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ABSTRACT
A large number of practical sensing and actuating appli-
cations require immediate notification of rare but urgent
events and also fast delivery of time sensitive actuation com-
mands. In this paper, we consider the design of efficient
wakeup scheduling schemes for energy constrained sensor
nodes that adhere to the bidirectional end-to-end delay con-
straints posed by such applications. We evaluate several
existing scheduling schemes and propose novel scheduling
methods that outperform existing ones. We also present a
new family of wakeup methods, called multi-parent schemes,
which take a cross-layer approach where multiple routes for
transfer of messages and wakeup schedules for various nodes
are crafted in synergy to increase longevity while reduc-
ing message delivery latencies. We analyze the power-delay
and lifetime-latency tradeoffs for several wakeup methods
and show that our proposed techniques significantly improve
the performance and allow for much longer network lifetime
while satisfying the latency constraints.
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1. INTRODUCTION
A large class of critical monitoring and sensing-actuation

systems (e.g., fire alarm sprinkler systems or wireless sen-
sor based control systems) are deployed specifically to (a)
detect events that occur rarely but require immediate noti-
fication and (b) transfer delay sensitive actuation commands
to a particular node or a set of nodes in the network. Such
systems necessitate a design that can provide bidirectional
delay guarantees. On the other hand, the design of sen-
sor network based systems that comprise energy constrained
nodes is typically dictated by longevity concerns. Therefore,
the design of such systems must not only strive to reduce
average power consumption but also provide packet delivery
guarantees over potentially multiple hops.

A popular approach towards increasing longevity of sensor
networks is by employing sleep scheduling where nodes stay
in low-power or sleep modes for most of the time, periodi-
cally waking up to check for activity [1–4]. This increased
longevity, however, comes at the cost of increased message
delivery latency since a forwarding node has to wait until
its next-hop neighbor awakens and is ready to receive the
message. Researchers in ad hoc and sensor networks con-
tinue to search for new wakeup techniques to save power
without suffering the large latency penalties associated with
the wakeup process. Current methods can be divided into
two main categories:

1) Scheduled wakeups: In this class, the nodes follow
deterministic (or possibly random) wakeup patterns [1–11].
Time synchronization among the nodes in the network is
generally assumed. However, asynchronous wakeup mech-
anisms [9–11] which do not require synchronization among
the different nodes are also categorized in this class. Al-
though asynchronous methods are simpler to implement,
they are not as efficient as synchronous schemes, and in the
worst case their guaranteed delay can be very long.

2) Wakeup on-demand (out-of-band wakeup): It is as-
sumed that the nodes can be signaled and awakened at
any point of time and then a message is sent to the node.
This is usually implemented by employing two wireless in-
terfaces. The first radio is used for data communication
and is triggered by the second ultra low-power (or possibly
passive) radio which is used only for paging and signaling.
STEM [12] and its variation [13], and passive radio-triggered
solutions [14] are examples of this class of wakeup meth-
ods. Although these methods can be optimal in terms of
both delay and energy, they are not yet practical. The cost
issues, currently limited available hardware options which



results in limited range and poor reliability, and stringent
system requirements prohibit the widespread use and de-
sign of such wakeup techniques. Consequently, there is a
need for efficient scheduled wakeup schemes which are reli-
able and cost-effective and can also guarantee the delay and
lifetime constraints.

In this paper, we focus on the synchronous scheduled
wakeup methods which provide bidirectional delay guaran-
tees. We analyze and compare the existing methods and in-
troduce new efficient wakeup methods that outperform the
existing ones. We present a novel class of wakeup meth-
ods called multi-parent schemes which assign multiple par-
ents (forwarding nodes) with different wakeup schedules to
each node in the network. This method takes a cross-layer
approach and exploits the existence of multiple paths be-
tween the nodes in the network to significantly improve the
energy-efficiency of wakeup process and therefore increase
the lifetime of the network while meeting the message delay
constraints.

We derive the best-case, worst-case, and generally the dis-
tribution of delay for many existing and our new wakeup
schemes, and also characterize the trade-off between power
consumption (or lifetime) and guaranteed delay for many
different wakeup mechanisms. In a practical example, we
show that by using our proposed wakeup schemes, the life-
time increases from 40 months for the best existing method
to a notable 65 months for our proposed multi-parent scheme
which achieves two additional years of lifetime while provid-
ing the same delay guarantees.

Furthermore, we formulate the process of parent assign-
ment for multi-parent methods as a graph coloring problem,
and prove that it is NP-complete, but we present an effi-
cient heuristic algorithm to solve this problem and evaluate
its performance through simulation.

The rest of this paper is organized as follows: In Sec-
tion 2, we review the existing synchronous methods and de-
scribe the differences between previous related studies and
our approach to the wakeup scheduling problem. Section 3
presents the general framework and assumptions underlying
our approach. In Section 4, the delay distributions of dif-
ferent wakeup schemes are derived. The multi-parent tech-
nique is described in Section 5. Different wakeup schemes
are compared in Section 6. The parent assignment problem
is studied in Section 7, and finally, Section 8 concludes this
paper.

2. EXISTING METHODS
A good survey of wakeup-based power management tech-

niques can be found in [8]. In [1, 2] a MAC protocol for
sensor networks called S-MAC, was introduced where the
idea of duty-cycling and scheduled sleeping of the nodes is
incorporated in the MAC layer. Each node follows a peri-
odic active/sleep cycle, and the nodes that are close to one
another synchronize their active cycles together. T-MAC [3]
is an extension of the previous protocol which adaptively ad-
justs the sleep and awake periods based on estimated traffic
flow to increase the power savings and reduce delay.

