
CAwbWeb: Towards a Standardized Programming
Framework to Enable a Context-Aware Web

Aaron Beach, Mike Gartrell, Richard Han, Shivakant Mishra
University of Colorado at Boulder

Contact: {aaron.beach, mike.gartrell}@colorado.edu

Department of Computer Science
University of Colorado at Boulder

Technical Report CU-CS-1063-10

March 2010

CAwbWeb: Towards a Standardized Programming
Framework to Enable a Context-Aware Web

Aaron Beach, Mike Gartrell, Richard Han, Shivakant Mishra

University of Colorado at Boulder

{aaron.beach, mike.gartrell}@colorado.edu

ABSTRACT
This paper presents a vision of mobile-cloud computing sys-
tems which looks beyond simply moving data processing
from mobile to cloud computing systems and considers a
larger vision in which services within the cloud are aggre-
gated and automatically integrated in real-time, based on
context, to satisfy the intentions of mobile computing ap-
plications. We suggest that research and development of
context-aware mobile-cloud systems adopt an appropriate
“separation of concerns” in which application intentions, con-
text, action, and actuation are isolated through a framework
of software services and standards we call CAwbWeb (Context-
Aware Web). These software services and standards allow
for many different mobile-cloud computing problems to be
abstracted and solved generally.

1. INTRODUCTION
This paper suggests a new framework to support the

vision of context-aware mobile cloud computing in which
mobile-aware services running on the cloud are auto-
matically integrated with local services offered by the
surrounding physical environment to achieve fully context-
aware smart environments. The proposed Context-Aware
Web (CAwbWeb) framework is motivated by a number
of new trends, namely the rise of ”app” mobile smart-
phones, the growth of mobile social networks, the in-
creasing popularity of cloud computing, and the evolu-
tion of Web 2.0 Web services. We believe it is impor-
tant and timely to develop a unifying framework that
spans and harnesses the capabilities offered by each of
these individual trends to collectively empower modern
context-aware computing.

The rise of the “app phone”: The past few years
have seen explosive growth in mobile smartphones, and
in particular “app phones” such as the iPhone, Droid,
Nexus One, Palm Pre, and Windows Phone. These
phones, mated to app stores, have simplified loading of
applications and resulted in commonplace use of third-
party applications. This trend toward “app phone” us-
age has accelerated the development of contextual mo-
bile computing services. App phone users may browse
near their location for friends (Latititude), events (Yelp),

tweets (Twitter), or buzzes (Google Buzz). Also, apps
allow people to connect virtual information with their
surroundings through augmented reality apps such as
virtual spray-painting (SimSpray) or a virtual wiki for
the physical world (wikitude). Location-aware toolkits
and Web services (ARToolKit, SimpleGEO) are emerg-
ing to support such applications. The mobile phone and
particularly the “app phone” is becoming an important
window into the world of Web services.

Mobile social networks: Mobile social networks
combine location awareness from mobile phones with
context awareness from social networks, e.g. friendship
relationships and personal profile preferences, to offer
novel new context-aware services, such as viewing my
friends nearby, or showing services that I might be inter-
ested in that are nearby. Commercial mobile social net-
works such as Loopt, Brightkite, and Foursquare have
taken off - and over 100 million of the 400+ million Face-
book users now access Facebook through their mobile
devices. Many online data sources such as Facebook
now have Web APIs which open up their information
to mobile Web applications. Research projects in mo-
bile social networks have considered how mining social
information about proximate individuals might enhance
or drive their interaction [11, 16, 6]. Privacy concerns
with presence sharing in mobile social networks have
also been investigated [8].

Clouds on the horizon: Many of today’s mobile
computing applications are distributed, with a mobile
component being supported by a remote service com-
ponent often being hosted on computing clouds such
as Amazon EC2, Microsoft Azure, Google AppEngine,
RackSpace, etc. This model allows the services to scale
with demand and allows designers to deploy ideas and
services with little overhead cost. However, these mo-
bile services are generally one-off stand-alone systems
targeted at a particular phone application and do not
generally interact with other services. While computing
clouds and app phones support rapid deployment of mo-
bile computing services, there is still no general system
for integrating these services or for automatic discovery
and on-the-fly use by phone applications. We believe

1

that it is important and timely to develop a unifying
standardized framework that can harness the power of
the cloud for mobile applications, so that mobile ap-
plications can automatically lookup and integrate these
services to achieve their goals in real-time. Developers
of mobile computing services should not have to worry
about writing custom applications for each of their ser-
vices. Instead, they should be able to simply describe
them and leverage the power of Web services offered by
the cloud to implement their intentions.

