
Secure Code Distribution in Dynamically Programmable Wireless

Sensor Networks

Jing Deng, Richard Han and Shivakant Mishra

Department of Computer Science

University of Colorado at Boulder

Technical Report CU-CS-1000-05

December 2005

1

Secure Code Distribution in Dynamically Programmable Wireless

Sensor Networks

Jing Deng, Richard Han and Shivakant Mishra

Department of Computer Science

University of Colorado, Campus Box 0430

Boulder, CO 80309-0430

Email: {jing,rhan,mishras}@cs.colorado.edu

Abstract

For deployed wireless sensor networks, reprogramming sensor nodes through the wireless chan-
nel is an important capability. To avoid reprogramming false or viral code images, it is important
to make sure that each sensor node can securely receive its code image through the wireless
channel. Public key schemes based on elliptic curve cryptography are feasible in wireless sensor
networks, yet are still very expensive in terms of memory and CPU consumption. This paper
explores hybrid mechanisms that combine the speedy verification of packetized code allowed by
hash-based schemes with the strong authenticity provided by a public key scheme. Based on this
idea, three schemes for secure code propagation are proposed. The chain based scheme works best
when packets are received in the order they are sent with very few losses. The hash tree based
scheme allows nodes to authenticate packets and verify their integrity quickly, even when the
packets may arrive out of order. Finally, the hybrid scheme combines the advantages of the first
two schemes, and further reduces memory consumption and number of public key operations that
a node has to perform. Simulation shows that the proposed secure reprogramming schemes add
only a modest amount of overhead to a conventional non-secure reprogramming scheme, namely
Deluge, and are therefore feasible and practical in a wireless sensor network.

1 Introduction

Applications of wireless sensor networks (WSNs) are becoming increasingly diverse, ranging from
habitat monitoring [16] to indoor monitoring of semiconductor fabrication processes [3], and from
counter-sniper localization on battlefields [21] to search and rescue operations [11]. Many of these
applications require remote reprogramming of sensor nodes through the wireless channel for effi-
cient sensor network management, i.e. for patching buggy code, changing run-time parameters, or
installing new applications and unanticipated features. Manual reprogramming of sensor nodes is
impractical for large in situ deployments, because of the scale of such deployments and the physical
inaccessibility of certain sensor nodes, which can be deployed in hostile and/or rugged terrain.

A typical example of dynamically reprogramming a WSN is shown in Figure 1. In this example,
the base station contains a code image that needs to be propagated to the sensor nodes. This code
image is typically split into multiple pages. In general, the pages are reliably disseminated outwards

2

in a hop-by-hop fashion from the base station. Depending on the protocol, there may be additional
signalling across each hop to specify which pages have been received and which pages are still desired.

For example, the Deluge code propagation protocol [12] implements a three phase Advertise-Request-
Data polite gossip protocol, in which data is only pushed by a sender upon receiving an explicit
request for data from an immediate neighbor. This pull-based approach has the benefit that no more
data than is necessary is transmitted. Deluge benefits from a soft state design in that, as data is
reliably flooded hop by hop throughout the network, the failure and loss of state at a single node
does not affect more than the minimum number of nodes downstream. If there are other paths for
code to propagate to downstream nodes, then the code will reach downstream, bypassing the failed
node.

For certain WSN applications, securing the process of dynamic reprogramming is essential. For
example, code updates in military applications must be authenticated to avoid the download of ma-
licious code into deployed sensor nodes. Code updates in commercial applications such as monitoring
of semiconductor fabrication labs and oil tankers must be verified to ensure that malicious code does
not halt profit-making production or otherwise cause catastrophic damage [3]. In addition, applica-
tions that require privacy and anonymity to be preserved should not admit code updates that can
reprogram the WSN to snoop on targets without permission. For all of these cases, it is important
that the sensor nodes be able to efficiently verify that code originates from a trusted source, namely
the base station.

The goal and challenge for this paper is to build a secure mechanism for dynamic reprogramming
of a WSN that is also robust and efficient, namely frugal in terms of memory footprint, energy
consumption, overhead, and processor usage. Prior work on this important emerging problem is rel-
atively scant. Existing code propagation protocols developed for WSNs, e.g. Deluge [12], MNP [22],
MOAP [23], and Aqueduct [20], focus on realizing reprogramming features and optimizing perfor-
mance and are not designed to be secure. The first work that we are aware of on secure code
distribution is a two-page poster [14] that describes a scheme based on a public key signing of a
chain of cryptographic hashes. As we will describe later, this chain-based scheme is highly brittle
and susceptible to wireless packet losses.

A simple solution for verifying code images at each node is to employ a single global secret key shared
by a base station and all sensor nodes to protect the integrity and authenticity of disseminated code.
However, if an adversary can compromise a sensor node and capture the key, he can inject malicious
code. Compromising a sensor node mote has been shown to be relatively quick and easy [5], allowing
all internal information such as TinySec keys to be revealed. Sensor nodes are at high risk of
compromise due to their in situ deployment, placing them within proximity of an adversary. In
addition, cost constraints for resource-poor nodes limit the hardware security protections that can
be integrated into a node.

Another symmetric key-based approach is for the base station to share a distinct pairwise key with
each sensor node, and use this pairwise key to compute a keyed message authentication code based on
a given code image. Each sensor node would then be able to verify its own keyed MAC. Compromise
of a sensor node would reveal only one pairwise key, and would not result in a global compromise
of the entire network. Unfortunately, this pairwise approach does not scale well and results in
significant overhead in a large WSN, as each MAC needs to be sent at least to its destination node.
Moreover, depending on the propagation mechanism, MAC information will be forwarded as overhead

3

by intermediate nodes that cannot benefit from this authentication information.