DMAC [4] is an efficient data gathering protocol for sensor
networks where the communication pattern is restricted to
an unidirectional tree. It uses staggered wakeup schedules
to create a pipeline for data propagation to reduce the la-
tency of data collection process significantly. Similar wakeup
schemes are used in [5, 6]. As we will see in Section 4, this

scheme provides good delay in one direction but it is not
efficient when bidirectional delay guarantees are required.
In [5] a protocol is proposed for scheduling the wakeup time
of different nodes such that detection delay is minimized,
i.e., each point in the environment is sensed within some
finite interval of time. This scheme is mainly useful when
there are many redundant sensor nodes in the network such
that the same point is covered by multiple sensors.

In a recent paper [7] by Lu et. al, the authors formulate
the wakeup scheduling as a graph-theoretical problem. They
consider low traffic network with arbitrary communication
flows and show that minimizing the end-to-end communica-
tion delay is in general NP-hard. However, they present effi-
cient heuristic methods to find the best schedules and prove
the optimality of different wakeup patterns under specific
conditions for special tree and ring topologies.

In our model the goal is to minimize the worst-case end-
to-end overall delay which includes both transmission delay
and detection delay. Unlike the model in [7] where general
traffic flows are assumed, we consider a specific yet very
common and practical traffic pattern where the base sta-
tion (a central node) is either the source or originator of the
messages (forward direction) or it is the sink or the final re-
ceiver of the messages (backward direction) (see Figure 1).
By focusing on this traffic pattern we are able to design very
energy-efficient methods and guarantee a significantly better
delay performance than existing methods. For example, in
a four-hop network when the nodes wake up on average once
every two seconds, our proposed wakeup methods guarantee
a worst-case overall delay of less than 3s over four hops in
both forward and backward directions while DMAC achieves
a worst-case delay of 6s (in both directions), and the best
existing scheme gives a delay of 4.1s. Even for data collec-
tion or monitoring applications where the backward delay is
important, our proposed methods perform better than the
existing schemes. For the same system, DMAC guarantees
a delay of 2.1s for backward direction, while our proposed
multi-parent technique achieves a delay of less than 1.15s,
which is almost half of the wakeup period of the nodes!

3. MODEL AND ASSUMPTIONS
For the rest of the discussion in the paper, our sensor net-

work comprises of several tens of energy constrained sensor
nodes that either notify an event to a base station or receive
commands/queries from the base station, possibly over mul-
tiple hops. The base station station is assumed to be less
energy constrained, however it does not necessarily provide
greater radio bandwidth or range than the regular nodes1.

Traffic Model: Figure 1 depicts the two kinds of com-
munication paths in the network, namely,
1) Forward direction (downlink): The base station sends a
message to one of nodes in the network.
2) Backward direction (uplink): A regular node sends a
message to the base station.

Several sensor nodes today, are often equipped with pas-
sive event detection capabilities that allow a node to de-
tect an event even while it is in sleep mode. Still others
provide ultra low-power, low-rate periodic sampling mech-
anisms for rare event detection. Upon the detection of an
event, the sensor node is immediately woken up (within sev-

1This work can be easily generalized to the case where there
are multiple base stations.
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Figure 1: Network and Traffic Model.

eral µsec) and is ready to transmit a notification message to
the base-station. Similarly, the base-station is often required
to transmit imperative commands or queries to sensor nodes
that may originate asynchronously. Messages in either di-
rections, thus, originate at random times (asynchronously)
and this implies that messages may potentially originate at
an inopportune time when all other nodes in the network are
in sleep mode and not ready to receive the message. While
these messages occur infrequently, they reflect urgency, as
such their delivery demands non-negotiable worst case de-
lay bounds. For the rest of the discussion in the paper,
delay is defined as the time duration between generation of
a message at a node (base-station or a regular node) until
its eventual delivery at the destination node.

Channel Sniffing and Wakeup: Nodes in the network
wake up from time to time and scout the channel for activity.
This is performed by listening to the channel for a very short
period of time and measuring the received signal strength.
If the signal strength exceeds a pre-determined threshold,
the node remains awake in an attempt to receive a possible
transmission, otherwise it powers itself down. This entire
process is called sniffing the channel.

Wakeup for sniffing constitutes the most frequent opera-
tion in the network and consequently is typically the most
energy consuming activity. To illustrate the importance of
the wakeup power consumption, we consider the following
example: According to the data sheet of Chipcon CC1100
radio [19], if the nodes wake up once every second the aver-
age current consumption over the one second is 15µA which
gives a charge draw of 15µC per wakeup. This current
draw may seem negligible in comparison with average cur-
rent draw of 15 mA for reception or transmission of packets
at data rate 250Kbps. However, in a day of operation of the
network, the energy consumed by a node due to wakeup will
add up to 15µA × 3V × 86400s = 3.9J . This much energy
can be used to transmit or receive almost 21 Mbits of data.
In many applications, the overall traffic that passes through
a node in one day is much less than this!

The length of the sniffing period and the energy con-
sumed while performing a wakeup, critically determine the
longevity of the network. In practice, the sniffing length
is determined by several hardware limitations such as the
warm up time of the radio, and the minimum time required
to reliably detect a signal in the channel. Sniffing period is
typically in the order of hundreds of µsec to few msec.

