
Secure Transcoding of Internet Content

Yuan-Chi Chang, Richard Han, Chung-Sheng Li, and John R. Smith
IBM Thomas J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532 USA

ABSTRACT

In this paper, we introduce a secure transcoding
framework that enables network intermediaries such as
proxies to transcode multimedia data without violating
end-to-end security guarantees. In our approach, an
encoder decomposes a data stream at the source into
multiple streams, encrypts each stream independently,
and annotates each stream with clear-text metadata. An
intermediary performs transcoding by prioritizing the
data streams based only on the clear-text metadata, and
then dropping lower priority streams. The destination
can then decrypt the remaining received streams and
recombine them into the transcoded output stream. Our
solution offers true end-to-end security since there is no
decryption and re-encryption of the data stream
midway. As a result, the proxy/intermediary may
employ compression-based transcoding of encrypted
multimedia data to improve speed of delivery over
slow access links without having to decrypt the data.

1 INTRODUCTION

Transcoding of media and Web content has
received much attention recently because of the
increasing popularity of non-PC devices. We observe
that the lack of end-to-end security support in the
conventional transcoding solutions can potentially
impede its role in e-commerce. In this paper, we
outline the design of a secure transcoding framework
which allows transcoding and security to co-exist.

Transcoding often refers to the process of
transforming multimedia text, images, audio and/or
video from the original format in which the multimedia
was encoded into a possibly different format and/or
quality. There are several objectives to applying
transcoding to multimedia content. The first objective
is to reduce the download delay of media content over
low-bandwidth access links such as modem links and
wireless access links [Liljeberg95, Smith98a]. The
second objective is to resolve the mismatches between
the decoding format supported by a client device and

the encoding format employed by a provider of
multimedia content. An example of the latter objective
is the adaptation of content to computationally
constrained or limited-display client devices such as
cellphones and PDAs. These objectives have motivated
much research and product development in the field of
transcoding lately.

The transcoding function typically resides within an
intermediary or proxy that is placed between the
content provider’s Web server and the client device’s
Web browser. It was observed, however, that the
placement of the transcoding function in an
intermediate proxy introduces a security problem
[Haskell98].

In Fig. 1, a transcoding proxy is introduced as an
intermediary between the content provider and the
client device. The standard approach to transcoding at
a proxy requires that the proxy first decrypt the
encrypted data (encrypted by the content provider)
before transcoding can be applied. In Fig. 1, the
transcoding proxy first decrypts the data, then
decompresses the data, then applies a compression
algorithm to re-compress the data thereby changing the
size of the data and/or its format, and finally re-
encrypts the transcoded data for transmission to the
client device. The client side decrypt the data again and
decompress the data using the new compression
algorithm. Once the data has been decrypted in the
transcoding proxy and before it is encrypted again, an
observer can eavesdrop on the unencrypted data. For
example, Fig. 1 shows how the unscrambled image can
be viewed at the transcoding proxy. This unscrambled
condition may violate the end-to-end security guarantee
of privacy implicit in the use of encryption, in which
only the sender and receiver are supposed to be able to
access the data in its unscrambled state. Though it is
possible that in certain cases transcoding proxies may
be entities trusted by the sender and receiver to decrypt
the data, in general not all transcoding proxies will be
trusted.



Our solution to this serious security problem
introduced by a transcoding proxy is based on the
premise that a content provider first subdivides
multimedia content into multiple components. Each of
these components may then be independently
encrypted. A transcoding proxy downstream of the
content provider selectively “filters” or “drops” some
of the encrypted components. No media processing
functions are performed on those components.
Selective filtering achieves compression-based
transcoding of the content, improves the speed of
content delivery over slow access links, and minimizes
the latency incurred in the transcoding process, all
without having to decrypt any of the components of the
content.

This paper outlines a secure transcoding framework
that specifically addresses the aforementioned issue.
We discuss the architecture, multimedia
decomposition, and the deployment of secure
transcoding on SSL.

