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ABSTRACT
Drones are increasingly disrupting sensitive airspace around air-
ports, as evidenced by the recent shutdown of Gatwick Airport
for over a day by a drone incursion, as well as other incidents at
Dubai airport, one of the busiest airports in the world. As a result,
there is heightened interest in being able to detect and track drones.
This paper explores a system that can use a cost-e�ective passive
RF-based approach to determine from which direction a drone is
approaching as well as its location, and also determine from which
direction its controller is transmitting and the controller’s location.
The system combines angle of arrival (AoA) techniques with RF-
based signal analysis to determine whether a peak in incoming RF
signal strength at a given direction corresponds to a drone or its
controller, and utilizes triangulation to estimate their locations. Our
experiments demonstrate that a system consisting of inexpensive
software de�ned radios (SDRs) and rotating antennas can e�ec-
tively estimate the angle of arrival and location of both a drone and
its controller.

CCS CONCEPTS
• Networks → Mobile and wireless security; • Hardware →
Wireless integrated network sensors; • Security and privacy
→ Usability in security and privacy; • Applied computing →
Aerospace.
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1 INTRODUCTION
Drones are increasingly posing a threat to the airspace around air-
ports due to the threat of collisions with aircraft. Gatwick Airport
in late 2018 was shut down for more than 24 hours due to a drone
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incursion [8]. Just a month later, �ights at Newark Liberty Interna-
tional Airport were delayed for an hour due to a drone sighting [6].
In 2016, Dubai airport, the third busiest airport in the world, was
shut down three times due to drone incursions [7].

These examples illustrate the need for cost-e�ective, timely, accu-
rate, and robust detection, tracking and interdiction of drones. This
paper focuses on the related problems of detection and tracking of
drones, that is, drones must �rst be identi�ed as drones before they
can be tracked. Recent work has shown that passive RF sensing can
cost-e�ectively detect the presence of a drone [20]. However, that
work ignores the problem of tracking drones and cannot for ex-
ample determine from which direction the drone is coming nor its
location. In the past, audio and video approaches have been used to
try to localize the drones. However, such methods su�er from acous-
tic noise in the environment as well as increasingly quiet drones,
while camera-based techniques require line of sight conditions that
preclude operation at night or when buildings/trees obstruct the
view, and have di�culty di�erentiating between drones and birds
at a distance.

Recently, much e�ort on RF/Wi-Fi localization has been pre-
sented. RF-emitter localization techniques are often based on the
received signal strength (RSS) [13, 31], measured time of �ight
(ToF) [18, 22, 25], time di�erence of arrival (TDoA) [19, 28–30], and
measured angle of signal arrival (AoA) [14, 17, 24, 27] to localize the
RF-emitter. However, applying such systems for drone localization
faces a number of challenges. RSS-based approaches would need to
know the drone’s transmitted power, gain, and orientation of the
drone, and in our scenarios the drone may not cooperatively pro-
vide such information, i.e., drones may be oblivious to the tracking
system. RSS measurements can also be quite noisy and subject to
multipath. ToF-based approaches typically require a highly accu-
rate sampling rate, common clock and strict time synchronization
between a transmitter and receiver, which we cannot assume from
uncooperative drones. TDoA does not require synchronization be-
tween a transmitter (drone) and receiver (sensing station) but does
require strict time synchronization between receivers. AoA-based
approaches are attractive because they don’t require cooperation
from drones nor any tight synchronization among system com-
ponents. However, they must be augmented with drone detection
because by themselves they don’t identify whether the signal whose
direction of arrival is being estimated arises from a drone or another
RF-emitter.

Further, none of the prior work considers the scenario of identi-
fying and tracking both the drone and its controller. In discussions
with our local police team who both �y and seek to interdict drones
for various missions, including observing a criminal or stopping an
errant drone, we have found that police are as interested in identi-
fying the location of the drone controller as the drone itself. This
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Figure 1: Finding directions of drone and its controller

is because identifying from where the drone is being controlled
allows authorities to �nd the human operator who may be violating
sensitive airspace.

In this paper we investigate the drone localization problem, and
explore a �rst-of-a-kind system that is able to identify not only a
drone’s location, but also where its associated controller is located.
Our work combines RF-based detection of the presence of a drone
with AoA-based triangulation to identify the drone’s location. In
addition, our system identi�es the location of the controller associ-
ated with a drone. The system is implemented with SDR stations
and rotating antennas and evaluated with multiple drones and their
controllers.

