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Abstract
Cross-layer design of network protocol stacks is impor-

tant for wireless networking applications due to limited re-
sources. Although much has been proposed in the literature,
little experimental cross-layer work has been done. Even less
has been done concerning actual designs for such cross-layer
network stacks. This paper presents X-Layer, an implemen-
tation of a “cross-layer” network stack for wireless sensor
networks, designed under the assumption that different net-
work layers will interact and share resources directly with
each other. X-Layer’s cross-layer stack is compared with
a network stack implemented with traditional network layer
abstractions using the same basic protocols at each layer as
in the cross-layer stack. The efficiency and effectiveness of
the stacks are compared and evaluated. Based on this eval-
uation a new mechanism is proposed for managing shared
network resources and code in an orderly fashion.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-

work Architecture and Design—Wireless communication,
Distributed networks, Network communications, Network
topology

General Terms
Performance, Design, Experimentation

Keywords
Cross-Layer Design

1 Introduction
Cross-layer approaches towards network protocol design

have held much promise in recent years [1, 2, 3, 4]. In-
deed, our contention is that cross-layer design of network
protocol stacks makes its most compelling case for improv-
ing network performance in the field of wireless sensor
networks (WSNs), due to the extreme resource constraints
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posed by the sensor node devices and by their relatively
low bandwidth RF radios. However, most current proposed
approaches towards cross-layer design have not empirically
validated their theoretical ideas with a detailed implementa-
tion and evaluation on a real world system. In this paper, we
present X-Layer, which we believe is the first experimental
implementation and evaluation of a cross-layer network pro-
tocol stack in WSNs on standard WSN hardware and soft-
ware.

Cross-layer design contends that increasing direct interac-
tions between each of the layers in a network protocol stack
leads to improved performance and lower resource usage, at
some cost in complexity of debugging. Traditional network
protocol stacks have been designed with independent layer-
ing in mind, e.g. the Internet protocol stack, such that each
layer is only able to communicate with the layer above it
and below in the stack. This independently layered approach
led to great leaps forward in innovation once the service in-
terface between each layer was standardized, i.e. as long as
network designers knew what services were expected of each
layer, then they could go off and introduce the necessary pro-
tocol functionality underneath these service interfaces and
independently optimize each layer.

While this independently layered approach towards net-
work protocol stack design has paid great dividends in the
IP world, its extension to the world of WSNs is more prob-
lematic, primarily due to the resource limitations of sensor
nodes. Independent layering comes at a cost in system per-
formance and resources. First, independent layering is sub-
optimal if a layer L only knows about its neighboring layers
L-1 and L+1. In contrast, if a layer L can base its adapta-
tion decisions by accessing all the performance parameters
of all N layers of a network stack, then it can make a more
informed and hence more efficient adaptation decision. Sec-
ond, independently designed layers often replicate buffers,
variables, data structures, e.g. neighbor tables, and func-
tionality across layers, e.g. link state estimation, with only
limited regard as to resource/memory consumption. This
is because most network protocols operate on sufficiently
resource-rich platforms, e.g. PCs and laptops with several
GB of RAM, where designers don’t have to be overzealous
about minimizing resource consumption. Even many of to-
day’s cellular smartphones have hundreds of MB of RAM.
One of the smallest TCP/IP stacks known consumes at least
5 KB of RAM [5]. Even this is too large for many of today’s



standard WSN nodes, which may allocate at most 1 KB of
RAM to the entire network stack.

Thus, we feel that sensor networks present the strongest
case yet made for cross-layer design of the network protocol
stack. Current implementations of network stacks in sen-
sor networks follow a more traditional independent layering
approach [6, 7]. The alternative architecture of a cross-layer
network protocol stack is shown in Figure 1. We observe that
there are NC2 pairwise combinations, including both the
traditional neighbor-layer interactions of an independently
layered network stack (arrows down the center) as well as
“bonus” pairwise interactions between non-neighboring lay-
ers (arrows on either side of the stack). These bonus inter-
actions represent opportunities for the cross-layer approach
to improve performance over the traditional independently
layered network stack. Also, though not shown, data struc-
tures and buffers can be shared across many layers, reducing
memory consumption.

Figure 1. X-Layer’s cross-layer network protocol stack.

The figure raises several intriguing broader research ques-
tions. Which sets of pairwise cross-layer interactions yield
the greatest performance improvement in the network? More
specifically, what data variables and structures at what layers
are most pivotal to achieving improved performance? Given
the possibility of feedback loops, what can be done to miti-
gate instability? How can such a cross-layer network stack
be most efficiently and effectively realized? All of these re-
search questions certainly deserve the WSN research com-
munity’s attention. However, the first and likely most im-
portant research question, which is answered by this paper,
is whether we can show in a real world system that there is
any measurable benefit at all to network performance due to
cross-layer interactions, i.e. can we find at least one subset of
pairwise cross-layer interactions that demonstrably improves
the network? Our research community requires an empirical
proof as to the efficacy of cross-layer approaches.

The main contribution of this paper is that it quantifies the
real-world benefits of cross-layer design by building a com-
plete cross-layer network stack solution on standard WSN

hardware and software. We choose a select subset of pair-
wise interactions, and validate that this subset achieves su-
perior joint performance when compared to a more tradi-
tional independently layered stack, as measured in network
throughput, latency, and energy lifetime. The challenges that
we have overcome to accomplish this research include im-
plementing each of the layers of our network protocol stack
in both their independently layered forms and their cross-
layered variants, selecting the specific cross-layer interac-
tions to study, and designing and executing the experiments
to evaluate these differing approaches in a testbed environ-
ment.

In the following, Section 2 summarizes the related work
in cross-layer design. Section 3 describes the design and
implementation of the X-Layer cross-layer network stack.
Section 4 explains the evaluation of X-Layer and the exper-
imental results, including several observations that lead to
a comprehensive new architecture for realizing cross-layer
network stacks. Section 6 describes the rich future work left
to be explored in this promising WSN research area. Sec-
tion 7 concludes the paper.