Time Synchronization: We assume that a network-
wide time synchronization protocol maintains a consistent

notion of time between various sensor nodes in the network.
Time synchronization in wireless sensor networks is well-
researched and several implementations (e.g., [15, 16]) can
achieve synchronization within few of µsec. As such, syn-
chronizing nodes within an accuracy of few msec, which is
required by the wakeup schedules, is a relatively easy task.

Although the time synchronization protocol may create
additional energy burden for the system, in most delay-
sensitive applications this extra energy cost is either negligi-
ble in comparison with the energy consumed by the wakeup
process2 and/or will be compensated by the energy sav-
ing that can be achieved by employing an efficient synchro-
nous wakeup method. Therefore, for delay-sensitive appli-
cations, synchronous wakeup methods are preferred due to
their overall energy-efficiency.

Network Topology: Each node in the network is repre-
sented by a node in a graph and a link between two nodes
signifies their ability to communicate with each other. An
initial connectivity graph is formed by the base station dur-
ing network initialization followed by occasional updates to
account for temporal changes in the wireless channel (e.g.,
see [17, 18]). While wireless link qualities are subject to
changes temporally, two static nodes that are connected via
a reliable link (high signal to noise ratio) rarely experience
a complete change in their connectivity over short periods
of time. In this work we assume that the sensor network
deployment is dense enough such that every node has few
neighbors with highly reliable links. In such a network, if
only reliable links are used for communication, the connec-
tivity graph itself is not subject to frequent changes. As
such, we assume that the connectivity graph formed by us-
ing the reliable links of the network is stationary.

Variables and Notation: There are N nodes in the
network. Levels are assigned to various nodes in the network
in a breadth-first order based on the connectivity graph.
The base station is assigned a level 0. Essentially, level of a
node signifies the minimum number of hops from the node to
the base-station. This is illustrated in Figure 1. Lk denotes
the set of nodes in level k. The maximum number of hops
(or maximum number of levels) in the network is denoted
by h.

Our goal in this paper is to analyze the worst case delay
observed by any node in the network. Since nodes that
are the farthest from the base-station (nodes in the highest
level) experience the longest delays, we consider the delay
for only such nodes in our analysis. We use D. and D/ to
represent the random variables for the delay seen by a node
in level h in forward and backward directions respectively. In
other words, D. shows the delay seen by a message sent from
the base station to a node in Lh, and D/ shows the delay
of a message from a node in Lh to the base station. The
delay is random due to the uncertainty in the arrival time
of the messages. We assume that if a message arrives within
a period of ∆, the arrival time is uniformly distributed over

2Consider the previous example with CC1100 radio: As-
sume that each node need to re-synch every 100 seconds,
and each time the radio should be in active mode for at most
5ms to compensate for any clock drift during the 100s and
exchange synchronization packets. Note that the clock drift
between two nodes in 100 seconds caused by a poor quality
crystal with 40ppm inaccuracy is at most 4ms. Thus, each
synch period consumes 5ms × 15mA × 3V = 225µJ . This
adds up to 864 × 225µJ = 0.19J over a day which is much
smaller than the 3.9J for the wakeup process.



this period. Many arrival point processes including Poisson
process satisfy this condition (e.g., see [21]). The notation
X ∼ U[α, β] is used to show that X is a continuous random
variable with uniform distribution over the range of [α, β].

We denote the energy consumed for each wakeup by Eo.
The value of Eo depends only on the hardware and the dura-
tion that a node stays awake in each wakeup. For example,
for CC1100 we have Eo = 3V × 15µC = 45µJ .

In a scheduled wakeup scheme each node must be able
to decide upon the times for sniffing the channel for possi-
ble receptions. The simplest scheme is to schedule a node to
wake up periodically after a fixed time interval. In a more so-
phisticated scheme, each node may follow a periodic wakeup
pattern i.e., a sequence of pre-determined wakeup times that
exhibit periodicity. We denote the period of a wakeup pat-
tern by T . Note that during one period T the node may
wake up multiple times, therefore to compare consistently
across various schemes we define the effective wakeup period
Teff as,

Teff = lim
τ→∞

τ

Nτ

. (1)

Here, Nτ represents the number of wakeups in a time du-
ration τ . So on average, the nodes wake up once every Teff

seconds. We also define the effective wakeup rate as,

Reff =
1

Teff
. (2)

The power consumption due to wakeups is then given by,

Pwakeup =
Eo

Teff
= ReffEo. (3)

4. WAKEUP PATTERNS
In this section, we present different wakeup patterns and

derive their corresponding delay distributions. In our analy-
sis the tradeoff between power (or equivalently lifetime) and
latency is characterized by obtaining the relationship be-
tween delay distribution (in particular the worst-case delay)
and the effective wakeup period for each wakeup pattern.
Note that from (3) the power consumed by wakeup process
is mainly related to Teff .

Throughout this section, to compare different wakeup pat-
terns we provide numerical values for delay and lifetime for
two example scenarios:

(a) Fixed-power case: In this case, different patterns
are compared based on their worst-case guaranteed delay
when they consume the same amount of power and therefore
provide the same lifetime. We assume that the amount of
power allocated for the wakeup process is fixed such that

Pwakeup = 0.5Eo ⇒ Teff = 2s.

So the nodes wake up on average once every two seconds.
(b) Fixed-delay case: In this case, we assume that the

worst-case delay required by the application is fixed such
that maximum delay should be less than one second:

max(D.,D/) 6 1.