A third approach is to leverage only local random pairwise keys [7, 15, 6] used to establish secure
connections between immediate neighbors. In this approach, the base station propagates code to
its first-level neighbors. These neighbors hand off the code to their (second-level) neighbors that
are two hops from the base station, and so on. Communication at each hop is secured by local
pairwise keys. The problem with this approach is that compromise of just one intermediate node
allows an adversary to inject into the WSN any arbitrary number of fake packets masquerading as
code updates.

An attractive approach for authenticating code images is to apply a public key scheme. Suppose
a base station has a private key, and each sensor node has the base station’s corresponding public
key. The base station signs every packet with the private key, so a sensor node can verify every
packet with its public key. This simple per-packet scheme is avoided on the wired Internet because
of its computationally intensive cost. Per-packet public key authentication would be far worse in a
resource-constrained WSN that has at least two orders of magnitude less RAM, CPU, and bandwidth
per node. While recent work has shown that elliptic curve cryptography (ECC) is feasible on MICA2-
class sensor motes [17, 10], ECC-class public key authentication is still only practical if used sparingly.

Base
Station

1

3 2 1

2 1

3

2

1

3

2

1

1 2
3

2

1

321
Code Image

1

Figure 1: Code Propagation in WSNs. The code image is divided into multiple pages, which are
reliably distributed hop-by-hop to nodes for reprogramming.

Our approach is to combine the best properties of both public key schemes and faster hash-based
verification schemes to build secure and efficient dynamic programming of WSNs. Public key schemes
have the advantage of simplifying key distribution while ensuring authentication even if a node is
compromised, i.e. the public key does not allow a compromised node to spoof the base station.
Hashed verification schemes have the advantage of fast execution time and small memory footprint.
Our approach is akin in spirit to SSL on the Internet, which combines an initial public key scheme
with a subsequent fast symmetric key approach.

4

We present two novel schemes for secure propagation of code in a dynamically programmable wireless
sensor network, and compare them to an existing scheme. All these schemes are based on the idea of
combining speedy hash-based verification of packetized code with the strong authenticity provided
by a public key scheme. We first examine a version of the chain based scheme proposed earlier [14],
which is a straightforward scheme that incurs very little overhead and requires nodes to perform only
one public key operation. However, this approach results in significant overhead if packets arrive out
of order. We propose a novel hash tree based scheme that allows nodes to authenticate packets out
of order, thereby addressing the weakness introduced by chains. Hash trees also allow the integrity
to be verified quickly. However, hash trees incur a relatively larger memory overhead and require
nodes to perform more public key operations when the code image is large. Finally, we propose
a novel hybrid scheme that judiciously combines the best aspects of hash trees and hash chains,
overcoming the individual weaknesses of each approach to achieve robust, efficient, and secure code
reprogramming in WSNs.

The paper is organized as follows. In section 2, we discuss the security requirements for dynamic
reprogramming of WSNs. In section 3, we present the three schemes of secure dynamic programming
of WSNs. Section 4 analyzes key properties of the proposed approaches, including overhead and
security against DOS attacks. Section 5 presents the simulation results of our schemes, highlighting
the modest overhead of our approach. Section 6 summarizes related work. Section 7 concludes the
paper.

2 Security Requirements

2.1 Operating Assumptions

We assume our security scheme is targeted for today’s standard sensor node platforms, such as the
Berkeley mica2 node [1] or the Moteiv Telos Tmote [2]. A mica2 mote has 4K bytes of SRAM, 4KB
internal EEPROM, and 128KB flash memory for program. The standard packet size provided by the
TinyOS operating system is 29 bytes. The Tmote sky of moteiv company has an 8MHz CPU, which
contains 10KB RAM and 48KB flash memory. It employs a 250 kbps Chipcon wireless transceiver
which supports IEEE 802.15.4, and the maxmum packet size is 128 bytes.

Several groups of researchers have implemented RSA and Elliptic Curve (ECC) on mica2 motes [10,
17, 24, 9, 18, 8]. Up to now, the best result reported by N.Gura et.al shows that the public key
encryption/decryption runs hundreds or thousands milliseconds, and consume hundreds of bytes of
SRAM [10]. P. Ning et.al provide source code of ECC which runs 12 to 16 seconds to verify a
signature on MICAz motes [18]. We assume that a sensor node can run public key cryptographic
algorithms such as RSA and ECC. In addition, the base station has a private key Ks, and all sensor
nodes are pre-configured with its corresponded public key Kp. For Elliptic curve with 168 bits of
key, the size of a signature on a 4-byte hash is about 168*2 = 336 bits = 42 bytes, which can fit into
a Tmote packet.

In this paper, we make the standard assumption of protocols like Deluge and MOAP that code
images are propagated from a base station to every node in the network, as shown in Figure 1.
The whole code image is segmented into a sequence of data packets from 1 to n. These packets

5

need to be reliably delivered to every node. Reliability is important because the code image is an
executable binary that cannot contain bit errors or gaps due to lost packets. Because the data
transmission in a wireless sensor network is unstable and the packet loss rate is high, reliable data
transmission mechanisms (such as acknowledgement messages (ACK) or negative acknowledgement
messages (NACK)) are only provided in one-hop communication.

We assume the base station is rich in computing resources and is securely protected. An adversary
cannot compromise a base station. But the adversary can eavesdrop on any communication in the
network, and is capable of compromising individual sensor nodes. An adversary can also inject any
number of fake packets to sensor nodes nearby. If a sensor node cannot verify them, these fake
packets will consume memory or computing time of the node and eventually exhaust its resources,
e.g. battery life.