2 Related Work
We classify prior work in cross-layer network research

into three categories, namely research into cross-layer
WSNs, mobile ad hoc networks (MANETs), and wired
TCP/IP networks.

2.1 Wireless Sensor Networks
Almost all prior work regarding cross-layer networking

for WSNs has involved algorithmic analysis and/or simula-
tion work, rather than building and evaluating an implemen-
tation of a cross-layer network stack. Since energy is a lim-
ited resource on wireless sensor nodes, much of the prior
work has focused on energy conservation. [8] reviews ap-
proaches for optimizing at each layer of the WSN network
stack and discusses motivations for cross-layer design, but
does not provide a formal analysis of results. The main
focus in this paper is on theory and design. [9] presents
a cross-layer stack for WSNs that uses interaction between
the MAC protocol and the routing protocol to minimize en-
ergy consumption; the primary focus here is on theory and
simulation work. van Hoesel et. al. compare their cross-
layer approach to traditional SMAC and DSR protocols, and
show using simulation results that their cross-layer protocols
achieve longer network lifetime. In a paper focused on sim-
ulation results, Sichitiu [10] describes a cross-layer interac-
tion between the routing and MAC layers to conserve energy
by setting up a synchronized off-on schedule for the wire-
less sensor nodes in a WSN. Simulation results verify that
this energy conservation scheme can significantly increase
network lifetime for certain types of networks. With a ba-
sis in theory and simulation, [11] proposes two energy effi-
cient schemes for wireless ad-hoc and sensor networks that
uses cross-layer interactions between the routing layer and
MAC layer. In the first scheme, called Energy-Constrained
Path Selection (ECPS), interactions between the MAC and
routing layers are used to choose a route that maximizes the
probability that the packet will reach the destination in at
most some number of n transmissions. The second scheme,



called Energy-Efficient Load Assignment (E2LA), uses in-
teractions between the MAC and routing layers to efficiently
distribute load among a set of routes according to success-
ful packet transmission probability. The successful packet
transmission probability used in this paper is similar to the
Expected Number of Transmissions (ETX) metric used in
our routing layer.

In [12], an algorithm for a cross-layer joint optimiza-
tion problem is presented that seeks to maximize WSN life-
time. Joint optimal design of the physical, MAC, and rout-
ing layers is considered in this algorithm, and the authors
perform numerical studies to show the benefits of their ap-
proach. [13] uses numerical analysis to survey energy con-
sumption in WSNs using cross-layer models that jointly con-
sider topology, the MAC layer, and radio transceiver energy
consumption. The authors reach several interesting conclu-
sions. One such conclusion is that with a realistic radio
model and certain network conditions, single-hop commu-
nication can be more energy efficient than multi-hop com-
munication. Both [12] and [13] focus primarily on theory
and numerical studies and analysis.

Cross-layer interactions in network stacks for WSNs
impact the architecture and design of such stacks. Al-
though Chameleon [6] is not a cross-layer network stack, the
Chameleon architecture for sensor networks uses cross-layer
bit-packed header fields to reduce the size of packet headers
and conserve memory. Chameleon also implements cross-
layer information sharing. SP [14] is also not a cross-layer
network stack, but it does enable some cooperation between
the network and link layers by implementing a shared neigh-
bor table and message pool.
2.2 Mobile Ad-hoc Wireless Networks

There has also been much research into cross-layer net-
working for Mobile Ad hoc Wireless Networks (MANETs),
since it is believed that a strictly layered approach inhibits
the performance optimizations needed to deal with the dy-
namic mobile and energy-constrained environments [15, 16].
Most of this work involves theoretical and/or simulation-
based work, rather than evaluation of a cross-layer network
stack implementation for MANETs. [15] proposes the Mo-
bileMan architecture for MANETs, which allows different
layers to cooperate by sharing network status information.
No evaluation of results is presented in this paper. [16]
makes the case for the importance of cross-layer design in
ad hoc wireless networks and reviews opportunities for ben-
eficial cross-layer interactions between different layers in the
network stack. Both [15] and [16] focus on theory and de-
sign and do not present simulation or implementation results.

In [17], Kawadia and Kumar present simulation re-
sults for several cross-layer interactions in a wireless ad hoc
network. Their simulation results for examples involving
an adaptive rate MAC protocol and adaptation of transmit
power show that some cross-layer interactions can lead to
unstable loops and an unintended negative impact on system
performance. In [18] the authors discuss simulation results
for a wireless ad hoc network that show improved application
performance resulting from cross-layer interactions between
the physical, data link, and network layers.

While all of the papers mentioned so far in this MANET

subsection focus on theory, design, and/or simulation, [19]
describes an actual implementation of a cross-layer interface
for interaction between layers, called Xian. Xian is intended
to facilitate cross-layer experiments on MANET testbeds,
and is implemented as a set of Linux kernel space and user
space components. Xian enables interaction between adja-
cent and non-adjacent layers. In the examples discussed in
this paper, upper layers are able to access metrics provided
by the 802.11 MAC layer. While the architecture of this
system is interesting, clearly this particular implementation
is not appropriate for resource-constrained wireless sensor
nodes.

2.3 Wired Internet
Since it can be argued that the success of the wired Inter-

net is primarily due to its layered architecture [17], the case
for cross-layer networking in wired networks is less clear
than it is for wireless networks. However, the authors of
[20] contend that cross-layer associations are critical to net-
work management tasks in the wired Internet, such as back-
bone planning, maintenance, and failure diagnosis. A cross-
layer policy server and cross-layer database are proposed that
would store the cross-layer associations between layers and
enable the use of management applications that would ex-
ploit this information. In this paper, the authors focus on a
discussion of the architecture of this cross-layer service.

