
Node Compromise in Sensor Networks: The Need
for Secure Systems

Carl Hartung, James Balasalle, Richard Han

Department of Computer Science
University of Colorado at Boulder

Technical Report CU-CS-990-05

January 2005

Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005

Node Compromise in Sensor Networks: The Need
for Secure Systems

Carl Hartung, James Balasalle, Richard Han

Department of Computer Science
University of Colorado, Boulder

{carl.hartung, james.balasalle, richard.han}@colorado.edu

ABSTRACT
While sensor network deployment is becoming
more commonplace in environmental, business,
and military applications, security of these
networks emerges as a critical concern. Without
proper security, it is impossible to completely
trust the results reported from sensor networks
deployed outside of controlled environments.
 Much of the current research in sensor
networks has focused on protocols and
authentication schemes for protecting the
transport of information. However, all of those
schemes are useless if an attacker can obtain a
node from the network and extract the
appropriate information, such as security keys,
from it.
 We focus our research on the area of secure
systems. In this paper we demonstrate the ease
with which nodes can be compromised as well as
show exactly what information can be obtained
and how it can be used to disrupt, falsify data
within, or eavesdrop on sensor networks. We
then suggest mechanisms to detect intrusions into
individual sensor nodes. Finally, we come up
with security measures that can be implemented
in future generation nodes to improve security.

1. INTRODUCTION
While node compromise is often discussed as a
potential vulnerability in sensor networks [5],
almost no work has been done to prove the

viability of such attacks. Thus, we have
designed and carried out a number of
experiments detailing the relative ease with
which commonly used current generation
sensor nodes can be compromised using regular
'off the shelf' products and readily available,
free software. While we found it is very easy to
compromise a node and exploit it for various
purposes, we also found a number of
improvements that can be made in future
generations of nodes in order to help alleviate
the possibility of sensor node compromise.
 To understand the dangers of node
compromise, we must first define what we
mean by node compromise. Node compromise
occurs when an attacker, though some subvert
means, gains control of a node in the network
after deployment. Once in control of that node,
the attacker can alter the node to listen to
information in the network, input malicious
data, cause DOS, black hole, or any one of a
myriad of attacks on the network. The attacker
may also simply extract information vital to the
network’s security such as routing protocols,
data, and security keys. Generally compromise
occurs once an attacker has found a node, and
then directly connects the node to their
computer via a wired connection of some sort.
Once connected the attacker controls the node
by extracting the data and/or putting new data
or controls on that node.
 Generally, all sensors must have an interface

 1

Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005

that enables them to be programmed by another
machine. The exception to this would be
preprogrammed sensors for a specific task, but
current sensor technology demands that sensors
are flexible and can be programmed and
reprogrammed for a number of different uses.
Tamper proof hardware is also available, but
significantly increases cost and reduces the
leeway for user/programmer error, as well as
eliminates the reprogramability. Typically the
programming interface on a sensor node is either
a direct serial, parallel connection, or USB
connection (henceforth referred to as 'wired'), or
an intermediate programming board which is
connected to both the node and a wired
connection. These programming interfaces,
which provide so much flexibility in
programming sensor nodes, also provide would-
be attackers with the easiest means of
compromise.
 For our experiments we programmed a sensor
node with various applications and various
operating systems, and attempted to extract that
information using freely available software,
standard computer exploits such as buffer
overflows, and various debugging mechanisms.
Debugging tools are usually the most popular
weapons for attackers to determine how to
exploit programs, and that generality is still true
for sensor networks. We tried our exploits on
both TinyOS[3], an event based operating
system, and Mantis OS[4], a multi-threaded
operating system. Our results showed that both
operating systems were susceptible to the same
attacks.
 In our experiments were able to, in very little
time (<1 minute), extract all of the information
located onboard the node's EEPROM, Flash, and
SRAM. Once the attacker has access to all of
this data, they can analyze it to ascertain keys,
routing protocols, and other security sensitive
information. With this information an attacker
could adversely affect the network in a variety of
ways. Attackers could simply use the keys to
decrypt messages and listen to all the traffic in
the network, or possibly modify the code in order

to inject malicious messages into the network
and confuse it, or provide false data to the end
user application.
 The remainder of this paper is organized as
follows: Section 2 discusses the design of
current sensor hardware. Section 3 analyzes
different attack models and scenarios. We
discuss the problems presented by these
vulnerabilities in Section 4. In section 5 we
discuss possible improvements for next
generation nodes, and in section 6 we discuss
future work which needs to be done in this area.
Finally, we sum up the conclusions of our paper
in section 6.