In this work, we make the following contributions:
• We implement what we believe is a �rst-of-a-kind RF-based
location �nding system for both drones and their controllers,
consisting of SDRs and rotating antennas that combine pas-
sive RF-based drone detection with AoA triangulation.

• We devise a solution to identify the signature of a drone’s
controller through analysis of unique features in its low
frequency pro�le.

• We experimentally evaluate the system and show that it
can identify the direction of arrival of a drone, achieving an
accuracy within an average of 12.2 degrees of error, as well
as the location of the drone within an average estimation
error of 12.71 meters.

• We show that the system can identify both the direction
of the drone’s controller within an average accuracy of 9.9
degrees of error and its location within 11.36 meters of error.

The following section discusses the system architecture for track-
ing the location and direction of the drone and its controller. Next,
we present our preliminary results on identifying the drone and
its controller’s direction and location. We follow with a discussion
of remaining challenges and future work. We then present related
work and conclude the paper.
2 SYSTEM ARCHITECTURE
⌅ System overview.We design a cost-e�ective and passive system
to localize the drone and its controller based on the arrived angles
of their signals as illustrated in Figure 1. The system includes two
direction �nding systems to identify the directions at which the
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Figure 2: System architecture of a sensing station

drone and its controller signals are coming. Each direction �nding
system includes an omnidirectional antenna to detect the presence
of the drone signals, and a mechanically-agile directional antenna
to identify the directions of the drone and its controller signals.

The key challenge is to di�erentiate the drone/its controller sig-
nal with signals from other RF-emitters in the environment. Lever-
aging previous studies on building a drone detection system [20, 21],
we overcome the challenge by designing a drone direction �nding
system as shown in Figure 2. Each direction �nding station extracts
the features from the detected drone signal and uses mechanical
steering antenna to identify the upcoming angles. Combining an-
gles obtained from each station and their known coordinates, the
drone and its controller locations are computed. In particular, each
station includes two modules: (1) Drone Signal Analysis module and
(2) Direction Finding.

Drone Signal Analysis module is used to detect the drone pres-
ence and extract the drone and controller signatures. It includes
an RF receiver that is connected to an omnidirectional antenna and
passively listens to the drone and its controller communication
channel. When RF samples are collected, Drone Detection function
analyzes the signals using Fast Fourier Transform Analysis [20, 21]
to identify whether the drone signal is detected or not. When a
drone is detected, the FFT output contains the physical signature
of the drone and its controller which are then used as templates
for recognizing the drones and its controller signal by the Direction
Finding module.

Direction Finding module is used to identify the directions at
which the drone and controller are located. It includes multiple
functions: a RF receiver, a Drone Signal Recognition, a Drone’s Con-
troller Recognition, Mechanically-agile Beam Controller and a Direc-
tion Finding. RF Receiver captures the wireless samples at the drone
communication frequency. Drone Signal Recognition and Drone’s
Controller Recognition functions analyze the received signal using
FFT and identify whether that signal is from the detected drone or
its transmitter. Mechanically-agile Beam Controller control the an-
tenna beam to steer 360o to di�erent directions around the sensing
station. During scanning, Direction Function Finding looks for the
matched patterns to con�rm the arrival angles of the drone and its
controller signals.
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drone signal

Figure 3 shows the received signal obtained from the directional
antenna as the sensing station scans through di�erent angles. By
looking at only received signal strength, the system cannot tell the
di�erence between the signal from the drone, its controller and
other RF transmitters that are operating at the same frequency.
However, the FFT analysis of the incoming signals during scanning
have di�erent patterns when the receiver beam sweeps through
the drone and controller locations as shown in Figure 4 and 5.

In particular, Figure 5 shows the FFT analysis of the received
signal captured from the drone at frequencies from 0Hz to 300Hz.
In this Figure, there are three main frequency components that can
be used to identify the drone signal including the body shifting
frequency (< 5Hz), the camera streaming frequency (30Hz with
Bebop 2 and 70 Hz with DJI Phantom 4 Pro), and the vibration
frequencies (50Hz-200Hz). The vibration frequency of the Bebop is
obtained from our in-lab experiment by attaching a high quality
IMU sensor MicroStrain LORD 2DM-GX5-25 [16] to the drone body
when it is �ying. The drone creates di�erent vibration frequencies
ranging from 50Hz to 200 Hz. Also observed from this experiment,
the drone controller signal exhibits some similar patterns with
the drone signals as shown in Figure 4. The drone and controller
communication packet rates including camera streaming, drone
commands and their strong harmonics are currently used as the
drone controller signatures.
⌅ Finding the directions. The directional antenna is con�gured to
point to 00 North when it starts scanning. The angle of the drone is
identi�ed as the anglewhere the FFT signal is stronglymatched, that
is the cross-correlation is the highest. The accuracy of the direction
function �nding depends on (1) the ratio between the drone velocity
and scanning velocity, (2) the beamwidth of the directional antenna,
and (3) the antenna gain. If the scanning velocity is much faster than
the drone velocity, the drone will always be in the coverage area of
the system. However, the captured wireless samples from the drone
might not provide su�cient data to extract the drone signature. If
the scanning velocity is much slower than the drone velocity, the
drone might be out of the coverage area of the directional antenna,
which makes direction �nding unusable. The scanning velocity
needs to be designed to make sure that it slow enough to capture
the drone signature and fast enough to always capture the drone in
one scan. The beam-width is also a�ected by the direction �nding