2.2 Security Goals

The goal of this paper is to efficiently protect the authenticity and integrity of propagated code
images. Of course, a node cannot send or receive the whole code image at one time. In real
implementations, the whole code image is divided into many data packets. These data packets
should be reliably transmitted to each sensor node that is going to update its program image. So
the goal of secure code propagation is to efficiently protect the authenticity and integrity of a large
number of data packets during their reliable transmission process. In particular,

1. Node-compromise resilience. Every sensor node can authenticate and verify the integrity
of the program code disseminated from a base station. An adversary cannot spoof the base
station or change the contents of a code image without being detected by other nodes.

2. DoS-attack resilience. Every node can verify the code image as soon as it receives it.
Otherwise an adversary can potentially launch denial of services attacks against the sensor
network due to delayed authentication.

3. Low cost. The resource consumption of the proposed security mechanism must be light weight
in terms of communication, computing and memory usage. To make sure our scheme is feasible
and practical, it should consume low CPU workload, low memory consumption, and add as
little excess communication overhead as possible.

3 Description of the Algorithms

3.1 Chain-based Scheme

Figure 2 illustrates the first method of secure code propagation proposed in [14], namely the chain
based scheme. We examine this scheme more formally using the following notation. The base station
divides the code image to be distributed into N fragments of data datai, i = 1..N . A packet Pi is
composed of both datai and a cryptographic hash Hi+1 to verify the next packet. We use Hi+1 to

6

denote the hash value of packet Pi+1. In general, Hash(M) is the hash value of message M , and
Ek(M) is the encrypted value of message M with key k.

Pi = datai||Hi+1, i = 1..N − 1.

PN = dataN .

Each cryptographic hash Hi is calculated over the full packet Pi, not just the data portion, thereby
establishing a chain of hashes,

Hi = Hash(Pi) = Hash(datai||Hi+1), i = 1..N − 1.

HN = Hash(PN) = Hash(dataN).

Furthermore, the entire chain of hashes is verified by signing the first hash H1 with the private key
of the base station. That is, packet P0 contains the signature S of H1,

P0 = signature(H1)||H1,

where signature(H1) = EKs
(H1), computed using the private key Ks of the base station.

The code image is transmitted as a sequence of packets (P0 ... PN). On receiving P0, a node decrypts
the signature S using the public key Kp of the base station and verifies H1. On receiving P1, this
node verifies the authenticity and integrity of P1 with the previously received and verified H1. If
verified, the node can safely extract both the code image fragment data1 as well as the next hash
H2. On receiving P2, this node verifies the integrity of P2 with the previously received and verified
H2. This process continues until the final code fragment dataN is received in packet PN .

Because S is generated by encrypting H1 using the private key of the base station, and only the base
station knows this key, an adversary cannot generate a valid S containing H ′

1 (hash of a fake packet
P ′

1). As a result, a node can detect any tampering with packet P1. In particular, if an adversary
attempts to replace H2 in P1 with H ′

2 (hash of a fake packet P ′
2), a node will detect this tampering.

In turn, a node can detect any tampering with P2, and so on.

sign(H1) H 1 data1 H 2

packet 0

H 1=Hash(P1)

data2 H 3

packet 1 packet 2

datan

packet n

H 2=Hash(P2) H n=Hash(Pn)

Figure 2: Signed Hash Chain Scheme.

In the absence of any packet losses and assuming that all packets arrive in the order they are sent,
the chain based scheme performs very well. Public key encryption is used only once on a small-sized
value (H1) and a node needs to use public key decryption only once. Furthermore, a node only needs
to save one hash value in SRAM and can verify the integrity of a packet as soon as it is received.

Referring back to Section 2.B, we see that this chain scheme satisfies security goals 1 and 3, but not
adequately goal 2. In fact, the chain scheme meets the second goal only in a limited manner, as
follows:

7

2a. Limited DoS-attack resilience. Suppose the data packets are disseminated as sequence from
P0 to Pn. Only after a node X has received all packets from P0 to Pk−1, can it verify packet
Pk.

In general, out-of-order packet arrivals are an important issue in WSNs, and arise from a variety of
causes. Gaps in packet arrivals are commonly caused by packet losses due to wireless collisions at the
medium access control layer, and/or by overflowed buffers at any intermediate nodes in the path. In
addition, packets may arrive via multiple paths so that packets with higher sequence numbers arrive
before those with lower sequence numbers. This disorder can occur because a protocol explicitly
designs multi-path delivery into its operation, e.g. INSENS [4] and Deluge. For example, since
Deluge employs reliable hop-by-hop flooding, code images can arrive by any path, so that a higher
sequence number code update can arrive sooner via a shorter path than a lower sequence number code
update taking a longer path. Disorder can also occur due to overhearing on the wireless broadcast
medium, where newer packets destined for another node are overheard before older packets destined
for the receiving node. This “feature” of wireless is actually exploited in the design of Deluge to
lower the number of transmitted control messages (advertisements, requests, and NACKs) and data
messages.

A more pertinent question is how well does a chain-based scheme map to the Deluge reliable code
propagation mechanism.

At each hop, each Deluge receiver employs a negative acknowledgement-based (NACK) mechanism to
reliably recover lost packets. When the sender is broadcasting packets, receivers delay transmitting
ACK messages for a certain period of time. After the timeout, each receiver transmits a NACK
message to inform the sender which packets it didn’t receive. Then the sender re-broadcasts all
missed packets. This process continues until every receiver obtains every packet. By allowing gaps
in the packet sequence, the NACK approach innately tolerates disorder at a packet granularity, which
is at odds with the requirement of chain schemes. This makes the chain scheme ill-suited for direct
application to Deluge on a per-packet basis.

