity [8] proposes a more flex-
ible approach to K-anonymity in which equivalence classes
are clustered or generalized across a table in more than
one dimension. This flexibility allows for a higher degree
of optimization than simply generalizing each column of a
database separately. While optimizing the selection of equiv-
alence classes is NP-hard, a greedy approximation algorithm
for multi-dimensional K-anonymity has been shown to outper-
form exhaustive optimal algorithms for a single dimension.

Differential Privacy [7] takes a different perspective on
privacy than the other privacy models discussed in this paper.
Most interestingly, it assumes an interactive database model in
which, as opposed to a non-interactive microdata release, the
data collector provides an interface through which users may
query and receive answers. As will be discussed in section IV,
this model fits that currently used by many social network
APIs and is much more practical for the types of data use
associated with social networks. However, differential privacy
focuses primarily on statistical databases, the queries on which
are answered with added noise which guarantees a maximum
level of danger to the privacy of anyone participating in the
database. The difficulty in applying this to social networks is
in appropriately measuring or defining “noise” in a way that
meaningfully integrates with the data’s use by social network
applications. While interesting, this paper does not deal with
the same problem. However, the interactive database model
assumed by differential privacy is promoted as the appropriate
model for anonymity mechanisms applied to social networks.

C. Anonymization Techniques

Finally, anonymization commonly consists of generalizing,
perturbing, or suppressing data. Generalization of data requires
some ordering or structure to the data type such that many
specific values of data can be grouped as a related, but more
general value. Perturbation involves distorting or adding noise
to a value. Some types of data such as images may be
perturbed and still useful. However, much social network data
may not be useful when modified or generalized and as such
must be removed or suppressed - as such suppression is the
most generally applicable approach to anonymization when
one cannot make assumptions about how generalization or
perturbation will affect the utility of the data. Also, it should be
noted that in social networks it is very common for a data field

to have many values separated by commas. When items are
suppressed from such data fields it could be said that the value
of the data field has been generalized - however, this paper will
refer to such an anonymization technique as suppression.

IV. SOCIAL NETWORK DATA

This section will highlight the difficulties of applying exist-
ing anonymity definitions and models to social network data.
Most anonymity research assumes the same convenient data
set of {zip code, gender, age, disease} discussed in section III.
This data set is easy to understand and naturally translates to
privacy examples since it uses traditionally accepted quasi-
identifiers and sensitive data. A few of the quasi-identifiers
are usually hierarchical or ordered such that they can be
easily generalized along with a clearly identifiable sensitive
attribute. Social networks do not provide such convenient
data. Furthermore, anonymity research has generally assumed
a rather research-centric non-interactive data release model.

A. Data Characterization

Social network data often consists of attributes
such as name, unique ID, friendship links, favorite
movies/music/activities, birthdate, gender, hometown,
group associations, guestbook or wall posts, pictures, videos,
messages, status updates, and sometimes current location. To
simplify discussion of social network data in this section we
will assume the usage model and data types of the largest
social network, Facebook.

The first task in anonymizing social network data is to
specify which attributes are unique identifiers, quasi-identifiers
and sensitive attributes. The unique ID is a unique identifier
and some people may wish that their name be considered a
unique identifier as well. There are then the traditional quasi-
identifiers including city, birthdate, and gender - however these
data types are often targeted by Facebook applications as the
attributes of interest (such as birthday calendar applications),
and may be considered sensitive attributes by some users.
In fact, depending on a user’s privacy settings nearly every
data attribute may be publicly available or semi-public within
a region or network. Furthermore, these privacy settings are
constantly changing and the user’s privacy expectations may
change drastically depending on context. Given the lack of
clear assumptions as to the public availability of most in-
formation on Facebook, all data types should be considered
a quasi-identifier. Also, given the complex nature of social
network applications, (e.g., calendars of friends’ birthdays,
context-aware music players, or location-aware games) all
attributes may potentially be considered sensitive attributes
within certain contexts and as such all data types should be
considered sensitive attributes.