performance. If the beam width is too small, the scanning delay
will be increased in order to capture the whole surrounding area. If
the beam width is too large, it is challenging to identify the exact
angle of arrival because the drone signal is captured even when the
directional antenna is not directly steered to the drone. Last but
not least, the antenna gain will de�ne the distance that the system
is supported.

Identifying the drone’s controller signal is more challenging be-
cause it does not include the unique physical signature such as
body shifting or body vibration. The controller signature has to
be obtained through the drone’s signal signatures. We propose to
utilize two following features to detect the drone controller (1) the
drone and its controller communicate at the same communication
channel (same frequency), (2) the power intensity of the signal
from the drone controller can be as strong as that of the drone,
(3) the drone and its controller have similar patterns in commu-
nication (packet rates). The captured signals are separated into
di�erent groups, the output FFT of the group that has the strongest
cross-correlation results with the detected signature from Drone
Signal Analysis module (excepting the drone’s group) is the drone’s
controller signal.
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Figure 6: Localizing the drone and its controller

⌅ Identifying the locations using two sensing stations.
Given two estimated angles of arrival from two sensing stations,

we apply the angle-side-angle solution to calculate the location of
the drone and its controller, as shown in Figure 6. We now discuss
how to compute the distance from the drone (i.e., drone location). A



similar approach is used to identify the drone’s controller location.
Let’s assume that the location of station A, that of station B, and
the distance between them (d) are known. The location of the
drone D can be calculated from the distance between the drone to
each station A and B (ddr1, ddr2, respectively). Hence, we have the
following system of equations:

ddr1

sin(öDBA) =
ddr2

sin(öDAB) =
d

sin(öADB)
öDAB +öDBA +öADB = 180o

(1)

The direction �nding technique mentioned above will give us the
two angles öDAB and öDBA. Solving the above equations, ddr1, ddr2
are obtained.

This current design exhibits a number of advantages when it
comes to realizing drone localization. First, the system is completely
passive and consists of inexpensive RF WiFi/SDR components and
antennas, and hence is easy and cheap to build and deploy. Second,
the system does not require any coordination or information from
the drone such as its transmitted signal power, gain, modulation
type, etc. The system also works independently of the orientation
of the drone.

3 EXPERIMENTAL VALIDATION
3.1 Experiment setup
We conducted an experiment at a �ying area in our university
campus to validate the feasibility of the approach. There are two
stations that are deployed during the experiment 50m away from
each other. Each sensing station setup is illustrated in Fig. 7. It
includes two laptops, two USRP B210 boards, one directional an-
tenna controller (PE51019 (9dBi)), one omnidirectional antenna
(9dBi), and one mechanically-agile antenna. Laptops with core i7
running Ubuntu 16.04 LTS and GNURadio 3.7.12 are used during
the experiment. The directional antenna is controlled by a motor-
ized module (PT785-S Pan & Tilt System from Servo City [23]) to
steer the antenna to di�erent directions to �nd the drone and con-
troller signal. The GPS locations of the drones and detected system
are used as ground-truth. The drone is �ying at 20m altitude and
30-150m away from the sensing station. We �ew Bebop 2 and DJI
Phantom 4 Pro drones for this experiment. The drone is controlled
by a Samsung Galaxy S9, Samsung Galaxy S8+ plus, and iPhone
7. The Bebop drone and its controller are operated at a prede�ned
2.4 GHz Wi-Fi frequency channel. The DJI drone and its controller
are pre-con�gured to operate at 2.4065 GHz frequency. Since the
experiments were conducted at an area that is close to a residential
area, the Wi-Fi interference were also experiences at the tested
location.