Context-aware systems and frameworks: The
dream of ubiquitous computing is to interact with a
context-aware smart space that is richly embedded with
computational elements both for sensing and actuation.
There has been a rich exploration of context-aware sys-
tems and frameworks [5, 14, 7, 15, 12, 17, 9]. Much
of this work occurred prior to the advent of social net-
works, app phones, and cloud computing. Our work
does not propose a new context-aware system - but
rather a framework to connect context-aware services
from the cloud to the mobile application in a general
way. Our framework seeks to use standardized Web
services technologies and protocols to enable uniform
and interoperable interfaces between context-aware sys-
tems, so that context-aware systems can scale up and
effectively use cloud-based services.

The CAwbWeb Vision: We seek to achieve com-
prehensive context-aware computing in local physical
smart spaces by designing a unifying framework that
integrates mobile app phones with cloud computing ser-
vices, thus enabling automated development and de-
ployment of context-aware applications and services.
The overarching challenges that we’ve identified in our
design involve how mobile applications describe, find,
and integrate appropriate cloud services. We envision a
usage model in which environments - people, places, and
things - “deploy” themselves and their services to the
Internet as cloud computing services, forming “clouds”
of data and services. These clouds must then be or-
ganized so that they may be browsed by the user and
his mobile phone. The user’s phone will have a client
or browser that knows how to search these clouds for
appropriate data and services. Once found, each user’s
intentions are mapped to and activate an appropriate
set of data and services in order to realize the user’s
intentions in the local context-aware smart space. Fur-
thermore, this mobile-cloud interaction adheres to the
appropriate personal and contextual rules governing the
usage of the particular services and data (e.g., privacy,
legal, temporal, or spatial limitations).

For example, our framework should support the fol-
lowing context-aware scenario. Suppose a customer,
Mark, enters a video store. As Mark approaches the
new releases aisle, a mobile-cloud service senses Mark’s
presence and plays a movie trailer most suited to Mark’s

preferences on the large-screen display that is closest
and most visible to Mark. Mark finds this trailer inter-
esting, so he grabs the DVD for this movie and proceeds
to the checkout counter. As Mark is waiting in line, a
fire occurs in another part of the store. The fire sup-
pression system is also context-aware, and understands
that Mark has photosensitive epilepsy, and therefore ac-
tivates the fire alarm and sprinklers, but does not acti-
vate the strobe lights. Mark is instructed on how to exit
the building and the appropriate city services are imme-
diately notified. In this example, the framework should
support announcement of Mark’s presence, discovery of
available services in this context, and automatic inter-
connection and use of the appropriate Web services to
execute the intended application, e.g. either context-
aware video presentation or context-aware emergency
services. We will revisit this story later to detail how
our framework supports such a scenario.

2. OVERVIEW OF THE CAWBWEB FRAME-
WORK

The design of new types of mobile-cloud context-
aware systems requires a new and appropriate separa-
tion of concerns. Dijkstra pointed out, apropos “intel-
ligent thought”, that an appropriate separation of con-
cerns is the only (or primary) technique for effectively
ordering ones thoughts about a complex problem [10].
In order to address the difficulties of developing mobile-
cloud context-aware applications, we seek to provide a
framework that adheres to a “separation of concerns”
in order to simplify the task of programming for the
developer, while also enabling the evolution of sophis-
ticated context-aware mobile-cloud systems. Our pro-
posed programming framework identifies a set of four
major problem spaces (or “concerns”) that can be ad-
dressed independently. These four concerns are:

• “Intention” Applications should specify what they
intend to do.

• “Context” Applications should describe in what
context their intentions should be executed.

• “Action” Identifying actions within a context that
appropriately satisfy an intention.

• “Actuation” Synthesizing these actions into a
composition of mobile-cloud services or actuators
to execute an intention.