2 ARCHITECTURE

The architecture introduced in this section enables
transcoding (i.e. compression of data) on encrypted
data without requiring decryption of the data. An
encoder at the content provider/source decomposes the
data into multiple components, which are then
independently compressed, encrypted, and annotated
with clear-text metadata. A secure transcoding proxy
inspects the clear-text metadata of each component in
order to determine which of the lowest priority
encrypted components to drop. The decoder at the
client will reconstruct the transcoded data from the
remaining still-encrypted components. As shown in
Fig. 2, the content provider, e.g. Web/video server,
begins by generating multiple components from an
existing multimedia object. Next, each individual
component’s data is passed through a compression
algorithm, “C” in Fig. 2. The content provider also
annotates each component withmetadata. This
metadata contains labels that identify components
and/or describe the importance of components.

The content provider generates two versions of a
metadata header, a version upon which encryption will
be performed as well as a second version that will stay
non-encrypted, i.e. remain in clear text. The two
versions of the metadata header are later used by the
client device to detect tampering. In Fig. 2, “M”
denotes the generation of the metadata header subject
to encryption, while “H” denotes the generation of the
clear-text metadata header. The metadata header to be

encrypted for component 1 is labeled “Metadata 1”, the
clear-text version of the metadata header for
component 1 is labeled “Metadata 1B”.

In Fig. 2, a simple message is assembled as follows.
First, the metadata header 1 is appended to the
compressed data of component 1 and this collection is
encrypted by the operation “E”. Second, the clear-text
metadata header 1B is appended to the encrypted
collection consisting of the metadata header and
compressed component data, as denoted by the
operation “A”. The output of the second appending
operation “A” is an assembled message 1.

At the transcoding proxy, the multiple messages
representing the various components of the multimedia
object are processed. The transcoding proxy extracts
the clear-text metadata header of each assembled
message. Using the information provided in the
metadata header of each message, the transcoding
proxy determines which encrypted components or
component portions to selectively drop or substitute.

In Fig. 2, the transcoding proxy receives two
components. These components are demultiplexed, and
their metadata headers are extracted, as denoted by “A-

1 “. In this example, the transcoding proxy drops
component 2, and forwards the remaining component 1
on towards its destination, namely the client device.
Reassembly of the remaining messages is also shown,
e.g. metadata headers are joined back with the
respective payloads with which they arrived if
necessary. In general, there may beK messages, and
the proxy may dropL<=K of these messages and may
modify the remainingK-L messages, either by dropping
or substituting message portions.

The process of selectively dropping or filtering or
substituting encrypted annotated components by a
transcoding proxy achieves secure transcoding because
the size of the multimedia object has been compressed

Figure 1. Traditional transcoding at an intermediary
decrypts data before transcoding and re-encrypting data,
thereby violating end-to-end security.



by an intermediary without having to decrypt any of the
data, i.e. components, representing the object.

The decoding process at the client device consists
of reconstructing a transcoded version of the original
multimedia object from theK-L remaining messages
forwarded by the transcoding proxy.

In Fig. 2, for each component the client device
extracts (A-1) the clear-text metadata header, decrypts
(E-1) both the encrypted metadata header and the
encrypted component data, extracts (A-1) the decrypted
metadata header, compares the two metadata headers
for signs of tampering, and finally decompresses (C-1)
the component data if no tampering has been found.

3 MULTIMEDIA DATA DECOMPOSITION

There are many ways to decompose data in various
modalities: text, image, video, audio or a combination
of the above. In this section, the decomposition of
image modality is described as an example.

The quality of an image may be controlled through
its spatial size, color resolution, and lossy compression.
Image decomposition may be achieved through a

combination of the following techniques.
1. B/W vs. color – the luminance component of a

color image can be extracted and forwarded
separately as a black and white image.

2. Spatial size – changing the size of an image can be
achieved through wavelet transforms or other
downsampling techniques.

3. Lossy compression – it is observed that visual
quality of images more strongly correlates with
low frequency components than high frequency
components.