3 Cross-Layer Network Stack Design & Ar-
chitecture

This section discusses how we achieved X-Layer’s cross-
layer network stack according to the model outlined in Fig-
ure 1. We discuss the pertinent protocols that were imple-
mented at each layer, as well as the key variables that were
exposed to cross-layer adaptation. Base case protocols were
developed for each relevant layer conforming to an indepen-
dently layered design, while their cross-layer cousins were
developed in parallel by modifying the base cases to allow
for cross-layer adaptation to other layers’ parameters.

The choice of each protocol was directed by experience
in sensor network design. For instance, the routing layer is a
“tree” protocol which is a natural protocol for many sensor
network applications. Many sensor network applications re-
quire data from many nodes to be routed to a “root node” or
“sink node”. The nature of networks in which many nodes
within a network are spread throughout a system of interest
and one node is connected to a storage system lends itself to
tree routing protocols. The MAC protocol is partially inte-
grated into the Chipcon CC2420 radio, which provides link
layer ACKs (important for reliability of sensor data) while
using relatively low power to operate the radio (compared to
802.11 or bluetooth wireless systems). Frugal power usage
is a key to making low cost sensor systems last in the field
as long as possible. Also, since low power is important the
transport layer tries to achieve reliability without using too
much power or being too complex.

Our cross-layer network stack is implemented using stan-
dard WSN hardware, namely TELOSB motes [21], and stan-
dard sensor OS software.



3.1 MAC & Physical Layer
The physical layer and its medium access control (MAC)

layer present us with an interesting set of possibilities for
cross-layer design. These optimizations or shared variables
center around trading performance for power, or vice versa.
Performance can be degraded, both in terms of radio power
(wireless range) and MAC layer transmit/retransmit rates, in
order to use less power and fewer bandwidth resources.

The possibility for cross-layer integration of the MAC
layer depends on the particular protocol being used. How-
ever, many MAC layer protocols support some form of bea-
cons and/or retransmits (auto-acknowledgements). For this
cross-layer design both were supported and the routing layer
took advantage of the “link-level” auto-acknowledgements
built into the ChipCon CC2420 radio. It is important to note
that in this case the physical and MAC layers have already
been partially interwoven due to the use of a radio that in-
cludes some MAC layer functionality.

Adjusting radio transmit power is a possibility whenever
the particular radio and driver software supports an interface
for setting radio transmit power. In our specific implemen-
tation the ChipCon CC2420 radio was used and allowed us
to modify radio transmit power. This functionality was inte-
grated into the design of the routing layer.

Other possibilities for cross-layer integration of the MAC
layer could include modifying the maximum number and
rate of MAC layer retransmissions, and using the link quality
metrics (RSSI or LQI) directly (in this case the routing layer
uses these metrics for another metric ETX).

3.2 Network Routing Layer
The protocol built for X-Layer’s routing layer is the Bidi-

rectional Tree Protocol (BTP), a close relation to the Collec-
tion Tree Protocol [22] (CTP). BTP extends CTP to support
bidirectional unicast routing, i.e. routing in both upstream
and downstream data directions. The original CTP design
forms a routing tree centered with a base station as the root
or data sink. Unicast messages are routed towards the root
by the tree’s leaf and branch nodes. As a basic tree protocol,
CTP is based around a distance measure, specifically the dis-
tance or depth from a root. This distance measure is used to
guide packet routing toward the root node. Such tree proto-
cols are especially well suited for “data-centric” applications
common to WSNs. BTP leverages this tree network topol-
ogy to perform unicast routing in the reverse or downstream
direction, i.e. from base station to a leaf sensor node.

BTP, like CTP, is best used for relatively low traffic rates.
It is best effort, meaning that it does not guarantee 100% de-
livery (this makes it a good protocol to use with the trans-
port layer). Also, BTP makes the assumption that it can
in some way infer the link quality of neighboring nodes in
the network (those nodes that are only one hop away). This
link quality is used to order the tree and make routing deci-
sions. BTP assumes that nodes use link-level retransmissions
(which is true of the 802.15.4 MAC layer in this case).

The most important value or variable that guides the orga-
nizing and routing within BTP is called ETX [23], the esti-
mated number of transmissions necessary to get to the root or
to get to certain other destination nodes in the network. ETX

if (meanNextHopETX > ETX_HIGH_THRESHOLD && CURR_TRANSMIT_POWER <   
    MAX_TRANSMIT_POWER) {
    increaseCurrTransmitPower();
}
else if (meanNextHopETX < ETX_LOW_THRESHOLD && CURR_TRANSMIT_POWER > 
    MIN_TRANSMIT_POWER) {
    decreaseCurrTransmitPower();
}

Figure 2. BTP Transmit Power Adjustment Pseudocode

is cumulative and therefore implies the total number of trans-
missions that will be made on all hops along the path taken
from origin to destination. ETX is used by BTP as a “rout-
ing gradient” meaning that packets will follow a path of least
ETX. In our BTP implementation, we obtained the CC2420
radio’s link quality indicator (LQI), rather than RSSI, as an
estimator of the link quality [24]. We defined ETX as a sum
of all LQI values from each hop from a source node to a des-
tination node. A weighted moving average algorithm is used
to smooth changes to LQI over time. In our implementation,
LQI is scaled such that LQI is inversely proportional to link
quality. That is, large LQI values indicate poor link quality,
while small LQI values indicate good link quality.

BTP is an example of how different routing protocols pro-
vide unique aspects of design to other layers, depending on
the indicators or metrics used by the protocol. In the case
of BTP, ETX is the parameter that is exposed to other layers
as an indicator. The method by which we exposed ETX was
to create a special API function that could be called to read
ETX by any layer. The ETX value is used by other layers to
infer connectivity over the implied topology. Therefore, it is
used to modify the radio transmission power, which in turn
can result in a different topology that often leads to better
connectivity (it did in all our tests, and is rather intuitive).

The routing layer provides us with an interesting chance
to integrate cross-layer design with multiple layers both
above and below. In X-Layer, the routing layer provides
metrics for the application and transport layer while incor-
porating variables from the physical layer into its design.