3.2 Hash Tree based Scheme

To achieve DoS-attack resilience and allow immediate verification of out-of-order packets, we propose
a novel method for secure code propagation based on a signed hash tree. We assume an underlying
code distribution mechanism like Deluge: a node sends a group of packets to its neighbor nodes,
and after a certain time, each neighbor node sends back a NACK message to tell the sender which
packets it missed. Then the sender retransmits missed packets. For example, if the sender transmits
packet P1, P2, P3, and P4, and the receiver gets P1 and P4, but missed P2 and P3, then the receiver
sends a NACK message to inform the sender. The sender then retransmits P2 and P3. This process
saves traffic since the receiver doesn’t have to acknowledge every packet. To simplify the algorithm
description, we just assume that the sender transmits all packets from P1 to Pn to its neighbor nodes.

To enable nodes to authenticate and verify the integrity of code image packets quickly, even when
the packets arrive out of order, it is important to propagate the hash values of those packets a priori.
This can of course be done by sending packets containing only the hash values of code image packets
in advance. The key challenge here is to make sure that only a small number (preferably one) of

8

signatureLevel 0

Level 1

Level 2

Level 3

Level 4

Hash Hash Hash Hash Hash Hash Hash Hash

Hash Hash Hash Hash

Hash Hash

P1,0

P2,0 P2,1

P3,0 P3,1
P3,2 P3,3

P4,0 P4,1 P4,2 P4,3 P4,4
P4,5 P4,6 P4,7

Figure 3: Signed Hash Tree Scheme. This hash tree structure has only 5 levels (m = 4), and every
index packet contains 2 hash values (w = 2).

public key operations have to be performed by nodes.

Figure 3 illustrates our basic hash tree scheme. The code image is divided into packets at the
base station, and a secure hash is computed on each packet. These hash values are themselves
input to create a new level of hashes, and so on up the tree. A packet at level i contains hash
values of w packets in level i + 1. For example, a packet Pi,j contains hash value Hash(Pi+1,j∗w),
Hash(Pi+1,j∗w+1), . . . , Hash(Pi+1,j∗w+w−1). If the hash tree has m + 1 levels (from 0 to m), the
packets in level m are data packets that contain the code image. More precisely, for a packet in level
i where 1 < i < m,

Pi,j = Hash(Pi+1,j∗w)||. . .||Hash(Pi+1,j∗w+w−1)||other info

All packets at level m contain their respective data fragments of the code image. Thus the hash
value of every data packet is included in one of the packets in level m − 1, and the hash value of
every packet in level m − 1 is included in one of the packets in level m − 2, and so on. This tree is
built in such a way that there is exactly one packet at level 1. Note that the hash tree proposed here
is different from a Merkle Hash tree.

The root value at the top of the tree, level 0, is a signature that is obtained by encrypting the hash
value of the packet at level 1 using the private key (Ks) of the base station, i.e

P0,0 = EKs
(Hash(P1,0))||Hash(P1,0)||other info

This signature can be used to authenticate the source of P1 as well as verify the integrity of P1.
Furthermore, since our hash tree links all packets at one level with the packets at the next level, this
single signature in turn provides support for authentication and integrity verification of all packets
in the hash tree. This is because if an adversary tampers with the contents of a packet, the hash

9

of the original (untampered) packet received in a packet in the previous level can be used to detect
this tampering.

The signed root value is released before the data packets are released. More precisely, we define meta
packets, called index packets, to contain the signature and hash tree values computed from the data
packets. In the figure, all internal nodes are index packets, and all data packets are the leaf nodes
of the hash tree. A sender transmits all index packets before sending any data packets. Because
the total size of hash values is smaller than the size of the packetized code image, this pre-release
of verification information creates little traffic. When a node sends a code image to its neighbor
nodes, it sends packets from the low levels to the high levels. First, the root packet that contains the
signature is sent, then the packet in level 1 is sent, then packets at level 2 are sent, and so on. For
each level, the receiver sends back an acknowledgement message to inform the local sender whether
it received all packets in this level, or which packets were missed. When a node receives the root
packet, it saves the signature. It uses this signature to authenticate/verify the data in the level 1
packet, it uses the hash values in that level 1 packet to verify the integrity of packets in level 2, and
so on. Eventually, this node can authenticate/verify every packet in level m (code image) using the
hash values received in packets at level m − 1.

Referring back to 2a (limited DoS-attack resilience) of the chain-based scheme, we see that the hash
tree based scheme satisfies a much stronger property:

2b. DoS-attack resilience. After a node has received all packets from levels 0 through k − 1, it
can verify any packet in level k, i.e. it can verify packets of level k as soon as they are received,
without being constrained by the order in which they are received.

To explain this more precisely, assmue that there are w hash values in an index packet. This means
there are wl−1 packets in level l (0 < l ≤ m). If a node has received all packets in levels 0 through
l − 1, it can receive and verify the next wl−1 packets (i.e. the packets that belong to level l) in any
order. Thus, the hash tree based scheme can be applied to current reliable data delivery schemes of
sensor networks with little extra cost.

The hash tree scheme exhibits several advantages that address the security goals outlined in Section 2.
First, signing the root of the hash tree with the private key prevents an adversary from spoofing the
base station or tampering with code images without detection. This addresses the security goal of
node-compromise resilience. Second, the receiver only needs to execute the public key verification
operation once, upon receipt of the initial signature packet. All subsequent verification operations
are performed quickly using hashes in the tree. Third, the hash tree enables every node to verify
each packet immediately. When a data packet arrives, a quick hash of its contents can be compared
to the previously saved hash to verify authenticity and integrity. These two points address the
DoS-resilience goal. Fourth, even if a node receives data packets out of order, these packets can
still be authenticated quickly with in some limited restrictions. This addresses the goal of low
cost implementation by taking advantage of out-of-order arrival of packets, which cuts down on
unnecessary retransmissions.