This approach achieves a clean separation of con-
cerns, wherein we identify components that have clearly
decoupled duties and interfaces, enabling each compo-
nent to be developed independently. The only respon-
sibilities of the mobile application would be to clearly
and simply describe its context (location, time, tem-
perature, etc.) and specify what it is it wants to do in

2

that context (the intention). Describing context could
be implemented as a general service for each device that
periodically reports sensor and location data to a con-
text management service. This presents an optimal sit-
uation where the developer need only worry about ap-
propriately expressing the intention of the application.
The application developer no longer has to program for
each Web service or mobile-cloud system, nor discover
these services, nor manually integrate them. The prob-
lem of composing appropriate Web-services from those
running in the cloud is abstracted and can be solved us-
ing many different systems. The task of composing Web
services can further separated into two phases: service
discovery or lookup, and integration of those services.

The essential components of our system revealed by
this separation of concerns, and how they fit together,
are shown in Figure 1. A context-aware mobile ap-
plication developer first specifies his Intention using a
high level language described later, i.e. what task he
wants to accomplish, such as playing a video. Using
another language, the developer specifies in what Con-
text to execute the Intention, e.g. what location or
time. The application then passes both the Intention
and the Context to a generic Contextual Lookup Ser-
vice (CLS). Web services in the cloud are registered
with the CLS, which can find and return the set of pos-
sible Web services to satisfy the Intention in this Con-
text, e.g. video monitors in this location. We term this
set of possible Web services supported by the specified
context as Actions, or more generally a Possible Ac-
tion Set (PAS), since they could result in actions like
playing a video. Next, the application will send the In-
tention combined with the Actions to a compiler which
integrates actions from the different Web services along
with their dependencies. This Context-Aware Intention
Compiler (CAIC) generates a program or script capa-
ble of executing the Intention in that Context, which
is then run on an Interpreter to effectuate the context-
aware result.

By separating intention, context, action, and actua-
tion, we provide a general-purpose framework for de-
veloping mobile-cloud applications that run reusable
context-aware services. The CLS allows a mobile ap-
plication to submit an intention and a description of
the context for that intention to a Web service without
specific knowledge of how that intention will be imple-
mented by the system. This is a key innovation that
frees the application developer to develop context-aware
mobile-cloud applications without having to worry about
the low-level mechanics. The CAIC serves the critical
role of isolating the mobile client from these low-level
details by incorporating sufficient intelligence to gener-
ate an actuation program that contains all of the details
about how to assemble and compose Web services to ac-
complish the intentions of the application.

Context-Aware Web

Services

Client

Web
Service

Context
Aware

Intention
Compiler

Contextual
Lookup
Service

Actuation
Program

Interpreter

APP

Web
Service

Web
Service

1
3

2

4

5

6

8

7

Environment

6

8

9

Context-Aware

Intention Compiler

(CAIC)

CLIENT

Contextual Lookup

Service (CLS)

WEB SERVICES

The Cloud

INTERPRETER

The Environment

The Mobile

Figure 1: Overview of CAwbWeb Framework.

The entire framework can be summarized as includ-
ing six major abstractions or software components as
depicted in figure 1, they are: Mobile Application, Mo-
bile Client, Contextual Lookup Service (CLS), Context-
Aware Intention Compiler (CAIC), Actuation Program
Interpreter, and the supporting Mobile-Cloud Web Ser-
vices. The framework also includes five classes of docu-
ment or language standards which provide powerful ab-
straction layers between the components. The five stan-
dards are discussed in section 4 and include: Context
Description Language (CDL), Intention Specification
Language (ISL), Action Specification Language (ASL),
Actuation Instruction Language (AIL), Web Services
Description Language (WSDL).

3. SOFTWARE COMPONENTS
This section describes the proposed software compo-

nents to support the CAwbWeb framework. This sec-
tion also discusses how each standard and language de-
scribed in section 4 is used by the components, further
motivating the particular abstractions that we have cho-
sen. Furthermore, the discussion of each component
explicitly states the related research challenges.

3.1 Mobile Client
This paper proposes the design of a mobile client that

would provide client support for applications designed
on the CAwbWeb framework. The client would provide
an API for use by mobile-cloud applications. At mini-

3

mum, an API would need to support a request method
allowing the application to submit context descriptions
and intention objects. However, a client could also sup-
port a higher level interface, such as automatic context
inference or a textual/graphical intention interface, al-
lowing the user to express their intentions naturally and
freely.