The cross-layer behavior implemented for BTP involves
an interaction with the physical layer. BTP adjusts radio
transmit power for each wireless sensor node in the network
based on the ETX value for the next hop in the route toward
the destination node. A weighted moving average algorithm
is used to smooth changes to next-hop ETX over time. If
the smoothed next-hop ETX value exceeds a fixed threshold
value, then we increase transmit power. Since high ETX val-
ues indicate poor link quality, the goal here is to improve link
quality by increasing transmit power. If the smoothed next-
hop ETX value is below a minimum fixed threshold value,
then we decrease transmit power. Since low ETX values
indicate good link quality, the objective of this logic is to
reduce transmit power and thus reduce energy consumption
while still maintaining good link quality. Figure 2 shows
a representation of this logic in pseudocode. By running
this transmit power adjustment logic in a distributed fash-
ion on all sensor nodes in the network, we seek to find a
near-optimal logical network topology and route between the
source and destination nodes.



currETX = (ALPHA * newETX) +  
          (1 – ALPHA) * averageOfPreviousFiveETXs; 
ETXdiff = newETX – currETX; 
 
if (ETXdiff > 0) 
 increaseSendRate; 
else if (ETXdiff == 0) 
 doNothing; 
else if (ETXdiff < 0) 
 decreaseSendRate; 

Figure 3. Application Send Rate Adjustment Pseudocode

3.3 Transport Layer
X-Layer implements a simple stop-and-wait reliable

transport protocol that provides support for multiple concur-
rent connections between two nodes in the network, called
the Lightweight Transport Protocol (LTP). Stop-and-wait
was chosen instead of a windowing scheme to reduce mem-
ory usage and code size, which are of particular concern
on resource constrained wireless sensor nodes. End-to-end
ACKs are used to ensure reliable data transfer between the
sending and receiving nodes. We use a timeout mechanism
based on the Jacobson-Karels algorithm for the base proto-
col.

The cross-layer behavior implemented for the transport
protocol involves an interaction with the routing layer. This
cross-layer behavior makes use of ETX information pro-
vided by the routing layer (BTP) to set the timeout in the
transport layer. Since ETX is cumulative in BTP, we use the
ETX from the source to the destination node to estimate the
number of hops between the source and destination by divid-
ing ETX to the destination by an ETX per hop value.

numHopsestimated =
ET Xcumulative

ET Xper hop

Based on experimental data, we have observed that an ETX
value of approximately 12 indicates good link quality over
one hop for our system, and is thus used as the ETX per hop
value. Logic in LTP tracks changes in the estimated number
of hops from the source to the destination over time. If the
change in estimated number of hops over time exceeds some
HOP COUNT DELTA threshold, then we use the estimated
number of hops to set the timeout value in LTP. Based on
observations of our system, we have found that 1000 ms is
a reasonable value for timeout over one hop. Therefore, to
set the timeout value, we simply multiply the estimated hop
count by the timeout value per hop (1000 ms).

timeoutend−to−end = numHopsestimated ∗ timeoutper hop

By using ETX to the destination to set timeout, we are able
to adapt more quickly to dramatic changes in connectivity
between the source and destination nodes than would be pos-
sible with Jacobson-Karels.
3.4 Application Layer

We designed a basic sensing application that produced
sensor data at a fixed rate of one packet every five seconds.
This data application was not adaptive to changes in network
topology or link quality. This is typical of many deployments
of sensor applications [25, 26].

Figure 4. Summary of specific cross-layer interactions
implemented in X-Layer.

To explore the effect of cross-layer interactions, we mod-
ified this application to adjust its packet sending rate in re-
sponse to changes in network quality. In particular, we ex-
plored the cross-layer interaction between the application
layer and the routing layer. The application receives link
quality information from the routing layer and uses that in-
formation as an input to improve the overall throughput as
well as reduce current draw.

Our sample application received the ETX values for each
packet from the routing layer, performed a weighted av-
eraging algorithm with the previous values, compared the
smoothed result with the current ETX average, and adjusted
the packet send rate based on the comparison. If the new
ETX average is better than the current ETX average, the node
takes advantage of the good link quality and sends packets at
a higher rate. On the other hand, if the new ETX average is
worse than the current ETX average, the node assumes the
link quality has dropped and sends packets at a lower rate.
Figure 3 represents the pseudocode for this logic. The AL-
PHA parameter could be used to adjust the weights of the
averaging algorithm so that the ETX value does not fluctuate
as much when the wireless link is unstable. How much the
rate is adjusted varies from environment to environment.

3.5 Summary of Cross-Layer Interactions in
X-Layer

Figure 4 summarizes the pairwise cross-layer interactions
that were implemented in X-Layer. BTP calculates ETX val-
ues and exposes them to both the transport and application
layers, which adjust timeouts and sending rates respectively.
BTP queries the physical layer to receive LQI information
and also adjusts transmit power dynamically.



Figure 5. Testbed Programming and Data Collection
Software

4 Cross-Layer Evaluation
This section explains the methodology and hardware used

to evaluate our X-Layer network protocol stack. It discusses
the experimental setup and comparison cases. The results
from the experiments are presented in the second part of this
section. Finally, we present observations that lead to a new
cross-layer architecture which we feel more fully realizes
the potential of cross-layer networking in wireless environ-
ments. This solution addresses how a cross-layer network
stack may be designed in an orderly abstract manner while
managing shared resources in an efficient and organized way.

4.1 Experimental Methodology
We evaluated the performance of our X-Layer cross-layer

network protocol stack and compared it to an independently
layered network protocol stack. This comparison was per-
formed over an indoor testbed of 56 TELOSB motes. The
testbed was set up to allow download of program images
via USB cables attached to each mote. We developed the
software to manage the testbed for our experiments. Fig-
ure 5 shows a screen shot of the testbed collection software’s
programming and data collection environment, in which the
ELF files corresponding to our network stacks were loaded
along with an end-to-end communication application onto
the sensor nodes in the testbed. Depending on the power
level, the network topology varies from an all-to-all network,
in which every node has a one hop connection to every other
node, to a multi-hop network sometimes four hops across.
Diagnostic output was collected via the wired USB infras-
tructure while the network stacks executed and forwarded
wireless data.