Then, the amount of power each pattern consumes to satisfy
this delay requirement is calculated. To convert the power
consumption to network lifetime, we assume a fixed battery
capacity3 equal to (2.4 × 108)Eo. This value is obtained as-
suming 2/3 of the capacity of two AA batteries (1000mAh)
3In general, the total energy of the battery should be di-
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Figure 2: Fully Synchronized Wakeup Pattern.
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used on a Chipcon CC1100 radio with Eo = 45µJ (15µC)
per wakeup. In both cases, we further assume that the net-
work has h = 4 hops.

4.1 Fully Synchronized Pattern
In this pattern which is shown in Figure 2, all the nodes in

the network wake up at the same time according to a simple
periodic pattern with a fixed period Teff = T . This pattern
is very similar to the S-MAC protocol [1, 2]. In the figure,
the delay of a message that arrives at the base station and
is forwarded to a node in level 3 is shown. The worst case
delay in the network is simply hT and due to the symmetry
of the pattern, the distribution of delay in both forward and
backward directions is the same:

D.,D/ ∼ U [ (h − 1)Teff , hTeff ] , (4)

E(D.) = (h − 1
2
)Teff .

In our two example scenarios, for the fixed-power case
with h = 4 and Teff = 2s:

D.,D/ ∼ U [6, 8] ⇒ max(D.,D/) = 8s,

and for the fixed-delay case, the nodes should wake up every
Teff = 250ms which gives Pwakeup = 4Eo and a network
lifetime of 23.1 months.

4.2 Shifted Even and Odd Pattern
This pattern is derived from the previous one by shifting

the wakeup pattern of the nodes in even levels by T/2. It
is shown in Figure 3. The figure also shows the worst-case
delay scenario: A message arrived to a level 3 node imme-
diately after the wakeup time of the parent of the node. In

vided among different processes executed on a node where
the wakeup process is one of them. However, here to simplify
the calculation we assume that the portion of the battery ca-
pacity devoted to the wakeup process is fixed.



this case, the first hop requires T seconds and the following
(h − 1) hops each takes T/2 seconds. The worst-case delay
is therefore (h + 1)T/2 and the distribution of delay is:

D.,D/ ∼ U[ (h−1
2

)Teff , (h+1
2

)Teff ], (5)

E(D.) = h
2
Teff .

In our examples, for the fixed-power case

D.,D/ ∼ U [3, 5] ⇒ max(D.,D/) = 5s,

and for the fixed-delay case to achieve one second delay

Teff = 400ms ⇒ Pwakeup = 2.5Eo

which gives a lifetime of 37 months, which is much better
than the 23.1 months of the first pattern.

Note that by this simple modification, the delay for this
pattern is almost half of the delay for the synchronized pat-
tern, and the lifetime is significantly increased. In fact, in [7]
it is proved that in a network with tree topology this pat-
tern provides the best overall average delay among all simple
(one-wakeup-per-period) patterns with different shifts (see
Theorem 2 and its conclusion in [7] for more conditions).

4.3 Ladder Pattern
In this pattern, the nodes still follow the simple periodic

pattern but the wakeup patterns of different levels are stag-
gered. Figure 4 shows this pattern where the wakeup are
staggered in the forward direction. As explained in [4]:
“This idea is very similar to the common practice of syn-
chronizing the traffic lights to turn green (wake up) just in
time for the arrival of vehicles (packets) from the previous
intersections (hops)”.

This pattern has been suggested by many authors [4–7]
and has been given different names such as staggered wakeup
(DMAC) [4], streamlined wakeup [5], fast path algorithm
(FPA) in [6]. We refer to this pattern as ladder wakeup.

The time difference between the wakeup times of two
nodes in adjacent levels is denoted by τ . By decreasing
this value, the forwarding time of the message can be min-
imized. However, an intermediate node should fully receive
the message before it can forward it to the next level, so the
value of τ is limited by the size of the message and the time
required to transmit it. Typically τ should be in the order
of tens of msec.

This wakeup pattern is no longer symmetric, so the for-
ward and backward delay distributions are different. In the
forward direction the first hop requires between zero to T
seconds and then the next (h − 1) hops each require only a
short period of length τ , so (note that Teff = T ):

D. ∼ U [ (h − 1)τ , Teff + (h − 1)τ ] , (6)

E(D.) = Teff

2
+ (h − 1)τ.

For backward direction, the first hop again requires at
most T seconds, and the next hops each takes (T − τ ) sec-
onds. Note that the wakeup time of the base station does
not impact the forward delay4. So in order to reduce the
backward delay the base station wakes up after (instead of
before) the wakeup time of the L1 nodes as shown in Figure

4The same statement is true for the backward delay and the
pattern of the nodes in the last level.
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Figure 5: Two-Ladders Pattern.

4. The distribution of the backward delay is given by:

D/ ∼ U
´

(h − 2)(Teff − τ ) + τ ,

(h − 1)Teff − (h − 3)τ µ , (7)

E(D/) = (h − 3
2
)Teff − (h − 3)τ.

In the two numerical example cases, we assume τ = 50ms.
For the fixed-power case with Teff = 2s:

D. ∼ U [0.15, 2.15] , D/ ∼ U [3.95, 5.95] ,

so the maximum delay is 5.95s; and for the fixed-delay case
to achieve one second delay in both directions we need

Teff = 350ms ⇒ Pwakeup = 2.86Eo,

which gives 32.4 months as the lifetime of the network.
Note that the delay in the forward direction is significantly

reduced but the backward delay is almost the same as the
first pattern. So when the delays in both directions are
considered, there is no major improvement in the worst-case
delay or the lifetime of the network.