Figure 1) A) Programming board with Mica2 plugged
in. B) Other side of Mica2. C) AVR ICE JTAG
programmer connected to programming board with
ribbon and connected to computer via serial cable.

2. SENSOR HARDWARE
The sensor hardware we chose for our
experiments was the Mica2 mote by XBow.
These motes are currently the most widely used
sensor node, having been used in several
wireless sensor network installations [2].
 The Mica2 uses an Atmega128 chip for its
processor. It is an 8-bit processor running at
4MHz. They come with 128KB of instruction
flash, 4KB SRAM, and 4KB EEPROM. The
chip is designed using a harvard architecture. It
is important to note the harvard architecture as
it prevents a handful of standard computer
attacks, such as buffer overflow, which we will

 2

Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005

discuss later in the paper. Interestingly enough,
the use of the harvard architecture in embedded
systems, and specifically in sensor nodes, was
not intended to provide security features. Rather,
the design of the harvard architecture, using
separate memories for data and instructions and
requiring different busses for each, allows
instructions and operands to be fetched
simultaneously. This means the architecture can
run much faster as it is able to fetch the next
instruction at the same time it completes the
current instruction. It is important to note the
improvement in speed as the nodes tend to be
extremely resource constrained. Thus, though
only intended to provide a speed boost to the
system, the harvard architecture actually
provides a good level of security against radio
attacks, specifically against standard buffer
overflow attacks.
 The Mica2 has a serial interface connected to a
programming board. Typically the Mica2 is
programmed using the intermediate
programming board connected to the computer
with either a serial or parallel connection. The
programming board also has a JTAG interface
which also allows for programming, as well as
using GBD for On Chip Debugging (OCD). A
JTAG interface is an IEEE standardized interface
to processors which allows for accessing and
controlling signal levels on the chip. Figure 1
shows an AVR ICE JTAG programmer interface
as well as a programming board with a mica2
attached.
 Though we only tested the Mica2 hardware,
our results can be generalized over sensor
networks as a whole. Code on current sensor
nodes needs to be installed and reinstalled. Thus,
today’s sensor technology requires direct access
to the node via a wired interface or through some

type of intermediate programming board. Also,
not all processors use the JTAG interface for
OCD, but most which have been used in sensor
node development do, and others provide
similar chip debugging mechanisms.

3. ATTACK MODELS
3.2 Types of Attack
 There are different attack models we must
consider, but many are outside the scope of this
paper. An attacker may range from a prankster
with a laptop and a serial cable with a few
hours to kill to a military installation with
hundreds of scientists with unlimited money
and time.
 We first consider the latter of the above
mentioned cases: a military installation or other
science lab with many scientists. In this
example you can assume that the scientists have
access to oscilloscopes, process analyzers, and
any number of other analytical machines to help
them crack the system. These machines
typically cost thousands of dollars and are
rarely found outside of such installations.
Given the resources of such installations, it is
reasonable to assume that given the correct
amount of time all information could be
extracted from a sensor node. The only real
way to prevent this is tamper proof hardware
which triggers some type of self destruct
mechanism upon attempted compromise. One
can also assume that if the enemy has such
capabilities and desires to learn what the sensor
net is doing, that the implementers would, in
fact, use some sort of tamper proof hardware.
 Since it is almost impossible to stop unlimited
time and money, and tamper proof hardware is
generally prohibitively expensive, the above
scenario is a bit beyond the scope of

 3

Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005

Figure 2) Programming a node with Tiny OS’ TinySec feature. Key is highlighted.