We evaluate three different non cross-layer “basecases”
for comparison to our cross-layer stack. The basecase code
runs the same protocols at each layer as our cross-layer de-
sign: LTP transport, BTP routing, and the same application
code. The three basecases are configured to different ra-
dio power levels corresponding to different network topolo-
gies. The power levels given to the CC2420 radio interface
are 2, 10, and 30 (about dBm -2.87E+05, -1.10E+05, and
-9.14E+02 respectively). We will refer to these three cases
as basecase.2, basecase.10, and basecase.30. We compare
these three cases to the X-Layer cross-layer network stack
implementation.

We also conducted another comparison between two dif-
ferent network stacks running beneath application code that
attempts to extend battery life through reducing the appli-
cation layer send rate as battery voltage drops. The per-
formance of differently configured network stacks are com-
pared to each other in order to understand how optimiza-
tions in one layer (the application layer) may be affected by
configurations within other layers (the routing and transport
layers). The methodology for this test was to run the same
energy-aware adaptive application on top of the basecase.2
stack and also the basecase.10 stack. These network stacks
were chosen for the differing topologies they provided, a
good example of how small changes in network stack con-
figuration affect the performance of other layers.

For analysis, we focused on three metrics: goodput (both
in absolute terms and as a success ratio of packets sent from
the application layer), total throughput (total amount of
bandwidth put in the air by the network), and latency (end-
to-end time for application layer to send and receive). “good-
put” will give a sense of how much data is actually being sent
through the network successfully and when compared to to-
tal throughput one can see how efficient the particular net-
work stack was at achieving that “goodput”. The latency is
particularly important for understanding how the changes to
transport layer timeouts and resends affects the overall end-
to-end network latency.
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Figure 6. End-to-End Receive Ratio

4.2 Experimental Results
The first metric presented is that of end-to-end receive ra-

tio. This part of the evaluation is meant to show what over-
all performance the compared cases achieve. These results
should be kept in mind when evaluating the other perfor-
mance metrics. In Figure 6, we show the percentage of pack-
ets that are successfully transported end-to-end from source
node to the sink, or root node of the tree. The experiments
demonstrated that given reasonable connectivity within BTP,
the transport layer ensured 100% packet delivery through-
out the length of the experiment for both X-Layer and most
variants of the discretely layered stack. However, in base-
case.2, in which the transmit power is held at a constant set-
ting of 2, the connectivity was intermittent and resulted in
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Page 1

X-Layer Basecase.2 Basecase.10 Basecase.30
0

0.5

1

1.5

2

2.5

3

Figure 7. Resends Per Packet Sent

a very low receive ratio. However, poor connectivity was
not only due directly to low radio transmission power, but as
will be shown later in the discussion of Figure 7, the poor
connectivity resulted in a greater number of retransmissions
(more wireless traffic) and likely caused interference. When
running protocols that retransmit or resend failed packets,
poor connectivity can leads to more transmissions and more
inter-node interference, further degrading end-to-end net-
work connectivity.

This interference is evaluated through measuring the to-
tal number of resends per packet so as to understand the
amount of bandwidth actually being sent by the network in
order to achieve the end-to-end success rates from Figure 6.
Figure 7 shows for each test case the average number of re-
sends per packet, which is inversely proportional to goodput.
Specifically this metric refers to the average number of ex-
tra transmissions (optimally, all packets would need only be
transmitted once by the sender). The best performer in this
case was the non-cross-layer stack set to a constant trans-
mission power of 30. This is not unexpected due to the fact
that this power level results in an all-to-all network topology
with very good connectivity. However, this is achieved at the
cost of much higher energy usage by the radio. The cross-
layer stack, results in a slightly higher number of resends
than basecase.30, however it is still much more efficient than
both basecase.10 and basecase.2. While basecase.10 had suf-
ficient inter-node connectivity to successfully transport all
packets across the network it resent packets more than 8
times as often as basecase.30. As stated earlier, the high
number of retransmissions in basecase.2 further degraded the
already poor inter-node connectivity.

The performance of the cross-layer stack in terms of re-
transmissions is rather impressive considering that the cross-
layer network code resulted in a changing topology, opti-
mizing radio transmission power for multi-hop or single-hop
topologies depending on inter-node connectivity. In spite
of the changing topology the cross-layer stack was able to
fix routes by modifying transmission power quickly using
information from the MAC and routing layer. This infor-
mation was concurrently taken into account at the transport
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layer, which could then modify its connection timeout so as
to avoid unnecessarily resending the packet. This is an exam-
ple of how sharing of information between the layers made
all layers more resilient to sudden changes within each other.

While three of the cases (basecase.10, basecase.30, and
X-Layer) achieved 100% end-to-end receive ratios (Figure 6)
the costs in terms of total transmissions (or traffic created)
were not the same. Neither was the amount of power the
different cases required to achieve the same end goal, as
presented in Figure 8. The average power in terms of cur-
rent consumption was measured every 10 seconds while the
experiment was running. The minimum, mean (average),
and maximum of these power usage values are shown for
each case in Figure 8. While basecase.30 achieved the best
connectivity and transmission efficiency due to higher ra-
dio transmission power, it was precisely the high transmis-
sion power that caused this code to use more overall power
than both the cross-layer code and basecase.10. Even though
basecase.10 ended up resending packets more than 8 times
as often as basecase.30, it still used less power on average to
achieve the same goal of 100% end-to-end packet transport.
It should be noted that because basecase.10 made many re-
transmissions, continuing to increase the application layer
send rate may have resulted in basecase.10 retransmissions
causing enough interference so as to cause the network to
break down, while basecase.30 may have continued to sup-
port a higher application layer data rate. However, for many
sensor network applications a send rate of 1 packet every
five seconds is more than enough [27, 28]. The basecase.2
experiment showed how detrimental it can be to have radio
transmission configured too low. If the transport or rout-
ing layers are retransmitting packets too often due to bad
connectivity, then much more power can end up being con-
sumed as presented in the relatively higher average power
usage of basecase.2. This is a classic case of how locally
designing or optimizing certain layers can affect other layers
in a very negative, and often perplexing (or contradictory)
fashion. In this case, lowering the physical layer transmis-
sion power, perhaps to save power, resulted in the opposite
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effect, consuming more power overall due to transport and
routing layers creating extra traffic to compensate for poor
link connectivity. In the end, the overall system used much
more power than the same code with the radio transmission
power turned up (and failed to achieve reliable transport).