The pattern shown in Figure 4 is the forward ladder pat-
tern. This pattern can be reversed to create the backward
ladder pattern which improves the backward direction and
is essentially the same as the wakeup method used in DMAC
or FPA [4–7].

4.4 Two-Ladders Pattern
To improve the delay in both directions we can combine

a forward ladder with a backward ladder. This pattern is
shown in Figure 5. A similar idea is proposed in [7]. Note
that the nodes in the middle levels (L1, . . . , Lh−1) wake up
twice in every period T , so the effective wakeup period is
Teff = T/2. Since the pattern is symmetric the distribution
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of delay in both directions is the same:

D.,D/ ∼ U [(h − 1)τ, 2Teff + (h − 1)τ ] , (8)

E(D.) = Teff + (h − 1)τ.

In our examples, for the fixed-power case with Teff = 2,

D.,D/ ∼ U [0.15, 4.15] ⇒ max(D.,D/) = 4.15s,

which is better than the 5s for the even-odd pattern. For
the fixed-delay case with the worst-case delay of one second

Teff = 425ms ⇒ Pwakeup = 2.35Eo,

and the network lifetime is 39.3 months, which is 2.3 months
longer than the even-odd pattern.

This pattern is more efficient than the preceding ones but
it is also more complex. The nodes no longer follow a simple
“one wakeup per period T” pattern. In addition, note that
the base station and the nodes in the last level (leaf nodes)
wake up only once, unlike other nodes which wake up twice
in every period T . Consequently, they save energy and con-
sume less power for wakeup in comparison with other nodes.

4.5 Crossed-Ladders Pattern
To enhance the previous wakeup pattern, we can cross

the two ladders at one of the wakeup points so that the
same wakeup is used in both forward and backward direc-
tions. The cross point can be in any of the middle levels
(L1, L2, . . . , Lh−1). We refer to such pattern as a crossed
ladder pattern. However, this technique saves energy for
the nodes on the level on which the wakeups are crossed. So
to distribute the energy saving over all levels, we propose
to change the wakeup pattern over time as shown in Figure
6. For a window of WT seconds (W >> 1) wakeup pat-
tern with two ladders crossed at first level is used. Then the
network switches to a different wakeup pattern with crossed
ladders at level 2, and in the same way it proceeds. After
the crossed pattern at level (h − 1) the network goes back
to the first pattern and the whole cycle repeats. Over a full
cycle of (h − 1)WT seconds, the nodes in the intermediate
levels wake up twice every T seconds in (h − 2) windows,
and once in every T seconds in one window. Therefore, the
effective wakeup period is

Teff =
(h − 1)WT

2W (h − 2) + W
= (

h − 1

2h − 3
)T. (9)

For this scheme the forward and backward delays are the
same as in (6) but the effective wakeup period should be
scaled by the term ((2h − 3)/(h − 1)):

D.,D/ ∼ U
´
(h − 1)τ, ¶ 2h−3

h−1 · Teff + (h − 1)τ µ , (10)

E(D.) = ¶ 2h−3
2h−2 · Teff + (h − 1)τ.

Let us consider the two example scenarios. For the fixed-
power case with Teff = 2s and h = 4

D.,D/ ∼ U [0.15, 3.48] ⇒ max(D., D/) = 3.48s.

The worst-case delay in both directions is 3.48s which is
much better than the 4.15 guaranteed by the previous pat-
tern. For the fixed-delay case to provide a worst-case delay
of one second we need

Teff = 510ms ⇒ Pwakeup = 1.96Eo,

which gives 47.2 months as the lifetime of the network. This
is 20% longer (8 additional months) than 39.2 months of the
two-ladders pattern. This pattern is the most complex one,
but also it is the most energy-efficient among the patterns
considered in this section.

5. MULTI-PARENT METHOD
In this section, we describe a new method, called multi-

parent technique, which improves the performance of the
wakeup process significantly. This method can be indepen-
dently applied to any of the wakeup patterns from the pre-
vious section. We show that the multi-parent idea along
with the forward ladder pattern yields a very efficient and
yet simple wakeup scheme which is more efficient than all
the previous methods.

5.1 Motivation and Assumptions
In many application scenarios and network deployments,

the network is dense and therefore most of the nodes at
higher levels have many neighbors and they can communi-
cate with many lower level nodes. We take advantage of this
fact in the multi-parent idea and exploit the full connectiv-
ity of the network. Instead of using a tree network topology
where a single parent is assigned to each node in the net-
work and the messages are always forwarded through the
same fixed path, multiple paths and multiple parents with
different wakeup schedules are associated with each node
in the network. Basically, in the multi-parent idea when a
message arrives to a node in the network, depending on its
arrival time it chooses the fastest path in the network to get
to its destination. For example, if the node has two parents
it forwards the message to the the parent which will wake
up earlier. Another message that comes at a later time may
find the other parent/path to be optimal at that moment.

The main assumption for the multi-parent method is that
we can divide the nodes in the network into multiple disjoint
groups such that at least one parent from each group can
be assigned to any node in the network. For example, Fig-
ure 7 shows a graph in which all the nodes are divided into
two groups, namely red group and blue group. Note that
each node in the network has one red parent (mother) and
one blue parent (father). The base station is a special node
which belongs to both groups and can act as both parents.
We call base station a purple node. We defer further dis-
cussions on network partitioning and parent assignment to
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Figure 7: Example of partitioning the network.
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Figure 8: Multi-parent Method.