This poses significant problems to utilizing traditional
anonymity solutions for social networks. If a single attribute
is considered both quasi-identifiable and sensitive it renders
k-anonymity incompatible with `-diversity, p-sensitivity, and
t-closeness. This is because equivalence classes must share
the same quasi-identifier set (have the same values for all



                    DATA SET                                                         QUERY                          RESPONSE  
ID

A

B

C

D

E

COLLEGE

Harvard

MIT

Northwestern

Northwestern

Northwestern

BIRTH

8/5/83

9/21/81

5/4/72

8/29/85

2/12/64

MOVIES

Avatar, Titanic

Titanic, Terminator

Terminator, Avatar, 
Spiderman

Avatar, Batman, 
Titanic

Batman, Spiderman

LOCATION

39.78 , 107.10

39.46 , 104.55

38.98 , 102.11

40.05 , 109.17

51.32 , 00.51

Avatar, Batman, 
Spiderman

q = 1.5

Query 2:
SELECT movies WHERE 

college=Northwestern

Query 1:
SELECT movies

WHERE birth < 1/1/80

Query 3:
SELECT movies WHERE 
DISTANCE(39.00,105.00) 

<= 25.0 MILES

Avatar, Terminator, 
Batman, Spiderman

q = 1.0

Avatar, Titanic
q = 3.0

Fig. 1. Example data set, queries, and responses with associated q values for different levels of anonymity

quasi-identifier attributes) and `-diversity, p-sensitivity, and t-
closeness require some variation of all sensitive attributes. t-
closeness, `-diversity, and p-sensitivity all assume equivalence
classes defined by a shared quasi-identifier set. If some at-
tribute was both sensitive and quasi-identifiable then it would
be required to have the same value throughout the equivalence
class (to avoid re-identification) and it would be required to
have different values (to avoid attribute disclosure) rendering
`-diversity, p-sensitivity, and t-closeness 1 meaningless.

B. Data Usage

The obstacles to applying traditional anonymity approaches
to social networks arise largely from the assumption that data
is released in a non-interactive form as a database or table.
Such a table results in each set of quasi-identifiers being
uniquely associated with its sensitive attributes. However, this
type of data association may not be necessary for many
applications. Furthermore, a particular application may only
be interested in a particular set of equivalence classes which
include only a subset of quasi-identifiers. However, an alterna-
tive to the non-interactive data release model exists. In an in-
teractive model, a “trusted” data collector provides an interface
through which users or applications may query for information
through an API or general language like SQL. Fortunately,
Facebook already offers both a function API and a SQL-like
language called FQL. Facebook’s interface is currently used
by over 500,000 applications and most major websites on the
Internet. Recent developments, such as the announcement that
Facebook will soon integrate users’ location information along
with Facebook having shown that it may redefine information
as public and in turn automatically release this information
to “trusted” third-parties without the user’s explicit approval,
provides a clear motivation for solutions to anonymity within
an interactive data release model.

The next section defines the re-identification or anonymity
problem assuming an interactive model and assuming that all
data attributes are both quasi-identifiable and sensitive.

V. THE ANONYMITY PROBLEM IN SOCIAL NETWORKS

This section proposes a new anonymity problem for social
networks that more closely conforms with the data types
characteristic of social networks as well as the interactive

1being quasi-identifiable, the attribute must have a uniform distribution of
one value

data release model supported by social networks. In this new
anonymity problem, rather than anonymizing and releasing
an entire database the data collector/provider supports an
interface through which applications may query user-specific
data without compromising the privacy of those users beyond
some threshold. A query is considered admissible in this model
if its released information does not result in any previously
unknown mapping between data and identity having an im-
plied probability greater than some threshold. Below we define
how privacy is measured in the q-Anon system along with the
assumptions made about adversaries and data providers.

q-Anon Definition: q-Anon focuses on measuring the am-
biguity of released data in the face of a re-identification
attack. Privacy is measured in terms of q, for which larger
values represent greater ambiguity (privacy). q is measured by
finding all unique user groups which could have accounted
for the released data and then finding the largest fraction of
those groups which include any one user. q is defined as the
reciprocal of this fraction. An example of this measurement is
given in figure 3 and a step-by-step description of measuring
q is given in section VII.