Figure 3) Hex dump of output of SRAM gathered using the JTAG interface. Key is highlighted.

this paper. Therefore, we turn our focus to the
simpler and more likely case of someone with a
laptop or computer, a serial cord, and possibly a
programming board. Assuming the user has a
computer, serial cords are on the order of dollars,
and programming boards usually run in the tens
to hundreds of dollars, making this scenario
much more plausible. We also assume that the
attacker has good familiarity with standard
debugging tools such as GDB. With these
assumptions, we now show how an attacker can
compromise a node in less than 1 minute.

3.2 Physical Attacks
 First, we used only a programming board and
a serial cable to launch our attack. Using a
freely available tool called UISP we were able
to dump the program flash as well as the
information stored in the EEPROM. A simple
execution of an avr tool, avr-objcopy, converted
the source flash into an assembly file as shown
in figure 4. Once in assembly format, an
attacker could analyze the code to ascertain
routing protocols and/or any pre-coded keys.
Depending on the complexity of the program,

 4

Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005

the analysis could take significant time, but that
is outside the scope of this paper. The danger
here is that it took <1 minute to obtain the source
image. As all of the above commands are simply
one command line execution with a handful of
arguments, a majority of the time, about 45
seconds, was spent transmitting the binary image
over the relatively slow serial interface onto the
computer's hard drive, or converting from one
format to another. The rest of the time, about 15
seconds, was human interface time typing the
necessary commands for retrieving the flash,
which can also be automated for maximum
speed.
 Next, we used an AVR JTAG interface to
attempt to acquire the same data from the sensor
node. With the JTAG programmer we found that
not only were we able to dump the program flash
and the EEPROM, but we were also able to
dump the chip's SRAM in a matter of seconds.
Generally the SRAM is considered the safest
place to store keys and other sensitive
information due to its volatile nature. However,
the ease with which the data was extracted from
SRAM proved that the notion of SRAM being
safer is false. This alone invalidates the security
claims of many of the global and shared key
schemes. Again, the extraction took mere
seconds and again a majority of the time was
spent transferring the data from the node to the
computer. The longest task was dumping the
program flash (128K), and that only took ~30
seconds.
 After having discovered the above simple
methods to get the data, we ran an experiment to
quickly analyze the ease at which we can
discover keys buried within that data. We loaded
TinyOS' TinySec[1] security protocol onto a
node and then used our JTAG attack to
determine if we could decipher the keys. We
dumped the SRAM and converted it into HEX
format, again using freely available tools, and
saw the "secret" key right in front of us. A few
iterations with other programs that have
implemented TinySec showed that the key was
always in the same location in SRAM. Figures 2

and 3 show the output from both TinySec's
programming the key into the node, and the
HEX dump of the SRAM from the node. One
thing to note is that TinySec does not specify
any key pre-distribution method, it merely
assigns a global key to the system. Thus, an
attacker seeking the TinySec key need only
target a well-known address or area of memory
in advance, rather than downloading the
complete binary image of the operating system
and applications, thereby reducing the
download further and enabling compromise in
mere seconds.

Figure 4) Assembly output after retrieving from flash
and altering using avr-objcopy.

4. DISCUSSION
 Looking at most current security protocols in
sensor networks reveals assumptions that keys
or algorithms are hard to obtain. Our research
shows the opposite of this assumption. Given
that it takes less than 1 minute to dump all of
the EEPROM, program Flash, and a chip's
SRAM, it is impossible to assume that any
stored keys are safe on a sensor node. Also,
given enough time assembly code can be
analyzed and modified, or even decompiled into
C code using various primitive decompilers.
 Since we cannot truly state that our keys on
our nodes are secure, we cannot then state that