Section 7, and in the rest of this section we analyze the ef-
fect of the multi-parent idea and the improvement that can
be achieved by applying this method to different wakeup
patterns.

5.2 Description and Analysis
We denote the number of groups by g, so the nodes are

divided into g groups and every node has g parents, each
from a different group. In the previous wakeup patterns, all
the nodes in the same level wake up at the same time ac-
cording to a periodic wakeup pattern. We define one period
of the wakeup pattern as a frame. We consider g consecu-
tive frames and associate each frame with a different group.
The nodes in each group follow the same wakeup pattern
only in their corresponding frame and sleep in the other
(g − 1) frames. This is illustrated in Figure 8 for g = 2
and a simple periodic wakeup pattern: When two parents
(mother and father) are assigned to each node, if the mother
is awake, the father can sleep and vice versa and the child
node does not see any difference from the single-parent case.
The base station belongs to all groups so it should wake up
in all frames.

Now computing the delay distribution of different wakeup
patterns with the multi-parent idea is in order. We show
that the multi-parent idea can reduce the backward delay
significantly by almost a factor of g, but the forward delay
is not impacted by this idea.

5.2.1 Distribution of Backward Delay
As it can be seen from Figure 8, with multi-parent method,

the child node still gets the same opportunities to send a
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Figure 9: Multi-parent Forward Ladder Pattern.

message and sees the same pattern as in the single-parent
case. So the delay in backward direction remains the same
while the nodes in the network wake up g times less fre-
quently as the single-parent case. Therefore, the expression
for distribution of delay has the same form as in the single-
parent case but the effective wakeup period is scaled down
by a factor of g, i.e., Teff is replaced by (Teff/g). For exam-
ple, for the even-odd pattern:

D/ ∼ U[ (h−1
2g

)Teff , (h+1
2g

)Teff ], (11)

E(D/) = ( h

2g
)Teff .

So the same backward delay can be guaranteed while all
nodes wake up much less frequently, or equivalently if the
nodes wake up at the same rate as before, the backward
delay is reduced by a factor of g. All the expressions for
the distribution of delay of different wakeup patterns are
summarized in Table 1.

5.2.2 Distribution of Forward Delay
The forward delay can be divided into two segments: First

segment is the time from the arrival of the message to the
base station till it reaches one of the parents of the destina-
tion node, and the second segment is the time to send from
the parent to the node. With the multi-parent idea, the first
segment of the delay is reduced as we can use different paths
to send the message from the base station to one of the par-
ents very fast. However, this idea increases the second seg-
ment of the delay. The node itself wakes up less frequently,
so the message has to wait in the parent node for the node
to wake up to receive it. For the more efficient wakeup pat-
terns (ladder and two-ladders and crossed-ladders patterns)
these two effects cancel out each other and the distribution
of the delay remains exactly the same as in the single-parent
case. For synchronized and even-odd patterns the delay is
slightly improved5. See Table 1 for all the distributions.

We do not see this effect in the backward direction because
in that case the messages go to the base station which is in
fact waking up more frequently that the rest of the nodes in
the network.

5Due to number of pages’ limit we do not present the detail
derivation of the expressions for the forward delay.



Table 1: Delay Distribution of Different Wakeup Patterns.

Wakeup Pattern Minimum Delay Maximum Delay Average Value

Synchronized
D. (h−1

g
)Teff ( g+h−1

g
)Teff ( g+2h−2

2g
)Teff

D/ (h−1
g

)Teff (h

g
)Teff ( 2h−1

2g
)Teff

Even-Odd
D. (h−1

2g
)Teff ( 2g+h−1

2g
)Teff ( g+h−1

2g
)Teff

D/ (h−1
2g

)Teff (h+1
2g

)Teff ( h

2g
)Teff

Ladder Forward
D. (h − 1)τ (h − 1)τ + Teff (h − 1)τ + ( 1

2
)Teff

D/ (h−2
g

)Teff − (h − 3)τ (h−1
g

)Teff − (h − 3)τ ( 2h−3
2g

)Teff − (h − 3)τ

Ladder Backward
D. (h − 2)Teff − (h − 3)τ (h − 1)Teff − (h − 3)τ (h − 3

2
)Teff − (h − 3)τ

D/ (h − 1)τ (h − 1)τ + ( 1
g
)Teff (h − 1)τ + ( 1

2g
)Teff

Two-Ladders
D. (h − 1)τ 2Teff + (h − 1)τ Teff + (h − 1)τ

D/ (h − 1)τ ( 2
g
)Teff + (h − 1)τ ( 1

g
)Teff + (h − 1)τ

Crossed-Ladders
D. (h − 1)τ ( 2h−3

h−1
)Teff + (h − 1)τ ( 2h−3

2h−2
)Teff + (h − 1)τ

D/ (h − 1)τ ( 2h−3
g(h−1)

)Teff + (h − 1)τ ( 2h−3
2g(h−1)

)Teff + (h − 1)τ

5.3 Best Combination
The multi-parent idea can significantly reduce the back-

ward delay but it has almost no effect on the forward delay,
and it can be used with any of the wakeup patterns from
the previous section. The question that arises is that which
combination provides the best performance. If we start from
the forward ladder pattern (as defined in Section 4.3) which
can guarantee a good forward delay but is poor in terms of
backward delay and then apply the multi-parent method to
it, the resulting scheme can provide very short delays in both
directions. We see in the following section that this pattern
is the most efficient for a wide range of wakeup rates and
system parameters. Figure 9 shows this scheme with two
groups (g = 2) of red and blue nodes.