Adversary Definition: We assume that the adversary may
have access to any entry in the data set. Therefore, in spite of
its general impossibility for statistical databases [7] we will
accept the intention of Dalenius’ desideratum for statistical
databases: “that nothing about an individual should be learn-
able from the database that cannot be learned without access to
the database.” This particular definition is actually more unique
than one might think because it assumes that the data which
must be protected (or considered private) exists outside of the
private database and as such would usually not be considered
“private” 2.

Interactive Interface Definition: q-Anon assumes data is
provided via an interactive interface. We define an interactive
interface, using traditional anonymity terms, as an interface
that allows applications to specify an equivalence class through
a query along with attributes of interest. The interface returns
the values of the attributes as one field or array (set) not
specifying any mapping between table entries and attribute
values. The interface may return zero or more values from

2Why assume data is not private and then treat it as such? Because this is
the reality of social network data and the behavior of its users which may be
described as both irresponsible (spreading their private data to public spaces)
and irrational (desiring that data to be treated as private anyways).



                    DATA SET                                                         QUERY                          RESPONSE  

-
k=2

Query 2:
SELECT movies WHERE 

college=Northwestern

Query 1:
SELECT movies

WHERE birth < 1/1/80

Query 3:
SELECT movies WHERE 
DISTANCE(39.00,105.00) 

<= 25.0 MILES

-
k=2

Titanic
k=2

ID

A

B

C

D

E

COLLEGE

-

-

Northwestern

Northwestern

Northwestern

BIRTH

1981-83

1981-83

1972-85

1972-85

1972-85

MOVIES

Titanic

Titanic

-

-

-

LOCATION

near Denver

near Denver

US or Europe

US or Europe

US or Europe

Fig. 2. Example data set K-anonymized with k = 2

each entry in the equivalence class.
Privacy Compromise Definition: A data provider which

wishes to provide privacy guarantees under the q-Anon model
must choose a threshold value for q beyond which q is consid-
ered sufficiently large. In such a system a privacy compromise
is defined as data being released which is measured to have a
q value less than the chosen threshold.

It should be noted that if a query specifies an equivalence
class that has fewer than q entries, the adversary may know
that at least some of the released data is mapped to fewer than
q identities, hence q-Anon implicitly requires all equivalence
classes specified by a query to be at least size q. This
requirement equates to the original K-anonymity definition.

Since the query response from the interactive interface
does not include mappings between table entries and attribute
values, the set of values may map to many different groups
of individuals, each of which may fully account for all values
in the query response. The next section discusses how the
existence of these different groups, all of which account for a
data release, may be measured to infer the probability that a
set of private data is mapped to a specific individual.

VI. MEASURING ANONYMITY

This section will discuss how re-identification attacks and
social network data are related to the q-Anon privacy model to
help the reader gain a more practical sense of what different q
values imply. Each example attack will be connected with the
example data set, queries, and responses presented in Figure 1.

Rare Value Attack: Many strings found in social network
data fields are very unique. For example, sometimes a user who
likes the movie Avatar may include the string “Avatar totally
rocks!!!” in their movie list, rather than simply including the
string “Avatar” 3. This string may uniquely map to the user and
obviously should never be released from a social network’s
anonymous interface. Assume the string does uniquely map
to this user and also say an attacker knows this and wants to
find the location of the user. The attacker also knows that the
anonymous interface only returns queries that are admissible
under the q-Anon model with q = 6. The attacker could create
5 fake users at a particular location and list “Avatar totally
rocks!!!” in their movie list. Then the attacker could query for

3Note that recently Facebook has begun converting interest lists from text
to links, however users may still “like” or link to a sufficiently unique page
or item.

the movie lists of users within a geographic area including the
location of his five users. If the query is responded to with the
string “Avatar totally rocks!!!” the attacker would know that
the victim user was also in that geographic area, since there
must have been at least 6 users in that area with the unique
movie string or else the query would not have included it in
the response.