Once the client has an Intention Object and Context
Description it must know of a Contextual Lookup Ser-
vice (CLS) to which it can submit a context request.
The addresses of contextual lookup services must be
stored by the client in much the same way that the IP
address of Domain Name Servers are stored by hosts
on the network. The appropriate CLS to use will de-
pend on the specific client and what type of contexts
the application(s) supports. For instance a client might
support a method which allows the application to spec-
ify a CLS or, in much the same way as an Internet user
may choose one search engine over another, a client’s
interface could allow the application user to explicitly
specify the URI of the lookup service.

Many interesting research challenges are associated
with the development of useful mobile clients within
the CAwbWeb framework. The long-term vision is that
through a general purpose interface (such as a Web
browser), contextual Web-pages could be dynamically
generated and allow the user to both request interfaces
appropriate to different contexts and interact with their
environment through a context-aware mobile “browser”.

3.2 Contextual Lookup Service
Once the client has produced a context description

and specified intention it may pass these along to a
lookup service. The Contextual Lookup Service (CLS)
maps Web services in the cloud to appropriate con-
texts. This enables the CLS to determine whether or
not a context exists within which appropriate services
can satisfy a specified intention. If such a context is
found then its appropriate Possible Action Set is re-
turned to the client. The Possible Action Set (PAS)
specifies those actions supported by Web services in the
cloud appropriate to the context. The PAS also specifies
how to access the appropriate Context-Aware Intention
Compiler(s) (CAICs) that support the PAS.

The interface of the CLS is defined as accepting an In-
tention Object (specified in the Intention Specification
Language from section 4.2) and a Context Description
(specified in a Context Description Language discussed
in section 4.1). The lookup service must return a status
(OK or NOT FOUND) along with a Possible Action Set
(PAS) if status is OK. However, while the interface of
the CLS is well defined, its implementation is flexible.
For instance, a CLS may simply map geographic loca-
tions to nearby contexts. A more complicated CLS may
behave like a search or recommendation engine, using

the Context Description to find one or more optimal
services to satisfy the intention.

A particular CLS may also define its own PAS regis-
tration interface. Once a PAS has been specified for a
particular mobile-cloud system, the PAS must be regis-
tered with a CLS along with a description of its appro-
priate context. For instance a CLS could allow PASs
to be registered based on their geographical location.
Alternatively, a CLS could mine the Web Service De-
scription Language (WSDL) [3] specifications of many
mobile-cloud services and automatically generate ap-
propriate PAS specifications to support a mobile-cloud
services search engine.

The proposed CLS presents multiple research chal-
lenges. There has been much prior research on specify-
ing or describing context [18] such as Context OWL [1],
however a language to specify possible actions within
these contexts along with the rules that govern them
must be formalized. This language of possible actions
must be related to how Intentions are specified, such
that a PAS could be evaluated for satisfiability relative
to an intention. Therefore, it is suggested that the Ac-
tion Specification Language (ASL) and Intention Speci-
fication Language (ISL), specified in sections 4.3 and 4.2
respectively, be developed in conjunction with one an-
other. Finally, the implementation of contextual search
or recommendation engines can draw upon the wealth
of research in context-aware recommendation [13].

3.3 Context-Aware Intention Compiler
Given a set of possible actions within a context and

the rules that govern these actions, the Context-Aware
Intention Compiler (CAIC) would support just-in-time
compilation of intentions specified in the Intention Spec-
ification Language (ISL). The CAIC produces “Actua-
tion Programs”, which are XML files specifying “Actua-
tion Instructions” and their data dependencies. The in-
structions themselves map to the URIs of mobile-cloud
Web service methods. These Web-services are specified
using WSDL. The compiler uses these WSDL specifi-
cations to build a resource-method graph mapping the
data dependencies of the specified intentions to sets of
actuation instructions, which in turn map to a set of
Web-service resource methods. The set of instructions
supported by a particular compiler and implemented by
context-aware Web services is called an Actuation In-
struction Set (AIS). Actuation Programs are executed
by a Actuation Program Interpreter. In order to inter-
pret an Actuation Program, the Interpreter must sup-
port the AIS used by the program. The interpreter is
an integral part of the mobile client discussed in sec-
tion 3.1. Starting with a set of mobile-cloud Web ser-
vices, the remainder of this section will describe how
the compiler processes Web service descriptions, inte-
grates intentions together with contextual actions and

4

Context-Aware Intention Compiler (CAIC)

Entire Graph for Actuation Instruction Set (AIS)

Context-Aware Web Services

Location

Database
Group
Identifier

Group
Recommender

Context Specific Sub-Graph

AI5 AI3

AI4 AI2

AI1

WSDL

Figure 2: The dependency graph of actuation in-

structions used by the Context-Aware Intention

Compiler and the mapping from instructions to

mobile-cloud Web services.

rules, and produces actuation programs that can be in-
terpreted by the client.