The cross-layer stack uses less power on average than the
other cases. This is due to X-Layer implementing the trans-
port and routing layers to react to changes in other layers.
High connectivity was achieved while keeping transmission
power low. The optimization of competing factors (power
usage and connectivity) was not explicitly written into the
cross-layer design. Rather, each layer was designed to re-
act to information from other layers in a reasonable pairwise
fashion. When connectivity is bad on a packet arriving at
physical layer, the routing layer would immediately react by
changing the routing tables to reflect this fact, changing the
ETX value. Also, the transport layer may adjust its time-
out value. All these changes allowed for connectivity to be
established while keeping power low and avoiding many un-
necessary retransmissions. Due to the cross-layer design, re-
liable transport was achieved efficiently (few transmissions)
using the lowest average power usage.

The final metric evaluated in Figure 9 is that of end-to-
end latency, namely how long it took a successfully relayed
packet to travel from the source node to the root. This metric
is most reflective of the topology of the network. In base-
case.10 and basecase.30 there was always a direct link (of
varying quality) being used by the routing layer, hence the
latency is reflective of how long it took on average to send,
receive, and acknowledge a single transmission. In the base-
case.2 experiment it usually took 3 or 4 hops for packets to
reach the root from the source and this is reflected in higher
average end-to-end latency representing many transmissions
within the network. In the cross-layer experiment the topol-
ogy favored a direct connection (when good quality) between
the source node and the base. However, sometimes transmis-
sion power was reduced and a multi-hop network used. This
changing topology is reflected in the slightly higher average
end-to-end latency of the cross-layer experiment.
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4.3 On the Benefits of Cross-Layer Visibility
to Applications

In this section, we explored the benefits of cross-layer
visibility to application designers. We constructed a sim-
ple proof-of-concept test to show how a typical application
might benefit from monitoring and reacting to lower layer
system information. In this particular case the application
was written to extend sensor life by reducing packet send rate
as the battery voltage dropped. For certain applications this
may not be acceptable, while for others lowered fidelity is
tolerable. Our goal was to investigate the benefits of taking
a complete system approach towards development at each
layer. The test was conducted separately from other tests,
and compared the life of nodes sending at a constant rate and
nodes that adapted their send rate to battery voltage. While
it is rather intuitive that reducing send rate would reduce the
overall power usage, some interesting behaviors were ob-
served and are presented in Figure 10. The send rate was
reduced gradually from one packet every 5 seconds down to
one packet every 10 seconds (resulting in halving the fre-
quency of sensor readings) depending on the battery level.
This was meant to simulate a sensor network that is still try-
ing to achieve reasonable frequency of reading while extend-
ing battery life.

We observed that energy-aware adaptation by reducing
the send rate at the application layer was not always effec-
tive, depending on the underlying network conditions. Adap-
tation was relatively ineffective while running the basecase.2
network stack, i.e. the overall power usage did not drop sig-
nificantly despite reducing the send rate at the application
layer. This is probably due to the fact that end-to-end mes-
sage delivery would often fail and result in many retransmis-
sions and transport layer resends within the network. The ini-
tial application layer send rate was already greater than the
network stack could handle and as such, lowering the send
rate resulted in small changes in overall power consumption.
However, when running the application code above a more
highly connected and reliable network, as in basecase.10, the
reduction of application send rate did result in 4 to 6 times



greater power conservation. It is interesting that a rather
obvious power conservation technique (reducing application
send rate) may or may not have the desired effect of saving
power, depending on the configuration of the network stack.
This empirical result confirms that performance of the over-
all system can benefit by extending cross-layer visibility of
the network stack all the way into the application layer. Also,
it shows how the lack of information from other layers could
lead to optimizations having little or no effect. Basecase.2
lost half of its sensor readings and saved very little power in
the process. If information about network connectivity and
the topology had been taken into account at the application
layer this wasteful “optimization”, which resulted in an inef-
fectual degradation of quality, could have been avoided.

4.4 Inter-Layer Resource Broker: A New
Mechanism for Managing Network Layer
Interaction

We extract several observations from our implementation
experience with X-Layer, in particular some of its shortcom-
ings that help lead us to an improved cross-layer design.

Observation #1: X-Layer is limited in its ability to provide
full N-layer joint optimization of policy behavior.