 5

Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005

our data is secure an accurate. This could lead to
huge issues in any sensor node deployment from
agriculture to military. Even our supposedly
secure protocols cannot be considered safe since
one would never know if an attacker had
obtained the protocol's keys or not.
 These discoveries demonstrate the need to
develop secure systems in sensor networks.
Simply securing the data transmitted from node
to node is not enough. If a single node in the
network can be compromised, the security
encapsulating the transmitted data is also
compromised. Though tamper proof hardware is
available, it is too expensive to use in most
deployments. Therefore, securing the entire
system is essential to guarantee accurate and
secure data.
 As is, sensor nodes cannot determine whether a
user is simply using debugging tools or
attempting to hack in. There need to be
mechanisms to turn off debugging tools at a level
other than hardware. These problems are not
paramount in standard computer systems as it is
rare that someone will open a computer up and
directly interface with its processor or
motherboard. However, since direct
communication is such a common way of
interfacing with sensor nodes, the ability to
disable debugging tools is important to ensure
security.
 Current literature[6,13] suggests schemes where
pre-distributed keys are erased after new keys
have been established using the pre-distributed
ones. We agree that these approaches mitigate
node compromise. These schemes usually
involve encrypting a challenge with the key
before destroying it. This challenge enables the
node to communicate with other nodes that also
have the challenge. Since the challenge is stored
in memory, compromising the node still gains
access to the challenge. The literature[9]
suggests ways to find keys in memory, but since
a challenge could be vastly different from a key,
it might take significantly longer to find.
Therefore erasing a node’s keys could
significantly slow down an attacker, but since

that attacker can access all the SRAM it may
not completely prevent an attacker from still
participating in the network.
 LEAP [13] assumes that a global key is
erased after an initial setup period Test. The
assumption is that Test is much less than the
time to compromise a node Tmin. However, as
we have shown, this assumption can be violated
if it only takes on the order of seconds to
compromise a node. Also, in this scheme, we
would expect that there will be cases when Test
would in reality be on the order of tens of
minutes in certain deployment schemes, e.g.
dropped and scattered from airplanes. In these
scenarios, the scattered nodes, even if dropped
simultaneously, may arrive in different parts of
the network at different times and will need
some slack time to set up the network and
bootstrap pairwise links using the transitory
global key. During this time, if an adversary
observes a node and quickly obtains the key
using any of the techniques shown here, i.e. Test
> Tmin, then the global key will be
compromised, allowing the adversary unlimited
access to any portion of the network. LEAP
also assumes that moving the global key from
non-volatile memory into volatile memory
provides added security. As we have shown,
that assumption is false, because both RAM and
flash are accessible to an adversary.

5. IMPROVEMENTS
 As stated above the Atmel processor has an on
chip debugging feature. This feature is what
enables us to easily obtain the contents of main
memory. On chip debugging greatly facilitates
the development of new applications and
devices. However, it exposes a new set of
security vulnerabilities to an attacker.
Currently it is possible to turn the on-chip
debugging feature off. However, it is a very
simple to turn it back on using publicly
available debugging tools. A version of the
Atmel processor with the on-chip debugging
feature on/off switch in software rather than
hardware would eliminate a category of

 6

Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005

possible attacks. Furthermore, if the OCD
request generated an interrupt which could be
caught by software then the node could erase any
important information. Toggling the OCD in
software would mean that an attacker would have
to replace the code image on the node, destroying
all of the data they are trying to extract. Sensor
networks deployed in especially hostile
environments such as a battlefield, or in
particularly sensitive areas such as a hospital or
financial applications, it would be desirable to
have a sensor node which would not respond to
the standard on-chip debugging.
 Another possible solution would be to use
location aware applications[8] that could detect
movement on a fine scale, GPS, or group
communication techniques. The network could
then mark 'moved' nodes as possibly
compromised and flag their data at the end-user
application. Furthermore, if a node can detect its
own movement by either accelerometers or GPS
then it can preemptively delete important
information stored in SRAM, flash, or anywhere
else on the system.

6. FUTURE WORK
Future research in this area needs to be done so
that we can understand better ways of preventing
and detecting system level attacks. Possible
areas of prevention include location aware nodes
that can detect when they are moved. Another
means of prevention is the hardware support to
disable the on-chip debugging, which would
prevent an attacker from using a JTAG or similar
device. While research on intrusion detection of
a network is underway, intrusion detection of an
individual node is an area of research that
especially needs to be addressed. Intrusion
detection is extremely difficult because of the
resource constraints imposed by sensor node
hardware. In SWATT [12], nodes apply a MAC
to the operating system to detect whether the
binary image of the operating system has been
changed and new code loaded. Since an attacker
can completely erase and reprogram a node, it is
difficult to detect this behavior, especially when

the "new" node still contains all the required
security information. When an attacker
physically finds a node without tamper resistant
hardware, he has fewer constraints and many
attack options are available to him. However,
this means he has to find the nodes first.
Finally, one more area that needs additional
research is that of public key infrastructure on
sensor nodes. In [7] elliptic curve cryptography
is presented to address some of the
shortcomings of most key pre-distribution
solutions. Developing this idea could also
better secure the operating systems of sensor
nodes.