A mobile-cloud system should describe its function
using a WSDL specification (as described in section 4.5).
The CAIC can then use the WSDL document to create
or modify its resource-method graph to reflect the sys-
tem functionality and data dependencies (as depicted
in Figure 2). Sub-graphs within the resource-method
graph would then correlate to actions in a certain en-
vironment or application. Using a Possible Action Set
(PAS), which specifies the possible actions and rules
within a specific context, the graph could be modified to
represent the possible actions and rules in the particu-
lar context as shown in Figure 2. This resource-method
subgraph represents a set of actions that achieve the
desired intention that is appropriate to the context.

The following explains the steps involved in the basic
CAIC compilation process, from the mobile client’s re-
quest to returning the Actuation Program to the client.
Given a compiler (CAIC) that supports a certain in-
struction set (AIS) and associated mobile-cloud Web
services, (Step 1) the mobile client may submit an In-
tention object and governing Possible Action Set (PAS)
to the compiler. (Step 2) The compiler then uses the
PAS to modify the full WSDL-based resource-method
graph to represent the context-appropriate actions and
rules. (Step 3) The intention object is then mapped to
a set of possible actions in the contextual sub-graph that

satisfy the desired intention. (Step 4) This data de-
pendent and contextually appropriate resource-method
sub-graph is then represented in XML as an Actuation
Program and (Step 5) returned to the client to be pro-
cessed by its Program Interpreter.

The proposed CAIC presents a number of interesting
research challenges. An internal model (the instruc-
tion graph) will need to be implemented to represent
data dependencies between mobile-cloud resources and
their methods. Also, algorithms will have to be devel-
oped that modify the graph appropriate to the Possi-
ble Action Sets, enforcing all necessary contextual re-
quirements such as privacy and security. Finally, a lan-
guage must be formalized to efficiently represent the
Actuation Program and its inherent data dependencies.
While existing build languages like Apache Ant are able
to express tasks and their dependencies, this Actuation
Program language will have to be optimized for efficient
distributed interpretation, which may include security
or trust requirements.

3.4 Actuation Program Interpreter
Once an Actuation Program has been created by the

CAIC, it must be executed. This is to be done by an
Actuation Program Interpreter. The interpreter must
know how to interpret the Actuation Instruction Lan-
guage. In particular, an interpreter must support the
Actuation Instruction Language used by the actuation
program.

The most basic interpreter would probably be a sim-
ple program that accepts a set of tasks and their URI
methods as inputs, and then calls all URI methods in
the appropriate order, passing the data from task to
task as specified by the program. This type of inter-
preter may exist solely on the client for convenience as
shown in Figure 1. However, more mature Actuation
Instruction Languages (AILs) may support execution
of separate tasks in such a way as to support trusted
(distributed) computing spaces protected from one an-
other. More mature AILs may also allow specification of
security requirements for data transfer between tasks,
such as encryption between private data sources and
anonymization services.

The design of an Actuation Instruction Language (AIL)
and Interpreters to support Actuation Instruction Sets
specified in the AIL presents an interesting language re-
search challenge. However, maturing the AIL and spec-
ifying rich Actuation Instruction Sets supporting dy-
namically generated Actuation Programs poses a range
of research challenges that span many fields; for exam-
ple:

• Distributed Systems A scalable protocol for dis-
tributed execution of actuation programs.

• Security Secure/Trusted Computing spaces using

5

ISL-example.xml

<?xml version="1.0" encoding="UTF-8"?>

<intention name="playRecommendedMovieTrailerForGroup">
 <input>
 <group near="display-1223"/>
 </input>

 <output>
 <action name="playRecommendedMovieTrailer">
 <videoPlayback type="recommendedMovieTrailer"/>
 </action>
 </output>
</intention>

Page 1

Figure 3: ISL example

Onion-like encryption and execution of tasks by
trusted and un-trusted Web services.

• Privacy Specifying privacy requirements such as
encryption between private data sources and trusted
anonymization services.