This presents a rather simple way to measure privacy. The
anonymous interface could simply measure the privacy of a
query response by taking the least common value from the
query response and counting the number of individuals in the
equivalence class4 that are associated with that value. We will
refer to this value as the Least Common Value count (LCV
count). As can be seen in Query 1 in Figure 1, the response
contains four movies, one of which (Batman) is only listed by
one individual in the specified equivalence class (those born
before 1980). Hence this response appropriately lists q = 1.
However, the next example will show that this measure of
privacy is only an upper bound on privacy knowledge and
misrepresents what the attacker may logically deduce from a
query response.

Logical Exclusion Attack: Consider the response to Query
2 in Figure 1. Each of the three movies in the response has at
least two individuals in whose movie lists they are included
and might be considered anonymous with q = 2. However
this is not necesarilly the correct bound on probability of
associating the set of movies with an individual in the data
set. The attacker could logically deduce that one of three
possibilities must exist, the group correctly accounting for the
data must contain either persons C and D, D and E, or C and
E. These three groups represent the minimal combinations of
which at least one must exist within any group which fully
accounts for the data released by the query. This could be
expressed as the boolean expression (CD+DE+CE). Given
that each individual is in two of the three groups the attacker
can assume that there is a 2

3 (or 66%) possibility that one of
those individuals is correctly associated with the data, hence
q = 1.5.

This presents a stronger measure of privacy but is more
complicated to measure. To measure privacy in this way
requires that one find the minimal set of groups required
to fully account for the data being released. Section VII

4remember the equivalence class is specified by the query paramaters



discusses how this can be done by representing the data
values and their mapping to users as a boolean expression
and finding the prime implicants using logic minimization.
Representing social network data in this manner was originally
suggested and discussed for use in a mobile social network
application [13].

For comparison, the example of the data set is also pre-
sented in Figure 2 anonymized with traditional k-anonymity
(k = 2). Note that optimal k-anonymization would depend on
knowing the application intentions and attributes of interest
beforehand. While this is not possible, the example data set
is k-anonymized to retain as much useful data as possible for
comparison. Furthermore, it should be noted that this data set
cannot contain diversity (as discussed in section IV) and as
such is trivially vulnerable to an attribute disclosure attack.

VII. REAL-TIME ANONYMIZATION

This section discusses the practical steps involved in mea-
suring the q value for q-Anon. The steps generally consist
of (1) Building a logical Sum-of-Products (SOP) expression
from the data to be released by a query. (2) Minimizing the
SOP expression to find the essential prime implicants. (3)
Calculating q. Each of these steps will be explained and then
the section will finish with a discussion of how this approach
would perform in the real-world 5.

A. Step 1: Building an SOP Expression

This section describes how a product-of-sums (POS) expres-
sion is created from an equivalence class specifying a set of
users and their data. The POS expression can then be converted
to a Sum-of-Products (SOP) expression by De Morgan’s law
or more efficient method.

Given an equivalence class E consisting of n user entries
and m attributes for which S is the set of all attribute values.
We define a set Ei ∈ E as the set of users which map to
a certain value Si ∈ S. A POS expression is formed from
Ei whereby every set Ei ∈ E is mapped into a sum term
(clause) in which every user e ∈ Ei is a literal (variable).
This POS expression is then converted to an SOP expression
for minimization or minimized directly, understanding that the
output must be a two-level SOP expression.

B. Step 2: Minimizing the Expression

The SOP expression is then minimized using a logic min-
imization method which finds the essential prime implicants
of the expression. A classic algorithm for doing this is the
Quine-McCluskey algorithm, developed in the 1950’s. This
algorithm was used for initial evaluation of a related prob-
lem [13] and those results are discussed in section VIII along
with discussion of how more recent developments in logic
minimization may allow this step to scale linearly with the
number of individuals and data items.