The above illustrated techniques can be combined
to enrich the granules of decomposition. It is noted that
the granules may have different sizes after compression
and thus one can not determine bandwidth usage by
simply counting the number of granules.

4 TRANSCODING SERVICE ON
SECURITY PROTOCOLS

Decomposed components are carried by secure
networking transport from the sender to the receivers.
Secure Socket Layer (SSL) developed by Netscape is

Figure 2. Secure transcoding architecture: (1) the encoder decomposes data into multiple components, encrypts each
component independently and adds clear-text metadata to each component; (2) a transcoding proxy drops some
encrypted components based only on clear-text metadata; (3) the decoder receives the remaining components, decrypts
them, then reassembles the transcoded data.



the most widely used secure transport protocol on the
Internet [Freier96]. It provides a secure communication
channel between two networking applications that is
safe from eavesdropping, tampering, or message
forgery.

The transcoding implementation on SSL is
illustrated in Fig. 3. Session managers at the server and
client sides manages multiple SSL connections, each of
which carries one data component. At the beginning of
the application session, the client manager requests the
server manager for the number of components
available. The client manager then sequentially
establishes SSL connections to receive all the
components. In this figure, four components are
available initially. The transcoding proxy in the middle
decides that based on client device and connection
profiles, only two SSL connections can be supported.
Assume that the dependency among data components is
simply ordered and self-contained. In other words, the
2nd connection depends on the 1st; the 3rd depends on
the 1st and 2nd, and so on. The transcoding proxy then
drops IP packets in the 3rd and 4th connections and
relays those from the first two. This would cause the
TCP sessions of the 3rd and 4th SSL connections to time
out and achieve the goals of filtering out unwanted
components.

5 CONCLUSION

In this paper we presented a framework for secure
transcoding for multimedia content on the Internet. We
observed that conventional transcoding solutions, while
necessary for matching server data to client preferred
formats, prevent fully end-to-end encryption. We
outlined the architecture, data decomposition, and

security protocol necessary to support our new
transcoding proposal. While much is involved in
changing the existing data representations to be
decomposable, we feel this is necessary and probably
the only scalable solution capable of providing end-to-
end security without losing the benefit of transcoding.

6 REFERENCES

[Freier96] A. O. Freier, P. Karlton, and P. C. Kocher,
“The SSL Protocol Version 3.0,” IETF Internet Draft,
Nov. 1996.
[Han99] R. Han, “Factoring a Mobile Client’s
Effective Processing Speed Into the Image Transcoding
Decision,” ACM International Workshop On Wireless
Mobile Multimedia (WOWMOM),1999, pp. 91-98.
[Han2000] R. Han, J. Smith, "Transcoding of the
Internet's Multimedia Content For Universal Access,"
Multimedia Communications: Directions and
Innovations, Academic Press, 2000, Chapter 15.
[Haskell98] P. Haskell, D. Messerschmitt, L. Yun,
"Architectural Principles for Multimedia Networks,"
Wireless Communications: Signal Processing
Perspectives, Prentice Hall, 1998, pp. 229-281.
[Liljeberg95] M. Liljeberg, T. Alanko, M. Kojo, H.
Laamanen, K. Raatikainen, “Optimizing World-Wide
Web for Weakly Connected Mobile Workstations: An
Indirect Approach,” Second International Workshop on
Services in Distributed and Networked Environments,
1995, pp. 132-139.
[Smith98a] J. Smith; R. Mohan; C. Li, “Content-based
Transcoding of Images in the Internet,”Proceedings of
the International Conference on Image Processing
(ICIP), vol. 3, 1998, pp. 7-11.

Figure 3. Transcoding proxy on SSL relays or terminates TCP connections.

TCP/IP TCP/IP

SSL SSL

Session Manager Session Manager

Data Decomposition
and Compression

Data Decompression
and Reassembly

Transcoding Proxy
Relay or Terminate TCP Connections

Server Client