• Adaptive Execution Optimization Support-
ing parallel tasks, reuse, caching, and conditional
branch prediction to optimize execution of Actua-
tion Programs.

4. LANGUAGE STANDARDS
This section describes the languages used in CAwb-

Web. The development of each of these languages presents
important challenges in the CAwbWeb framework.

4.1 Context Description Language
The Context Description Language (CDL) describes

the types of context supported by our framework. Some
examples of contexts described by CDL include location
coordinates (latitude and longitude), the name of a lo-
cation (The Village Mall), time and date, social connec-
tions (friends of John), environmental conditions (the
current temperature at a specified location), and his-
torical data (the location trace history for John). As
described in [5], there are a number of ways to model
context, including key-value models, markup scheme
models, graphical models, object oriented models, logic-
based models, and ontology based models. [5] indi-
cates that ontologies are the most expressive models
and fulfill most of the requirements for context mod-
eling. Therefore, we choose to represent CDL as an
ontology using the Web Ontology Language (OWL) [2].
The Context OWL ontology [1] could be used as a basis
for defining our CDL standard.

The major research challenge regarding CDL is gen-
eralizing and extending prior work, such as Context
OWL, to model the wide range of contexts supported by
our framework. We also need to investigate metrics and
standards for measuring how well contexts are defined
with regard to a particular Contextual Lookup Service
(CLS). The CLS will use these metrics when searching
for a context that can best satisfy a specified intention.

4.2 Intention Specification Language
The Intention Specification Language (ISL) describes

actions that may be performed on objects. Actions that
may be performed on objects are specified in terms of
inputs and outputs. For example, suppose that we in-
tend to play a recommended movie trailer for a group of
individuals jointly viewing a large-screen display. The
inputs for this intention are the group of users that are
near the display. The output for this intention is play-
ing the recommended movie trailer. In this example,
the inputs consist of objects and the output consists of
an action and an object. Figure 3 shows a portion of the
ISL document used to express the intention described
in this example.

The major ISL-related research challenge is defining
a rich ontology for expressing the wide range of possible
intentions in context-aware systems. The development
of ISL is closely linked to the development of the Action
Specification Language (ASL), since a Possible Action
Set (PAS) expressed in ASL will be used to determine
if an intention can be satisfied for a particular PAS.

4.3 Action Specification Language
The Action Specification Language (ASL) describes

the possible actions that a system may perform. Each
action is specified in terms of the instructions and data
used to perform the action. Actions may be associated
with rules. Rules may define the requirements for in-
puts to actions, or may be used to describe the require-
ments for interactions between actions. For example,
consider the process of retrieving the anonymized social
network profile information for a user. The first step in
this process is to perform the action of anonymizing the
user’s social network information. This action uses the
“anonymize” instruction, and the data item for this in-
struction is the user’s social network ID. The next step
in this process is to perform the action of retrieving the
user’s social network information, which is dependent
on the first anonymization action. This dependency is
specified as a rule. Figure 4 shows a portion of the ASL
document used to express the sequence of actions de-
scribed in this example. In our framework, each ASL
document is associated with a specified context and in-
tention.

Regarding ASL, the major research challenge is to
define a high-level language for expressing the possible
actions that may be performed in context-aware sys-
tems. ASL must be expressive enough to fully represent
the actions and rules that may govern the interaction
of context-aware Web services.

4.4 Actuation Instruction Language
The Actuation Instruction Language (AIL) describes

the instructions to execute to implement an intention.
Given a set of possible actions (also called a Possible

6

ASL-example.xml

<?xml version="1.0" encoding="UTF-8"?>

<action name="anonymizeSocialNetworkData">
 <anonymize type="socialNetworkProfile"
 src="${socialNetworkID}"/>
</action>

<action name="getSocialNetworkProfile"
 depends="anonymizeSocialNetworkData">
 <get type="socialNetworkProfile"
 src="${anonymizedSocialNetworkID}"/>
</action>

Page 1

Figure 4: ASL example
AIL-example.xml

<?xml version="1.0" encoding="UTF-8"?>

<task name="getGroupMembers">
 <instruction name="getUsersNearby" method="GET"
 targetURI="${getNearbyUsersServiceURI}"/>
 <instruction name="getSocialInfoForGroup" method="GET"
 targetURI="${getSocialInfoServiceURI}"/>
</task>