5Remember that a query specifies an equivalence class (e.g., “men under
25 in Denver”) and an attribute of interest within that class (e.g., “Movies”).

ID

A

C

D

MOVIES

Avatar, Titanic

Titanic, Terminator

Terminator, 
Avatar, Spiderman
Avatar, Batman, 

Titanic

Query 3:
SELECT movies WHERE 

DISTANCE(39.00,105.00) <= 
25.0 MILES

Simplified SOP Expression
AB + AC + BD + BC + CD

N=5    M=3
q = N/M = 1.67

B

Unsimplified POS Expression
(A+C+D) (A+B+D) (B+C)

Response
Avatar, Titanic, Terminator

Fig. 3. Example of using logic minimization to calculate q

C. Step 3: Calculating q

Given a minimized SOP expression with n product terms,
let m be the maximum number of times that any literal occurs
in this minimized expression. The fraction m

n measures the
worst possibility that an individual is associated with the data.
q is the inverse of this fraction, hence q = n

m . Because the
SOP expression is expressed partially with only the on-set -
all product terms contain at most one occurrence of any literal.
Therefore n ≥ m, meaning that q ≥ 1 and since all literals
must occur at least once, q ≤ n.

D. Example

To help explain the process of measuring q we will re-
consider Query 3 from Figure 1, however this time q will
be calculated for a different query response. This example
will be explained using Figure 3. The query requests the
“MOVIE” values for those individuals within a geographic
area specified in latitude and longitude. This area includes
individuals {A,B,C,D}. In this case, q is being calculated for
the response {Avatar, Titanic, Terminator}. As can be seen in
Figure 3: Avatar is mapped to {A,C,D}, Titanic to {A,B,D}
and Terminator to {B,C}. This results in 9 possible groups
which could possibly account for the entire response set,
these groups are represented by the unsimplified expression
in Figure 3. Minimizing the unsimplified expression results in
an expression with 5 product terms. Since there are 5 product
terms in the unsimplified expression and no literal occurs more
than 3 times n = 5 and m = 3, hence n

m = q = 1.667.

VIII. EVALUATION

This section evaluates a set of Facebook data including over
700 users’ city location, network affiliation, music, and movie
preferences. The users in this data set are all friends with
the same user and could be considered an equivalence class
specified by this friendship. As such, the data samples are
not random but may be considered realistic for socio-digital
systems in which social connections are natural aggregators.
The distributions of these data are presented to understand the
practical size of some equivalence classes and the distribution
of their attribute data. These values are discussed in terms of q
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and what values of q are actually practical for a social network
such as Facebook. Finally, a basic prototype is presented to
show the feasibility of measuring q for social network data
applications with discussion of how advanced logic minimiza-
tion algorithms might scale in relation to social networks the
size of Facebook.

A. Size of Equivalence Classes

In an interactive interface, equivalence classes may be
specified with conditionals using SQL-style interfaces or par-
ticular API calls. Examples evaluated in this section include
selecting those users in a particular city or users affiliated
with a particular network. The size of the equivalence class
is obviously a bound on what q values may be calculated
for its data. The distribution of city locations and network
affiliations in the test data is shown in Figure 5. A few
locations and affiliations dominate the distribution with nearly
half of the users sharing either a location or network affiliation,
a few other values account for 5-10% of all values. Within a
social application such a distribution should not be surprising
considering that proximity and affiliation are the basis for
many social connections. However, what can be noted is that
about 20-40% of all values considered specify equivalence
classes containing about 1% of the overall users. These
smaller equivalence classes consist of only 5-10 users and
may not be able to support anonymous queries with q values
greater than 3 or 4. As such, an anonymous interface with
q ≥ 10 would not release information to queries specifying
these smaller equivalence classes.