In the two example cases defined at the beginning of pre-
vious section, for the fixed-power case with Teff = 2s, h = 4,
and g = 2, we obtain the following distributions for forward
and backward delays:

D. ∼ U [0.15, 2.15]
D/ ∼ U [1.95, 2.95]

�
⇒ max(D.,D/) = 2.95s.

So the maximum delay is 2.95s which is significantly smaller
than all the previous values including the best single-parent
case delay of 3.48s for the crossed-ladders pattern.

For the fixed-delay case to achieve one second delay in
both directions we need

Teff = 700ms ⇒ Pwakeup = 1.43Eo,

which gives 64.8 months as the lifetime of the network. This
is considerably longer than 47.2 months (about 1.5 years
longer) for the previous best solution, the crossed-ladders
pattern.

An additional advantage of the multi-parent technique
which is actually a beneficial side-effect, is the increased ro-
bustness to node failure, i.e., if one of the parents fails (e.g.,
the node is momentarily blocked by an obstacle or there is
interference in the channel or it is in a deep fading state),

the message can still be sent through the other parents (but
at the cost of additional delay), and the network remains
connected. So the overall reliability of the network is also
increased.

6. EVALUATION AND COMPARISON
In this section, we assemble all the numerical examples

from previous sections and also present examples of delay-
power tradeoff curves. These help us assess and compare
different wakeup methods. We see that at low wakeup rates
or when the application requires small delay bounds, the
selection of an efficient wakeup scheme significantly impacts
the performance. Furthermore, we consider the effect of
number of groups on the overall performance of the wakeup
methods.

Figure 10 and Figure 11 show the distribution of delay
for different wakeup patterns for the first example scenario,
the fixed-power case from Section 4 with Teff = 2s, h = 4,
and τ = 50ms. Among the single-parent wakeup patterns
(g = 1), crossed-ladders pattern achieves the smallest worst-
case delay of 3.48s. The multi-parent (g = 2) forward lad-
der pattern with worst-case delay of 2.95s achieves the best
overall delay in both directions.

If the application requires a good backward delay, then
clearly the backward ladder pattern is the optimal solution.
For single-parent case (g = 1) backward ladder guarantees
a delay of less than 2.15s. By applying the multi-parent
method the delay can be further reduced to 1.15s, which is
even smaller than the average wakeup period of 2s.

Figure 12 shows the trade-off curves between the delay
and power consumption for different wakeup schemes with
h = 4 and τ = 50ms. The horizontal axis shows the ef-
fective wakeup rate, Reff = 1/Teff (number of wakeups per
second) which from equation (3) is directly proportional to
the wakeup process’s power consumption. The vertical axis
represents the worst-case delay in both directions. We get
the following observations from this figure:
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Figure 10: Delay Distribution (Single-parent Case):
Teff = 2s, h = 4, τ = 50ms.
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Figure 11: Delay Distribution (Multi-parent Case):
Teff = 2s, h = 4, τ = 50ms.

(a) As expected, the tradeoff curves are decreasing, i.e., at
higher wakeup rates (more power consumption) better
(shorter) delays can be guaranteed.

(b) A lower trade-off curve for a wakeup method indicates
that it is more efficient as it provides a better delay at
the same wakeup rate. We see that the multi-parent
forward ladder pattern’s trade-odd curve is below all
other schemes which shows that this scheme is the
most efficient over a wide range of wakeup rates6.

(c) At low (slow) wakeup rates, the difference between
the delays achieved by different wakeup schemes is
large but as the wakeup rate increases (faster wakeups)
the difference becomes smaller and all of the wakeup
schemes provide almost the same delay. This shows
that if the network can afford the energy cost of a fast
wakeup rate, then the selection of the wakeup scheme
is not crucial, but for energy-limited systems which
operate at low wakeup rates, the selection of a good
wakeup scheme can significantly improve the perfor-
mance.

(d) The trade-off curves are closer at higher delay values
and as the delay decreases the difference in the amount
of power different schemes consume to guarantee the
same delay becomes larger. For example for 3s de-
lay, the difference between the power required by the

6This statement is true and can be validated over a wider
range than what is shown in this figure and with different
number hops.
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Figure 12: Delay-Power Tradeoff Curves (h = 4, τ =
50ms).

best scheme (two-parent forward ladder with power
0.5Eo) and the worst scheme (synchronized scheme
with 1.4Eo) is about 0.9Eo. But to get 1s delay, the
difference between the best and worst increases to 4Eo−
1.96Eo = 2.4Eo; and for 0.5s delay the difference is
much larger 8Eo − 3Eo = 5Eo. This shows that as the
delay requirement by the application becomes tighter,
it is more beneficial and therefore more important to
choose an efficient wakeup scheme.

Figure 13 shows the effect of number of groups, parameter
g, on the delay for different wakeup patterns in a network for
typical parameters: Reff = 2, h = 4 and τ = 50ms. Increas-
ing the number of groups reduces the backward delay but
the forward delay remains unchanged, so for large enough
values of g, when backward delay becomes smaller than the
forward delay, the overall worst case delay is bounded by the
backward delay. This is the saturation point for the value
of g beyond which there is almost no improvement. We ob-
serve from this figure that for many of the patterns such as
two-ladders or crossed ladder, the saturation starts at even
g = 1, but for forward ladder and even-odd and synchro-
nized pattern we see a gradually declining improvement in
the performance. Also note that, the main improvement is
achieved from g = 1 to g = 2, and beyond that the reduction
in delay is small.