One cost of the hash tree scheme is the extra index packets that need to be transmitted. This
overhead is relatively small compared to the total number of data packets. For example, suppose
a code image to be downloaded is 32 KB in size. Assuming that each packet can hold 29 bytes of
data, the code image amounts to about 1,070 data packets. Assuming a 4-byte hash, we can pack in

10

7 hashes in a packet. This implies that there will be 181 index packets (153 in level 4, 22 in level 3,
4 in level 2, 1 in level 1, and 1 in level 0). Furthermore, these index packets allow a node to receive
and verify packets in any order, and in turn prevent transmission of many acknowledgment message
in the underlying reliabilty mechanism.

Another cost of the tree-based scheme is its memory consumption. Roughly, if a node wants to verify
each packet in level i, it should save the hash values of level i − 1 packets in its SRAM. This means
it may have to save all packets in level m − 1 in its SRAM to verify all data packets. For a large
code image, this could become a concern. Fortunately, sensor nodes have considerable storage in
Flash or EEPROM to save the internal hash values. In addition, as tested in [5], reading data from
EEPROM is very fast. It takes less than 1 millisecond to read 8 bytes of data from EEPROM, which
introduces minimal delay. Finally, an RC5-based hash is light weight both in terms of memory and
computational requirements for MICA2 motes [19].

The SRAM consumption problem exists in Deluge as well, since all packets received out of order
need to be stored in SRAM. To address this problem and make the state management easier, Deluge
segments the whole program code into pages, where each page contains a fixed number of packets.
To receive packets in page i, a node has to reliably receive all packets in pages 0 through i − 1. As
described earlier, Deluge uses NACK messages to reliable receive all packets with in a page. This
requires a node to temporally save packets only within a page into SRAM. So, for a 1 KB SRAM
memory, the size of a page is also set to 1 KB. Given a packet size of 29 bytes, this implies that a
page contains about 36 packets.

To adapt our hash tree scheme to Deluge, we can build a hash tree structure for each page, and the
root node of each hash tree is a signature signed by the base station with its private key. We term
this variation the multiple public key based hash tree scheme. The key drawback of this approach
is that it introduces more public key operations (one per page of code image). To address this, we
propose our hybrid scheme.

3.3 Hybrid Scheme

Hash tree
of Page 2

signature

page 1 (C1)

HL1 HL2 HC2 HL3 HC3 HLm

Packets in page 3

P1,0

P2,0 P2,1

P3,0 P3,1
P3,2 P3,3

P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7

Hash tree
of Page 1

Hash tree
of Page m

HC1
gmg3g2g1

page 2 (C2)

page 3 (C3)

page m (Cm)

HC0E(HC0)

Figure 4: Hybrid Signed Scheme, combines hash chain structure for inter-page authentication and
hash tree structure for internal page authentication.

11

To reduce memory consumption and the number of public key opertions that a node has to perform,
we propose our third method, namely the hybrid scheme. As the name suggests, this scheme is
a combination of the chain based and tree based scheme. This hybrid scheme has been designed
to provide authentication and integrity support in code propagation, and also adapt to the Deluge
protocol. In Deluge, a code image is first divided in a sequence of m pages, C1, C2, ..., Cm, and each
page is further divided into a sequence of a fixed number of packet. A node must have received
all packets in pages C1, ..., Ck−1 before it can accept packets from page Ck. However, within page
Ck, the NACK-based design allows out-of-order arrival. Thus, all pages of the code image must be
received in a sequential order, while packets within a page may be received in any order. We preserve
this requirement and provide authentication and integrity support.

Figure 4 illustrates our hybrid scheme. At the granularity of pages, our approach is to employ
a chain-based scheme for authentication and integrity. At the granularity of packets, our hybrid
approach employs our hash tree based design to allow rapid and out-of-order authentication. The key
observation is that chain-based authentication of pages reduces the number of public key operations
that a node has to perform to only one, in comparison with the multiple public key based hash tree
scheme of the previous subsection. At the same time, the chain-based page authentication imposes
no additional cost in terms of susceptibility to disorder. Deluge already requires order at the page
granularity, so the chain-based approach of requiring order does not impose any additional penalty.

A hash tree is constructed for each page. This hash tree is similar to the one described in Section
3.2, except for the packet at level 0. For each page Ci, the packet gi at level 0 is called the page index
packet of Ci. This packet contains information about this page and the next page in the sequence:

gi = HLi||HCi||other page info

Where 1 < i < m. A page index packet gi contains two hash values, HLi, and HCi (1 < i ≤ m).
HLi is the hash value of the single packet at level 1 in the hash tree of page Ci. HCi is the hash
value of gi+1. For page C0, the page index packet is a signature created by encrypting (HL1||HC1)
using the private key Ks of the base station, i.e.

g0 = EKs
(HC0||other info)||HC0||other info

Notice that the public key operation has been used in only one packet (g0) in our hybrid scheme.

The hybrid scheme retains the principal advantage of the hash tree based scheme. It allows nodes
to authenticate packets and verify their integrity quickly, even when the packets arrive out of order.
Theoretically, the hybrid scheme satisfies a weaker DoS-attack resilience requirement than 2b. It
satisfies that:

2c. DoS-attack resilience. For all n packets in a page, when a node received all packets from
1 to k − 1, it can verify any packets from k to MIN(m,n − (k − 1)) with any order, where
m − k > k.