B. Distribution of Attribute Values

However, a large equivalence does not itself guarantee any
anonymity as it may not contain significant overlap in the
attributes for which the query is interested. For instance, the
music and movie preferences listed by the users in the test data
contain significant diversity as seen in Figure 4. While many
of the users may indeed list the same movies and music artists
among their favorite they often will not use matching strings to
refer to same artist or movie. For instance users may list ”Lord
of the Rings”, ”LOTR”, ”The Rings Trilogy”, or even ”I heart

LOTR”. This reduces the usefulness of the data and disallows
release of over 95% of music and movie data values under
q-Anon with q ≥ 10. Facebook is currently moving toward
standardizing these values (probably to increase their worth to
Facebook) through a new feature called connections in which
the user ”likes” something (e.g., thumbs up, thumbs down)
resulting in a canonical string for each artist or movie. To
understand how this data might be distributed the movie values
from the data set were partially sanitized by using google.com
to search imdb.com for the un-sanitized string value and then
replacing the value with the movie title of the first result.
This approach found the correct movie for over 95% of the
movie values. When sanitized, over four times as many movie
values were able to be released under q-Anon with a q = 10
and the same amount of data released from the un-sanitized
movie values with q = 10 could now be released with q = 27,
significantly increasing anonymity and the utility of the data.
Considering that these values of q were calculated over a small
subset of Facebook data (less than .001% of Facebook users)
it is possible that much larger values of q could be calculated
considering only 1% of Facebook users. Furthermore, since q
generally grows with the number of users being evaluated, the
number of users which need to be evaluated could be bounded
given a target q values.

C. Scalability

Even if the number of users to be evaluated is bounded,
would it be practical to calculate q over, say, a million users for
every API call? Previous work which considered the feasibility
of using logic minimization on social network data in the
manner considered in this paper found that using Quine-
McCluskey, an algorithm from the 1950’s, the simple two
level boolean expressions created from social network users
and their data can be minimized in milliseconds for hundreds
of users [13]. Furthermore, such minimization generally scales
linearly for the Facebook data that was tested in that paper.
The authors of this paper are currently working to use more
advanced minimization techniques designed to scale linearly
for simple two-level minimization problems like that involved
in calculating q.



D. Current Work
A minimization method developed at Czech Technical

University has been shown to scale linearly for two-level
logic minimization problems in which there are many terms
(millions) and far fewer literals[14]. This algorithm is being
evaluated for use in calculating q due to the fact that when
there are n users (literals) and m attribute values, the number
of terms to be minimzed is bounded by O(n

n
4 ) when m ≥

√
n,

otherwise when m <
√

n the number of terms is bounded
by O(( n

m )m). While the number of terms has never been
observed to scale anywhere near the maximum bound, it has
been observed that as q increases so too does the ratio between
terms to be simplified and the number of users (literals) in
those terms. Whether or not q can be calculated for millions
of users is still not known due to lack of access to a sufficiently
large legitimate data set. However, q can be calculated over
hundreds of users producing q ≤ 50.

IX. CONCLUSION & SUMMARY

This paper has identified the difficulty in applying existing
anonymity measures to social network APIs, the most common
form of private data release on the Internet. In particular, it is
proposed that social network data must be considered public
but treated private, a requirement that would confuse most
anonymity models. An alternative anonymity model is pro-
posed (q-Anon) which assumes an interactive interface model
like that used by social network APIs. q-Anon measures the
probability that an all-knowing attacker may use an API query
response to map private data to a social network user. Finally,
real Facebook data was analyzed to understand what levels of
anonymity are practical for social network applications.

The question of what constitutes weak or strong anonymity
is still unanswered. To a large extent appropriate values
for q will depend on the particular context and how the
data being released relates to that context. In this sense,
this paper does not claim that q-Anon can measure whether
or not something is sufficiently anonymous. However, if
practical values of q can be identified then those values
could be used as the basis for policies governing use of
social network APIs. For instance, API sessions could limit
the number of queries within a certain amount of time or
the API registration process could use q to limit or specify
how, when and who will use the data. In short, having
some way to measure the anonymity of a social network’s
API provides a tool with which to quantify and incorporate
anonymity into social network data policies and practices.
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