<task name="getRecommendedMovieTrailer"
 depends="getGroupMembers">

<instruction name="getRecommendedMovie"
 method="GET" targetURI="${getRecommendedMovieServiceURI}"/>

 <instruction name="getTrailerForMovie"
 method="GET" targetURI="${getTrailerForMovieServiceURI}"/>
</task>

<task name="playRecommendedMovieTrailer"
 depends="getRecommendedMovieTrailer">
 <instruction name="playRecommendedMovieTrailer"
 method="PUT" targetURI="${videoPlaybackServiceURI}"/>
</task>

Page 1

Figure 5: AIL example

Action Set, or PAS) and an intention document, the
Context-Aware Intention Compiler (CAIC) generates
an AIL program for implementing the intention. Con-
sider the example intention described in subsection 4.2.
The AIL generated by the CAIC for this intention is
shown in Figure 5. The AIL program is composed of a
series of tasks, with each task containing one or more
atomic instructions. Each task may optionally specify
its dependencies as a list of other tasks. If dependencies
are specified, then the tasks in this dependency list are
executed before running the task that specifies those
dependencies.

The primary AIL research challenge involves devel-
oping a language that completely describes how to use
distributed actuation program interpreters to execute
a compiled intention. Since an AIL program may be
processed and passed through a series of distributed in-
terpreters, only those sections of the AIL program that
pertain to a specific interpreter should be visible to that
interpreter. To securely isolate each interpreter into its
own trusted computing space, we will need to encrypt
each section of the AIL program with the public key of
the interpreter for that section. The XML Encryption

standard [4] can be used to perform this encryption of
the AIL program.

4.5 Web Services Description Language
The Web Services Description Language (WSDL) is

an XML-based language for describing web services [3].
WSDL is a well established standard; WSDL version
2.0 is a W3C recommendation. As described in sub-
section 3.3, the CAIC uses WSDL documents for each
Web service supported by our framework to compile in-
tention documents into AIL programs.

5. A CAWBWEB EXAMPLE
Recall the story in section 1, in which Mark visited

the video rental store, was presented with trailers cho-
sen specifically for him, and was then saved from a fire
by an alarm system which took his particular health
needs into account. This example was chosen because
it demonstrates how disparate context-aware services
residing on the cloud can be driven by a mobile ap-
plication without knowledge of the particular services
and their interfaces. We will now discuss how such a
situation would be implemented using the CAwbWeb
framework.

Mark enters the video rental store. As Mark ap-
proaches the new releases aisle, the mobile client ap-
plication on his Nokia N97 smartphone expresses the
intention to update its location. This intention, and a
context description including GPS location, is sent to
the Contextual Lookup Service (CLS). The CLS identi-
fies a compiler service (CAIC) that supports the context-
aware services at this rental store. The CLS returns
the compiler’s PAS to the client, which in turn sends a
program request including location context to the com-
piler. The CAIC compiles the request into an actuation
program which specifies the location update URI of the
video store’s “SocialFlix” service. SocialFlix is a service
which plays trailers throughout the store recommended
for the people in the store at that time.

Once aware of Mark’s presence, SocialFlix becomes
a client in our framework. Since SocialFlix performs
trailer requests regularly it has cached the information
for the appropriate CAIC, which it originally received
from the CLS. SocialFlix submits a request to the CAIC
to play a trailer recommended for Mark. The CAIC
returns an actuation program to SocialFlix specifying
the appropriate “play trailer” URI for the screen nearest
Mark, along with the video URI of that trailer. Mark
finds this trailer interesting, so he grabs the DVD for
this movie and proceeds to the checkout counter.

As Mark is waiting in line, an electrical short spon-
taneously occurs at the checkout counter, initiating a
fire. The smoke detector senses the presence of smoke
and notifies the fire suppression system by forming and
submitting“suppress fire” and “fire alert” intentions to

7

the appropriate CAIC. The CAIC composes an actu-
ation program which suppresses the fire and appropri-
ately alerts those in the store to leave. In this case,
Mark’s presence in the store changes the possible ac-
tion set (PAS) so that strobe alert lights are not used
unless they can be strobed slower than 5 hz, due to
Mark’s photosensitive epilepsy. The actuation program
is run, activating the fire alarm and sprinklers. Mark
leaves the building and the fire is extinguished by the
sprinklers.