Overall, the security goals of Section 2 are satisfied, and in a manner that is more efficient than the
pure hash tree. Signing the first value of the chain satisfies the goal of node-compromise resilience,
because an adversary cannot modify any index packets or data packets nor spoof the base station
without being detected. DoS-attack resilience is preserved since packets can be verified immediately.

12

This is achieved at a low cost since the public key operation is performed but once, and disorder
is tolerated. The hybrid solution scales well, owing to the tree structure, yet is more efficient than
the pure hash tree thanks to the chain because public key operations don’t have to be performed on
each page.

4 Analysis

4.1 Number of Index packets

We would like to estimate the number of index packets needed for a hash tree. Let I(n) denote
the number of index packets (excluding packet P0,0) in a hash tree with n data packets. The
height of the hash tree is dlogwne (excluding the root node). If logwn is an integer k, then I(n) =
(wk − 1)/(w − 1)≈n/(w − 1). Otherwise, (wblog

w
nc − 1)/(w − 1) ≤ I(n) ≤ (wdlog

w
ne − 1)/(w − 1).

So, we have
I(n)≈n/(w − 1)

We see that the number of index packets is within a factor of 1
w−1

of the number of data packets.

4.2 Packet authentication in hash tree scheme

After a node has received k packets in the hash tree based scheme, it can authenticate and verify
integrity of several new packets it receives next. We use function f(x) to denote the number of new
packets a node can verify immediately on receiving after it has already received the first x packets.
Our goal is to estimate f(x). We have f(1) = 1, since the first packet P0,0 contains the signature of
the hash value of next packet P1,0. Suppose each index packet contains w hash values and a node
has already receives k packets. To simplify the problem, let’s assume that all k packets and next
f(k) packets are index packets. Since each packet contains w hash values, when this node receives
k + 1th, it can verify an additional w upcoming packets. So we have f(k + 1) = f(k)− 1 + w. Based
on this, we get the following recursive equation

f(x) =

{

1 if x = 1
f(x − 1) − 1 + w if x > 1

Solve this equation, we get that
f(x) = (x − 1)(w − 1) + 1

Now, lets consider data packets. Suppose there are N packets in total. We have

f(x) = min((x − 1)(w − 1) + 1), N − x)

where N≈n× w
w−1

.

However, sometimes an index packet may contain less than w hash values, so the actual value of
f(x) may be slightly less.

13

4.3 DoS attacks and countermeasures

An adversary can launch a DoS attack on a node by continually sending a fake signature. Although
the scope of damage due to this attack is limited, we can defend against it if the size of the root
packet is large enough. When the base station disseminates a root packet, it attaches a one-way
hash chain (OHC) number Hi in the packet. Suppose every node is pre-configured with the inital
number H0 of the OHC. When a node receives a root packet, it verifies the OHC number by applying
a one-way function with its saved OHC number. Only after this verification does the node verify
the signature by running the public key algorithm. Because an attacker doesn’t have the OHC,
(s)he cannot make a node run public key algorithm by sending fake signatures to that node. In this
way, the heavyweight public key verification is protected by a lightweight preceding step of OHC
verification.

Another kind of DoS attack that is possible in our scheme is that an adversary continues to transmit
ACK or NACK messages to the sender so that the sender will continue to retransmit packets and
exhaust its battery and/or bandwidth. One countermeasure against such an exhaustion attack is
to establish a shared secret key between a sender and all its receivers, called a cluster key. This
cluster key is then used to generate a MAC for each acknowledgment packets. The sender can verify
the authenticity of each packet. If an adversary can compromise a node, it can discover that node’s
cluster key. The adversary can then launch this DoS attack. However, notice that such an attack
still has limited impact. The attacker cannot flood the entire network or program malicious code
into other sensor nodes.

5 Experiments

The goal of our experiments is to understand the cost of our security mechanisms in code propagation,
and see if these mechanisms are feasible in current sensor network applications. Since prior work has
already tested memory and computational costs of public key algorithms and hash-based algorithms
on sensor motes, our focus is on comparing the message overhead cost of our security schemes with the
Deluge non-secure code propagation scheme. The intent is to discover if the hybrid, tree-structured,
and chain-based approaches can achieve their security goals while introducing only modest overhead.

We simulated a network in which a base station can communicate directly with 20 sensor nodes. In
our experiments, the base station disseminates a program code to its direct neighbor nodes, and we
measured the number of packets sent during this process under different packet loss rates and code
size. We simulated Deluge as well as our three secure code propagation schemes.

5.1 Message Overhead vs. Packet Loss Rate

Our first experiment was to measure the message overhead of our secure reprogramming schemes
compared with Deluge. In this experiment, we varied packet loss rate from 0 to 15%. The size of
program code is 32 KB, which is usual for real applications. Each hash value is 4 bytes, and a 29
bytes index packet contains 6 hash values (remaining space is used for some other information). We
measured the total number of packets sent, and the total time to distribute code to all sensor nodes.

14

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

N
um

be
r o

f M
es

sa
ge

s

Packet Loss Rate

Message Cost

deluge
hash chain

hash tree
hybrid

Figure 5: Message cost of original deluge scheme and secure schemes under different packet loss rate.