3.2 Preliminary results
Figure 8 shows the results of estimating the angles at which the DJI
Phantom 4 Pro and Bebop 2 and their controllers are located. This
�gure shows the average errors obtained from the two stations.
The system obtains 9.9o of error on average when estimating the
angle of the DJI drone when it is �ying at 30m - 70m from the two
stations. The system can �nd the angle of a Bebop drone �ying
from 30m to 150m distance with 14.5o error in average. The system
is also able to identify the angles of DJI and Bebop controllers with

15.45o error, and 4.4o error, respectively. The results are obtained
from the average of 100 measurements. It is less accurate to detect
the angles of the DJI drone and its controller due to the impact
of peak-to-average-power ratio (PAPR) in signal caused by high
order OFDM modulation. The peak to average power ratio of the
DJI drone and DJI controller signals are much higher than that
of Bebop drone and Bebop controller. We are currently using 1-D
median �ltering to remove these peaks; we intend to investigate
more advanced techniques to remove the peaks more precisely.

When we use two stations to localize the location of the drones
and controllers using the technique mentioned in Section 2, the re-
sults are presented in Figure 9. The system can localize the DJI drone
with 11.8m error, Bebop drone with 13.62m error, DJI controller
with 15.21m error, and Bebop controller with 7.5m error on average
of 100 measurements. These errors can be reduced signi�cantly
by optimizing the following components. First, the antenna beam
size can be narrowed down to minimize the angle of arrival detec-
tion error thereby reducing distance measurement errors. Second,
the mechanical component of the system can be upgraded to be
more precise so that the collected wireless signal and corresponding
scanning angle are aligned more accurately. Last but not least, the
impact of peak-to-average-power ratio could be reduced by using
more advanced techniques. The angle of arrival and also localiza-
tion will also be improved signi�cantly when the peak-to-average
power are removed completely. We believe these modi�cations will
result in more accurate angle �nding and localization.

Figure 10 shows the example results of 100 angle of arrival mea-
surements from our system compared with the ground-truth angles
obtained from GPS coordinates. Our system is able to identify the
angle of the drone when it is locating at di�erent locations. This
result shows that the system can be potentially used for tracking the
trajectories of the drone and its controller. However, as the drone
�ying speed is often fast, the current motorized module needs to
be upgraded to scan at the higher speed so that the drone is always
within its coverage area.

4 DISCUSSION AND FUTUREWORK
Although the preliminary results are promising, our work has un-
covered a host of exciting research issues that can stimulate future
research in drone localization. Moreover, new areas of research
can be spurred by this drone localization work, such as prediction
of drone trajectories, and perhaps even airtra�c management of
drone highways in the future.
⌅ Improving drone localization accuracy. We feel there are a
number of opportunities to improve the accuracy of our drone
localization system. First, one of the issues is with the relatively
wide beam width of our rotating antenna, which smears the peak
power signal making it more di�cult to estimate the angle of peak
power. A narrower beam width would enable tighter estimation
of the angle of arrival. A tradeo� may be that our FFT would run
more frequently over a smaller data set potentially introducing
more noise into the estimation of peak power. Second, we may
introduce a larger network of RF sensing stations to provide many
more angles of arrival and thereby reduce the error in location
estimation.
⌅ Improving the drone controller’s localization. Identifying
other unique signatures of the drone controller’s signal is a next
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Figure 8: Estimating the angles
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Figure 9: Estimating the locations
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Figure 10: Direction �nding results using single station

logical step. The current approach of localizing the drone’s con-
troller based on its communication packet rate is not robust when
similar video/controllers are nearby. One of the approaches that we
are investigating is the potentially stronger association between
the drone’s movement/trajectory and the controller’s command
patterns. In particular, what are the command patterns of the signal
transmitted from the controller when the drone is turning, rotating,
accelerating, and decelerating and so on?
⌅ 3D localization. The current system only validates the feasibil-
ity of estimating the azimuth angle. A T-shaped antenna array or
another vertical mechanically-agile antenna is needed to estimate
the elevation angle of the drone (how high the drone is �ying).
We will need to address the increased sensitivity of measuring the
elevation angle, since small errors may result in large errors to the
estimated elevation.
⌅ Tracking multiple drones simultaneously. A key area of fu-
ture work is to address the scenario where multiple drones may be
in the same vicinity. We will need to test our system to see if it is
capable of di�erentiating the individual drone signals and tracking
multiple drones simultaneously.
⌅ Improving the beam-steering mechanism. Using phased-
array antennas will de�nitely reduce the delay of the current me-
chanical stirring approach. Electrical beam steering will be a solu-
tion for the problem. However, most existing phased-array antennas
are not cost-e�ective. The Stitched Wi-Fi ANtennas (SWAN) [26]
approach may be the most suitable solution for designing a low cost
and highly accurate system. The antenna array can be controlled
using a switch managed by an Arduino. There would be no need to
have an SDR board to control each antenna.
⌅Trajectory/speed prediction and airtra�cmanagement Be-
ing able to localize a drone multiple times allows us to plot its trajec-
tory, estimate its speed, and predict its path through an area. This