6. CONCLUSIONS
This paper has presented a vision of mobile-cloud

computing in which context-aware services are orga-
nized and integrated by a Context-Aware Intention Com-
piler (CAIC) which turns well defined intentions into
“actuation programs.” Run-time creation of these pro-
grams allows contextual information from a mobile phone
and the environment to be integrated in real-time. Fur-
thermore, the mobile device can look up context-aware
services using a Contextual Lookup Service, which maps
context and intention to the appropriate Context-Aware
Intention Compiler. Use of the CAwbWeb framework
allows mobile-cloud challenges to be divided into four
major concerns: specifying intention, describing con-
text, identifying appropriate actions, and efficient actu-
ation of those actions. We believe the adoption of the
CAwbWeb framework will allow future mobile-cloud re-
search to focus on particular problems whose solutions
can be quickly integrated and further developed, accel-
erating research in the area of context-aware mobile-
cloud systems.

7. REFERENCES
[1] Context owl.

http://on.cs.unibas.ch/owl/1.0/Context.owl.
[2] Owl web ontology language reference.

http://www.w3.org/TR/owl-ref/.
[3] Web services description language (wsdl) version 2.0 part 1:

Core language. http://www.w3.org/TR/wsdl20/.
[4] Xml encryption syntax and processing.

http://www.w3.org/TR/xmlenc-core/.
[5] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on

context-aware systems. International Journal of Ad Hoc
and Ubiquitous Computing, 2(4):263–277, 2007.

[6] A. Beach, M. Gartrell, X. Xing, R. Han, Q. Lv, S. Mishra,
and K. Seada. Fusing mobile, sensor, and social data to
fully enable context-aware computing. In The Eleventh
Workshop on Mobile Computing, Systems, and
Applications (ACM HOTMOBILE) 2010, 2010.

[7] G. Biegel and V. Cahill. A framework for developing
mobile, context-aware applications. In Proceedings of the
Second IEEE International Conference on Pervasive
Computing and Communications (PerCom’04), page 361,
2004.

[8] L. P. Cox, A. Dalton, and V. Marupadi. Smokescreen:
flexible privacy controls for presence-sharing. In MobiSys
’07: Proceedings of the 5th international conference on
Mobile systems, applications and services, pages 233–245,
New York, NY, USA, 2007. ACM.

[9] A. Dey, G. Abowd, and D. Salber. A conceptual framework
and a toolkit for supporting the rapid prototyping of

context-aware applications. Human-Computer Interaction,
16(2):97–166, 2001.

[10] E. W. Dijkstra. On the role of scientific thought. In
Selected writings on Computing: A Personal Perspective,
pages 60–66. Springer-Verlag New York, Inc., 1982.

[11] N. Eagle and A. Pentland. Social serendipity: Mobilizing
social software. IEEE Pervasive Computing, 4(2),
April-June 2005.

[12] W. K. Edwards and R. Grinter. At home with ubiquitous
computing: Seven challenges. In Proceedings of the 3rd
International Conference on Ubiquitous Computing
(Ubicomp 2001), pages 256–272, May 2001.

[13] C. M. Gartrell. Socialaware: Context-aware multimedia
presentation via mobile social networks. Master’s thesis,
University of Colorado at Boulder, December 2008.

[14] T. Gu, H. Pung, and D. Zhang. A service-oriented
middleware for building context-aware services. Journal of
Network and Computer Applications, 28(1):1–18, 2005.

[15] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi, S. B. Eisenman, X. Zheng, and A. T.
Campbell. Sensing meets mobile social networks: the
design, implementation and evaluation of the cenceme
application. In Proc. of the 6th ACM Conf. on Embedded
Network Sensor Systems (SenSys 2008). ACM, Nov. 2008.

[16] A. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and
C. Diot. MobiClique: middleware for mobile social
networking. In Proceedings of the 2nd ACM workshop on
Online social networks, pages 49–54. ACM, 2009.

[17] B. Schilit, N. Adams, R. Gold, M. Tso, and R. Want. The
PARCTAB mobile computing system. In Proceedings
Fourth Workshop on Workstation Operating systems
(IEEE WWOS-IV), page 2. Citeseer, 1993.

[18] T. Strang and C. Linnhoff-Popien. A context modeling
survey. In First International Workshop on Advanced
Context Modelling, Reasoning and Management, UbiComp,
September 2004.

8