While our implementation has quantified the benefits of
pairwise cross-layer interaction, our observation is that a me-
diating entity would provide a more powerful mechanism for
coordinating policy decisions, e.g. don’t unnecessarily re-
duce sending rate as in the previous subsection, and arbitrat-
ing conflicts between adaptation policies of differing layers.
In the most general case, such a mediator would arbitrate
the possibly conflicting policies of all N layers, developing
jointly optimized policy behavior. While our results did not
indicate any cases where policies were in direct conflict, we
feel that we should consider the case where adaptation poli-
cies come into conflict, e.g. one layer raises the transmit
power while another wants to drop it, or one layer increases
data rate while another layer wants to drop it. Even worse, it
is possible to create a feedback loop [17], wherein one layer
adjusts a parameter, causing notification to another layer to
adjust another parameter, causing a domino effect of adjust-
ments that may be endless. This feedback may be unstable,
resulting in adaptation that amplifies poor performance. By
instituting a centralized mediator that understands the indi-
vidual adaptation policies of each layer, then the mediator
can arbitrate between policies, decide on a best course of ac-
tion that reconciles possibly competing policies over all lay-
ers, and jointly maximize the desired system metric. At the
same time, the mediator may forestall any feedback loops
within the cross-layer stack. For example, if each layer is
reading the battery level and employs its own independent
energy conservation policy, then the resource broker can re-
alize that the application layer is backing off too harshly in
its sending rate and should keep it as is, while the routing
layer is right in its rate of backing off on extraneous trans-
missions. Thus the resource broker can adjust what were
formerly independent energy backoff policies into a jointly
optimal policy.

Observation #2: A more general and efficient sharing
mechanism, e.g. a generic publish/subscribe interface, is

Figure 11. Informed by our experiences with X-Layer, an
outcome of our research is a new cross-layer architecture
consisting of a resource broker that (1) jointly manages
and resolves policy conflicts, and (2) provides a generic
publish/subscribe mechanism for sharing data between
all layers.

needed for cleanly sharing parameters, metrics, and data
structures and for efficiently notifying interested layers of up-
dates in shared information.

Our experience with X-Layer indicated that the sharing
of parameters, metrics, and data structures between two par-
ticular layers was largely ad hoc and specific to those two
layers. The sharing of each variable between a given two
layers required detailed semantic knowledge of each layer,
i.e. where in a layer’s code to read/write a given variable
that was being exposed to another layer. When seeking to
share information between any two layers, we face a com-
binatorial explosion in the amount of insider information re-
quired to specify the location and semantic meaning of each
shared data entity. As a result, it is incumbent on our de-
sign to develop a cleaner, more efficient, and more general
mechanism for sharing information. In addition, our current
implementation essentially polls the shared information. A
more efficient implementation would employ a callback to
notify interested layers only of sufficiently interesting new
shared information, i.e. those that meet a filtering condition
specified by each layer. For example, such a notification en-
gine could inform a layer L only if the link quality metric has
dropped below a threshold specified by L.

Given our experiences and observations above, an out-
come of our research is the cross-layer architecture shown in
Figure 11. This architecture is able to more fully realize the
vast potential of cross-layer network protocol design while
doing so in a manner that is clean and general. This archi-
tecture for a cross-layer network stack consists of an inter-
layer resource broker and a database-like structure for stor-
ing shared information between layers. The resource broker
employs a publish/subscribe mechanism to share both data
packets and control parameters between each of the layers.
In addition, the resource broker mediates or resolves differ-
ences in adaptation policies between each of the layers.



The publish/subscribe mechanism is used to publish and
subscribe to metrics and protocol parameters calculated by
each of the layers. For example, layer 5 may calculate a per-
formance metric of use to layers 2, 3 and 4. Layer 5 can
publish this performance metric as often as it desires, and
each layer may specify a predicate upon which they are in-
dependently notified once the predicate is satisfied, e.g. layer
4 wants notification only if the metric exceeds some thresh-
old, layer 3 desires to be notified only if the magnitude of the
change exceeds a second threshold, and layer 2 indicates to
be notified of any changes at all in the metric.

We invest a further degree of intelligence into the resource
broker so that it influences the adaptations that occur in the
individual layers, e.g. rate and energy adaptation policies, by
monitoring and controlling the publishing of values and no-
tifications. The resource broker develops a jointly optimized
adaptation policy, let’s say for rate adjustment as a function
of link quality and battery level, and only permits layers to
adapt in response to the joint policy. The resource broker
can control what each layer publishes and sees, and in this
way can influence the adaptation policy of each layer, e.g.
slowing the rate backoff in layer J while accelerating the rate
backoff in layer K. In this manner, the resource broker is able
to control and forestall any of the feedback loops that might
lead to instability or endless adaptation [17].

Our resource broker architecture compensates for many
of the limitations in the original pairwise cross-layer design
shown in Figure 1, as discovered through our X-Layer im-
plementation. The publish/subscribe mechanism provides a
clean way to specify shared data structures between any lay-
ers, without requiring in-depth understanding of the code in
each layer, hence the location of shared variables. The sub-
scription mechanism provides a far more efficient way to no-
tify interested layers that a condition/predicate has been met,
in comparison to polling. Moreover, the architecture enables
comprehensive N-layer joint optimization of cross-layer net-
work adaptation policies, while also removing looping ef-
fects from the adaptation.

Another key advantage of the resource broker architec-
ture is that it effectively solves the combinatorial explosion
problem experienced in pairwise cross-layer interaction. The
complexity of the resource broker architecture is linear with
the number of layers N and shared data structures, whereas
the complexity is proportional to N2 in the pairwise cross-
layer architecture.

Note also that the new architecture subsumes the original
one that was investigated in this paper. That is, every pair-
wise interaction described in Figure 1 can also be duplicated
in the new architecture via the resource broker and database.

We believe that such an architecture is feasible on WSN
hardware and software. We estimate that such an imple-
mentation will take 1 KB, with the pub/sub mechanism tak-
ing 100 bytes, the database taking 400 bytes, and the re-
source broker’s joint optimization mediator taking 500 bytes.
Our preliminary work in this area has implemented a shared
memory segment that can be used to share information be-
tween layers.

Our architecture bears some resemblance with the cross-
layer model proposed in Kompella et al [20], but there are

key differences. Kompella et al are motivated by a desire to
diagnose wired IP enterprise networks. In their design, lower
layers reveal their status to a policy server, which stores the
information in a database that can be queried by higher layer
management applications. In this way, applications achieve
cross-layer visibility into the lower layers. However, Kom-
pella’s model views the information flow as essentially one
way from lower to higher layers, whereas our architecture is
more flexible and allows bidirectional sharing of information
between any two layers. Moreover, the publish/subscribe
mechanism is missing from Kompella’s model. Also, their
policy server appears to be primarily an information con-
duit that lacks the intelligence to jointly optimize and resolve
conflicts among the adaptation behaviors of the individual
layers, unlike our resource broker.