Figure 5 shows the message cost, measured by the number of packets sent in the network. The number
of packets exchanged corresponds to the energy cost, since the power used in wireless transmission
dominates energy consumption of a sensor node. From these experiments, we see that the extra
cost of our security scheme is relatively small and is feasible in current sensor network platforms.
For example, when packet loss rate is 2%, the number of packets sent in Deluge is about 1800, and
the number of packets sent in hybrid scheme is about 2300. The extra cost is about 28%. Because
reprogramming doesn’t happen very often, we consider the 28% extra cost during the reprogramming
phase to be relatively small for the entire life of a sensor node. Figure 6 shows the message cost
under Tmote configuration. On Tmote, the packet size is 128 bytes, and a node use 4 KByes to save
code image in RAM. We see that the hybrid scheme gets better performance than chain scheme,
because hybrid scheme uses less amount of index packets when the length of packet increases, and
because the number of packets in each page increases.

5.2 Delay vs. Packet Loss Rate

Figure 7 shows the time delay for reprogramming. The hash chain takes the most time to reprogram
the network. This is as expected because the chain based scheme does not tolerate packet disorder.
The hybrid scheme reprograms more quickly because it can take advantage of out-of-order packet
arrival. Also, we see from figure 8 that hybrid scheme has better performance on Tmote. Deluge
takes the least time to reprogram because it does not need to send out index packets a priori.

5.3 Message Overhead vs. Size of Code Image

Figure 9 displays the message cost when the size of the program code changes. In this experiment,
we simulated propagation of program code with different sizes ranging from 1 KB to 128 KB. We
fixed the packet loss rate as 10%. For all schemes, we see that the number of messages linearly

15

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

N
um

be
r o

f M
es

sa
ge

s

Packet Loss Rate

Message Cost

deluge
hash chain

hash tree
hybrid

Figure 6: Message cost of original deluge scheme and secure schemes with Tmote configuration.

increases as the size of code increases, and the ratio of extra cost is about 39%. This linear increase
as a function of code size conforms with the experimental results obtained in the Deluge paper.

5.4 Message Overhead vs. Network Density

In this experiment, we measured the number of exchanged messages when the density of network
changes. For instance, we changed the number of neighbor nodes from 5 to 100. Notice that the
network will become extremely dense when the number of neighbor nodes reaches to around 60.

Figure 10 depicts the message cost as a function of network density, e.g. number of neighbor nodes.
Notice that the tree structure scheme looks better than Deluge when network becomes more dense.
That is because in the “pure” tree scheme, the whole packets are not divided into pages. The hash
tree assumes a node can receive all packets in its memory, whereas in Deluge and hybrid scheme a
node can only receive all packets within a page. In addition, for the tree scheme, if we want to send
32KB code, as calculated, we have to send 32000/5=6400 bytes index data, and all of them need to
saved in RAM. The tree scheme appears to be feasible when a node has more RAM and when the
size of the code image is small.

6 Related Work

Hash functions have been widely used to authenticate transmitted data, mainly because of being
significantly more efficient than public key algorithms. For example, A. Perrig et. al proposed
µTESLA [19] protocol for source authentication in data dissemination through lossy channel. How-
ever, µTESLA requires global loose time synchronization which is difficult to apply to reprogramming
wireless sensor networks. Also it is vulnerable to denial of services attacks due to delayed authen-
tication. C. Karlof et. al proposed a mechanism for secure multicast in lossy data transmission

16

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Ti
m

e
(m

ill
is

ec
on

ds
)

Packet Loss Rate

Delay of Reprogramming

deluge
hash chain

hash tree
hybrid

Figure 7: Time Delay of original deluge scheme and hash tree scheme under different packet loss
rate.

environment [13]. A receiver can verify each packet it received and can recover original data even
though some packets are lost. But this mechanism is too expensive for resource-poor sensor nodes.

V. Gupta et. al implemented the SSL protocol on sensor node with RSA and elliptic curve algorithms,
called Sizzle [9]. In contrast with Sizzle, our scheme works for one-to-many data dissemination
paradigms, in which a base station broadcasts a program code image to multiple sensor nodes one
or more hops away. The base station doesn’t use end-to-end data transmission scheme since that is
too expensive.

Beyond the Deluge data dissemination protocol, MOAP (Multi-hop Over-the-Air Programming) [23]
employs a ripplelike mechanism to propagate the new image to the entire network. At each ripple,
a subset of nodes are the source nodes and all the other neighbor nodes are receivers. A publish-
subscribe mechanism is used to prevent multiple nodes becoming the source nodes in the same
neighborhood. Source nodes publish their newer version and all interested nodes subscribe. However,
MOAP requires the entire image to be reliably received before the next ripple can begin and hence
trades off latency. MOAP’s code propagation approach of reliably flooding the same code image hop
by hop to all nodes is similar to Deluge’s approach.

7 Conclusions and Future Work

Authentication of code images received over a wireless channel is an important capability for many
in situ WSN applications. This paper develops a novel secure code propagation protocol for wireless
sensor networks. Our solution is to employ public key signing of a joint structure combining hash
chains and hash trees. This solution has the following advantages: node-compromise resilience, since
the public key and linked chain-tree hash structures protect all packets; DoS-attack resilience since
the tree structure allows immediate and rapid verification of packets; and low cost realization in
terms of 1) low delay due to public key authentication being performed only once initially, 2) low

17

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Ti
m

e
(m

ill
is

ec
on

ds
)

Packet Loss Rate

Delay of Reprogramming

deluge
hash chain

hash tree
hybrid

Figure 8: Time Delay of original deluge scheme and hash tree scheme with Tmote configuration.

delay due to fast hash-based verifications for all subsequent packets, and 3) low overhead since the
hash tree tolerates disorder and reduces unnecessary retransmissions. Our experiments confirm many
of these observations. Our schemes are light weight enough to be feasible for current sensor network
platforms. This solution is practical in that is well-adapted to prevailing code propagation protocols
such as Deluge. In the future, we plan to implement the hybrid scheme on a multi-node testbed
comprised of the Tmote TELOS motes. This will enable us to test our realization in a large scale
multi-hop configuration.