7. CONCLUSIONS
 There is a great need to design secure systems
for sensor networks. The flexibility of the
current generation of sensor nodes leaves too
many holes open which allow attackers access
to vital system information. Until such systems
exist, it is impossible to confidently trust the
data from any sensor network deployed outside
of a controlled environment. We have shown
that it is trivially easy to retrieve program code,
static data, and even dynamic program memory
from sensor nodes. Current sensor nodes are
easily tampered with, code can be easily
altered, and system critical information is easily
obtained using freely available software and
cheaply available hardware. With this
information, attackers have virtually free reign
to spy on, participate in, or subvert sensor
networks. There exist several research
opportunities to pursue in the directions of
detecting attempted compromise, or outright
prevention of node compromise. Only when
we have a secure system design can we be
confident that our secure transmission protocols
will once again be safe.

8. BIBLIOGRAPHY
[1] C. Karlof, N. Sastry, D. Wagner, "TinySec: A
Link Layer Security Architecture for Wireless
Sensor Networks", to appear in ACM SenSys 2004
[2] A. Mainwaring, J. Polastre, R. Szewczyk D.
Culler, J. Anderson,"Wireless Sensor Networks for

 7

Technical Report CU-CS-990-05, Dept of Comp Sci, Univ of Colorado at Boulder, Jan 2005

[8] Andreas Savvides, Chih-Chieh Han and Mani B.
Strivastava. "Dynamic fine-grained localization in
ad-hoc networks of sensors." 7-th annual
international conference on Mobile computing and
networking (MobiCom) 2001, July 16 - 21, 2001,
Rome Italy. Pages 166-179.

Habitat Monitoring", First ACM Workshop on
Wireless Sensor Networks and Applications (WSNA)
2002, pp. 88-97.
[3] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.
Culler, K. Pister . "System Architecture Directions
For Network Sensors", ASPLOS 2000.

[9]Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel
Rosenblum, "Data Lifetim is a Systems Problem",
To appear in the 2004 SIGOPS European
Workshop.

[4] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose,
A. Sheth, B. Shucker, R. Han, "MANTIS: System
Support for MultimodAl NeTworks of In-situ
Sensors", 2nd ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA)
2003, pp. 50-59.

[10] Jonathan Hui, David Culler, "The Dynamic
Behavior of a Data Dissemination Protocol for
Network Programming at Scale", Sensys '04 [5] L. Eschenauer and V. Gligor. "A key management

scheme for distributed sensor networks." In
Proceedings of the 9th ACM Conference on
Computer and Communication Security, pages 41–
47, November 2002.

[11] B. Przydatek, D. Song, A. Perrig, "SIA: Secure
Information Aggregation in Sensor Networks",
ACM SenSys 2003
[12] A. Seshadri, A. Perrig, L. van Doorn, and P.
Khosla. Swatt: Software-based attestation for
embedded devices. In Proceedings of the IEEE
Symposium on Security and Privacy, May 2004.

[6]D. Liu, P. Ning, "Establishing Pairwise Keys in
Distributed Sensor Networks," in Proceedings of the
10th ACM Conference on Computer and
Communications Security (CCS '03), pages 52--61,
Washington D.C., October, 2003.

[13] S. Zhu, S. Setia, and S. Jajodia. Leap: Efficient
security mechanisms for large-scale distributed
sensor networks. In 10th ACM Conference on
Computer and Communications Security,
Washington D.C, USA, October 2003.

[7] D. Malan, M. Welsh, M. Smith, "A Public-Key
Infrastructure for Key Distribution in TinyOS Based
on Elliptic Curve Cryptography", IEEE SECON
2004.

 8

	Carl Hartung, James Balasalle, Richard Han