5 Discussion
Sensor networks can make very few assumptions about

the underlying connectivity. As well, connectivity can vary
to a great degree. Overdesigning each layer to ensure reli-
ability is a very expensive option for WSNs, in which dou-
bling performance may require more than double many other
resources, increasing cost to a level that renders the sensor
network impractical and sensor nodes large and fragile. Sen-
sor networks impose tight constraints on the design of pro-
tocols and often leave little room for waste. As such, more
complicated cross-layer designs at the software level may re-
sult in a working system, which would otherwise not be func-
tional and operational. As such, integrating network design
and optimization is much more important within the network
design scope of WSNs. This paper shows how cross layer de-
sign can use resources much more efficiently and proposes a
design system which enables a new type of abstraction (bro-
kers) allowing for network layer abstractions to be eased. As
well, the cross-layer stack showed more resilience to chang-
ing topologies, confirming our belief that cross-layer themes
are a promising direction for WSN systems research, and
giving us hope that such cross-layer network stacks may be
more suitable for many more types of sensor networking ap-
plications than traditionally designed network stacks.

Finally, it was chosen to evaluate and present the cross-
layer experimental results as a whole rather than in pieces
due to the strongly interwoven nature of the different lay-
ers in the cross-layer stack. This interwoven property should
be stressed as a key property of conventional cross layer de-
sign and is a major motivation for introducing the concept
of the resource broker cross-layer architecture. The abstrac-
tion between layers should not lead to each layer’s design
being completely independent from the other layers. This
paper shows how modifying or optimizing one layer without
taking other layer designs into account can lead to waste or
contradictory system behavior due to inter-layer interaction.
As such, X-layer was designed with each layer in mind and
evaluated as such. X-layer is not just a network stack that
shares information between layers, but a network stack de-
signed in a cross layer fashion, that is, the network layers
were designed to interact with each other as an integrated
whole. This approach showed the greatest improvement and
most efficient usage of resources.



6 Future Work
We plan to implement in more detail the generalized ver-

sion of our cross-layer network architecture shown in Fig-
ure 11. We have already begun by implementing a shared
memory segment that can be used to share information be-
tween layers. In addition, we have protected access to this
shared memory with synchronization semaphores to ensure
atomic reads and writes. This will serve as the basis for our
database. On top of the database, we will need to incorporate
a publish/subscribe subsystem that allows a layer to spec-
ify a predicate or condition for notification. We expect that
such a language should be relatively basic, allowing for log-
ical AND’s and OR’s as well as threshold comparisons, e.g.
if ((X-Y)>Z && |M[i]-M[i-1]|==12 || U*V<7) then notify
Layer L. We hope to be able to incorporate elements from ex-
isting pub/sub systems, e.g. SIENA [29] and READY [30].

Once the resource broker architecture is functional, we
intend to explore the space of joint optimizations that may
be achieved to yield the most marked improvement in rate
adaptation and/or energy adaptation. For example, maximiz-
ing throughput comes at a cost in energy, whereas maximiz-
ing energy lifetime can be achieved by sending no packets
(zero throughput!). Clearly, there are several optimization
functions that we can formulate: optimize throughput sub-
ject to energy lifetime greater than some minimum threshold;
maximize energy lifetime subject to throughput exceeding
another minimum threshold. We are not sure which formu-
lation would yield the highest satisfaction to the WSN end
user, and the answer may well be domain specific. Given
a formulation, we would need to evaluate the extent of the
advantage of X-Layer in meeting the metric compared to in-
dependently layered solutions. We would further like to per-
form these evaluations in an in situ deployment. We would
also like to study the role of our resource broker in mitigating
instability and endless adaptation by neutralizing feedback
loops.

We will seek to explore in more detail which set of pair-
wise interactions enables the greatest improvement in per-
formance. Our X-Layer efforts have demonstrated that there
are meaningful improvements to be achieved from a specific
set of pairwise cross-layer interactions, but we have not yet
answered which sets of pairwise interactions gives us the
biggest bang for the buck. We believe this is a rich area for
further research.

Our X-Layer research also has not sought to fully min-
imize memory usage by completely exploiting the overlap
between functionality, buffers, and data structures shared
across several network layers. We will seek to counterbal-
ance the hopefully modest increase in memory footprint due
to added resource broker functions with a corresponding de-
crease in memory consumption due to more active sharing of
data structures and functions across layers.

We intend to release the X-Layer network stack as open
source code to provide a platform upon which other re-
searchers can build more highly optimized versions of this
cross-layer network stack.

7 Conclusion
We have described in this paper a detailed implementa-

tion of a real-world functioning cross-layer network proto-
col stack called X-Layer on standard WSN hardware and
software. We have shown performance improvements of
X-Layer compared to three base cases of a traditional dis-
cretely layered network stack. Our experimental evaluation
on a testbed of WSN motes has shown that X-Layer achieves
the best balance of network throughput, goodput, energy us-
age, and latency compared to independently layered designs.
Most importantly, good cross-layer design can avoid waste
and inter-layer thrash in already resource starved sensor net-
work systems. In every one of the metrics evaluated, the
cross-layer stack performs close to or exceeds the best per-
formance offered by any of the variations of the traditional
stack. Informed by our experiences and observations de-
veloping X-Layer, we have described a new architecture for
cross-layer network protocol stacks that more fully realizes
the potential gains of cross-layer designs in an elegant and
clean manner. This architecture consists of a resource broker
that allows all layers to share information via a generic pub-
lish/subscribe interface. This resource broker is further im-
bued with the intelligence to resolve potentially conflicting
rate/energy adaptation policies and develop a single jointly
optimized policy that spans the heterogeneous layers.
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