References

[1] Crossbow website. http://www.xbow.com.

[2] Tmote. http://www.moteiv.com.

[3] R. Adler, P. Buonadonna, J. Chabra, M. Flanigan, L. Krisnhamurthy, N. Kushalnagar, L. Nach-
man, and M. Yarvis. Design and deployment of industrial sensor networks: Experiences from
the north sea and a semiconductor plant. In ACM Conference on Embedded Networked Sensor
Systems (SenSys), San Diego, California, USA, November 2005.

[4] J. Deng, R. Han, and S. Mishra. Insens: Intrusion-tolerant routing for wireless sensor networks.
Elsevier Journal on Computer Communications, Special Issue on Dependable Wireless Sensor
Networks, 2005. To appear.

[5] J. Deng, R. Han, and S. Mishra. Practical study of transitory master key establishment for
wireless sensor networks. In 1st IEEE/CreateNet Conference on Security and Privacy in Com-
munication Networks (SecureComm 2005), pages 289–299, Athens, Greece, September 2005.

[6] W. Du, J. Deng, Y. Han, and P. Varshney. A pairwise key pre-distribution scheme for wire-
less sensor networks. In 10th ACM Conference on Computer and Communications Security
(CCS’03), Washington D.C, USA, October 2003.

18

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 20 40 60 80 100 120 140

N
um

be
r o

f M
es

sa
ge

s

Size of Code Image (Bytes)

Message Cost

deluge
chain

tree
hybrid

Figure 9: Message Cost of Deluge and hash tree scheme under different program cod e size.

[7] L. Eschenauer and V. Gligor. A key-management scheme for distributed sensor networks.
In Conference on Computer and Communications Security, (CCS’02), Washington DC, USA,
November 2002.

[8] G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar. State of the art in ultra-low power public key
cryptography for wireless sensor networks. In 2nd IEEE International Workshop on Pervasive
Computing and Communication Security, Kauai Island, Hawaii, USA, March 2005.

[9] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle, and S. C. Shantz. Sizzle:
A standards-based end-to-end security architecture for the embedded internet. In 3rd Annual
IEEE International Conference on Pervarsive Computing and Communications, Kauai Island,
Hawaii, USA, March 2005.

[10] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing elliptic curve cryptog-
raphy and rsa on 8-bit cpus. In 6th International Workshop on Cryptographic Hardware and
Embedded Systems(CHES’04), Cambridge, Boston, USA, August 2004.

[11] J.-H. Huang, S. Amjad, and S. Mishra. Cenwits: A sensor-based loosely-coupled search and
rescue system using witnesses. In ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2005.

[12] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination protocol for net-
work programming at scale. In 2nd International Conference on Embedded Networked Sensor
Systems(SenSys’04), Baltimore, Maryland, USA, November 2004.

[13] C. Karlof, N. Sastry, Y. Li, A. Perrig, , and J. Tygar. Distillation codes and applications to
dos resistant multicast authentication. To appear in the 11th Annual Network and Distributed
Systems Security Symposium (NDSS 2004), February 2004.

[14] P. E. Lanigan, R. Gandhi, and P. Narasimhan. Secure dissemination of code updates in sensor
networks. In ACM Conference on Embedded Networked Sensor Systems (SenSys), 2005.

19

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f M
es

sa
ge

s

Number of neighbor nodes

Message Cost with Different Network Density

deluge
chain

tree
hybrid

Figure 10: Message overhead as a function of network density.

[15] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor networks. In CCS’03,
Washingon D.C, USA, October 2003.

[16] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor networks
for habitat monitoring. In 1st ACM Workshop on Wireless Sensor Networks and Applications
(WSNA’02), pages 88–97, 2002.

[17] D. Malan, M. Welsh, and M. Smith. A public-key infrastructure for key distribution in tinyos
based on elliptic curve cryptography. In 1st IEEE International Conference on Sensor and Ad
Hoc Communications and Networks, 2004.

[18] P. Ning and A. Liu. Tinyecc: Elliptic curve cryptography for sensor networks.
http://discovery.csc.ncsu.edu/ pning/software/TinyECC/index.html.

[19] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar. Spins: Security protocols for sensor
networks. Wireless Networks Journal(WINET), 8(5):521–534, September 2002.

[20] L. A. Phillips. Aqueduct: Robust and efficient code propagation in heterogeneous wireless sensor
networks. Master’s thesis, University of Colorado at Boulder, 2005.

[21] G. Simon, M. Maróti, Ákos Lédeczi, G. Balogh, B. Kusy, A. Nádas,
G. Pap, J. Sallai, and K. Frampton. Sensor network-based countersniper system. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked sensor systems, pages
1–12, New York, NY, USA, 2004. ACM Press.

[22] S.S.Kulkarni and L. Wang. Mnp: Multihop network reprogramming service for sensor networks.
In 25th International Conference on Distributed Computing Systems (ICDCS), Columbus, OH,
June 2005.

[23] T. Stathopoulos, J. Heidemann, and D. Estrin. A remote code update mechanism for wireless
sensor networks. Technical Report CENS-TR-30, University of California, Los Angeles, Center
for Embedded Networked Computing, November 2003.

20

[24] R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus. Tinypk: Securing sensor
networks with public key technology. In 2004 ACM Workshop on Security of Ad Hoc and Sensor
Networks, Washington, DC, USA, October 2004.

21