could enable airtra�c management to limit congestion in certain
geographic areas and steer drones towards uncongested paths.With
su�cient precision, such a system could be used to monitor and
enforce that drones follow for example futuristic drone highways
in the sky.
⌅Addressing corner cases for localization. The system has dif-
�culty identifying the drone’s location when the drone is collinear
with the axis between the two stations. Also, when the drone’s
controller is collinear, the controller’s location is di�cult to deduce.
In particular, the current localization technique is based on angle-
side-angle in a triangulation problem. The drone and two stations
need to create a triangle for the system to be able to identify the
distance from each station to the drone (two unknown sides of the
triangle). By adding more RF AoA sensing stations to the network,
we can both address such corner cases and improve the accuracy
of localization.
⌅Addressingmulti-path e�ects. The impact of multipath e�ects
in drone localization have not been studied yet in literature. One of
the potential approaches is to attach a programmed RF transmitter
on the drone which continuously transmits a single tone signal
to the sensing station. We then can analyze the received signal
to explore the impact of multipath to the system performance at
di�erent distances and environments (city area, urban, and sub-
urban area). The understanding of multipath e�ects from these
studies will help us to optimize the system’s performance.

5 RELATEDWORK
We next discuss in more detail relevant related work.
Angle of arrival based approaches. AoA approaches can either
employ a rotating antenna or a phased array antenna to measure
the angle of arrival of the drone’s signal. Phased array solutions
have the advantage that additional RF stations are not essential
to estimate angle of arrival, but are more expensive to implement
than mechanical solutions. Phased array solutions can be applied
including SpotFi [17] or Phaser [14]. These approaches are often
based on well-established methods such as MUSIC or Joint AoA
and Delay Estimation (JADE) techniques, which require the system
to be equipped with an array of antennas. These methods often
need to open the Wi-Fi packets and look for changes in channel
state information phase to compute the angle.
Radar based approach. Radio waves are transmitted, and the
re�ection from the object is used to verify if it is a drone or not.
X-band frequencies have been used for surveillance [10]. Doppler



processing of the radar provides the velocity of the target and hence
enables the detection of the small moving objects with a low radar
cross section. They are passed through a series of electronic �lters
to distinguish the drone from all the other moving targets [2]. mmW
radar has been investigated to localize the drone [15]. The results
of using this approach are very promising, but the system will
introduce interference to the environments. Passive radar approach
was also discussed [12]. The proposed system analyzes the received
signal strength of the drone signal and does not explore the physical
signatures of the drones to di�erentiate them from other wireless
sources. In addition, the system is not designed to detect and localize
the the drone controller.
Camera-based and audio-based approaches. Video-based de-
tection methods require costly compute-intensive hardware and/or
high bandwidth network connections to process the camera data.
Further, using computer image processing to discriminate between
other �ying objects, e.g., birds, and drones, is a challenging task [11].
For night detection, infrared sensing via a thermal camera would
be needed [1]. The e�ective range to detect humans is around 300m
and vehicles is 600m [9]. However, small drones do not produce a
lot of heat and thermal cameras are costly. Acoustic signature-based
detection has been employed for drones. The acoustic signatures of
the di�erent drones in the market are collected into a database [4, 5]
and compared with the recorded signals to �nd a match. Noisy ur-
ban environments with city tra�c pose challenges for using audio
for drone detection [3, 11].

6 CONCLUSIONS
We have presented an approach to localize the drone and its con-
troller by building a cost-e�ective and passive tracking system. We
present a new solution to identify the drone and its controller angle
and location based on the RF signals that they are emitted. Using
two sensing stations, our �eld testing shows the system obtains 12.2
degrees of error in identifying the drones’ directions, 12.71 meters
error in localizing them. In addition, the system also obtains 9.9
degrees of error in identifying the controllers’ directions, and 11.36
meters of accuracy in locating the controllers. While the prelimi-
nary results are promising, we identify many exciting remaining
challenges and opportunities for research.
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