7. PARENT ASSIGNMENT
In this section, we consider the problem of parent assign-

ment. Our goal is to find a method to divide the nodes in
the network into g groups (or color them with g different
colors) such that every node has at least one parent from
each group (or each color). Equivalently, the problem can
be formulated as finding g edge-disjoint spanning trees with
a fixed root in a given graph. An example where a graph is
divided into two groups with two disjoint trees spanning all
nodes in the network is shown in Figure 7.

In the appendix, we prove that this problem even for the
case of g = 2 is NP-complete. This is shown by reducing
3SAT problem to an instance of the graph coloring problem.
For larger values of g, unless the network is very dense, parti-
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Figure 13: Effect of Number of Groups (h = 4, τ =
50ms, Reff = 2).

tioning the nodes into groups and assigning parents becomes
either impossible or computationally very hard. Also, as dis-
cussed in previous section most of the benefit of using the
multiple-parent technique is acquired by going from g = 1 to
g = 2 and beyond that there is no significant improvement.
Therefore, g = 2 is the most practical value which balances
the initial complexity in the parent assignment process with
the benefits we gain from using the multi-parent idea. In the
rest of this section, we describe an efficient heuristic algo-
rithm to find a valid coloring for a given network with g = 2.
A centralized approach is used where the algorithm is ex-
ecuted on the base station or some other computationally
powerful device which has information about the connectiv-
ity graph of the network.

7.1 Graph Coloring Algorithm
The algorithm colors the nodes in a given graph red or

blue (or possibly purple) such that every node in the net-
work gets at least one red parent and one blue parent, or
instead a purple parent. Purple nodes have the functionality
of both blue and red nodes, so they wake up in all frames
and therefore they consume twice as much energy as other
nodes. Ideally, the base station should be the only purple
node in the network.

If the number of nodes in the network is small (N < 20),
it may be possible to search over the entire space of possible
colorings (which has 2N points) to find a feasible solution.
However, since the number of possible points grows expo-
nentially with N , for larger networks this will be very time-
consuming. So for large networks, we transform a relaxed
version of the coloring problem into semi-definite program-
ming (SDP) form and therefore find approximate solution
very fast. Based on this, we propose a heuristic algorithm
for graph coloring which consists of different phases. In each
phase, a better approximate solution is found based on the
results from the previous phases.

Layer Assignment: The initial step of the algorithm is
to assign a layer to each node. Layer of a node is a tree-
related parameter which shows the distance (in terms of
number of hops) between the node and the base station on
a tree. When there are multiple trees, the layer is defined as

the largest distance over all trees7. Initially, the algorithm
assigns the layer of each node the same as its level. Later
in the fourth phase of the algorithm some of nodes may be
moved to a higher layer.

1) First Approximation: After the initial layer assign-
ment, each node finds the set of nodes in the lower layers to
which it is connected. This set is called the potential parents
set and is denoted by Pn for node n. We define a variable
xn associated with each node in the network which takes +1
value to indicate that the node is blue or −1 value to show
that the node is red.

Instead of finding a coloring for the nodes that provides
two differently colored parents for each node, we attempt to
balance the number of red and blue parents for all nodes.
Variable zn is defined for each node as a measure of this
balance:

zn = ÷
k∈Pn

xk. (12)

If node n has almost the same number of blue and red
parents, then zn will be close to zero. Therefore, a relax-
ation of the graph coloring problem can be formulated as the
following optimization problem where the weighted squared
sum of variables zn is minimized:øù ú Minimize û

n
wnzn

2 = xT P T WPx,

subject to x2
n = 1.

(13)

Here, wn is the weight associated with node n, vector x =
(x1, . . . , xN )T is the optimization variable, the ‘parent’ ma-
trix P = [pij ] is defined such that pij = 1 if j ∈ Pi, otherwise
pij = 0, and the matrix W has elements wn on its main di-
agonal and zero elsewhere.

The problem is now reduced to a two-way partitioning
problem [20]. A simple approximate solution to this prob-
lem through SDP relaxation can be found as follows8 : Find
the eigenvector corresponding to the smallest eigenvalue of
matrix P T WP , then apply the sign function to the eigen-
vector to get an approximate solution for x vector. Sign
function assigns +1 to positive values and −1 to negative
values. For zero we randomly choose either +1 or −1.

2) Soft Sign Function: Sign function quantizes the value
to either +1 or −1. However, a larger absolute value in the
eigenvector shows higher confidence in that the quantized
value is correct. So we refine the solution from the previ-
ous phase according to the following procedure: First, sort
the elements of the eigenvector according to their absolute
value. Then, swap each bit in the solution (+1 to −1 and
vice versa) from the smallest value to the largest and check
for any improvement. If the solution with the swapped value
is better, we keep it and check the next element. Otherwise,
we keep the original value. Note that the number of swaps
is linear with respect to the number of nodes and not expo-
nential in N .

3) Adaptive Weighting: We minimize the weighted sum
of zns and assign different weights to the nodes in the net-
work. The rational behind this is to initially normalize the
7Note that ‘layer’ and ‘level’ of a node are two different
parameters. Level of a node is related to the connectivity
graph, but layer is assigned by our algorithm. Clearly layer
of a node should be larger or equal to its level. For instance,
a node in level 2 can be in layer 2 or 3 or more.
8For details please refer to [20] section 5.1.5, remark 5.1,
and exercise 5.39.



effect of the number of parents and also have the ability to
adaptively increase the cost induced by the nodes that do
not get two differently colored parents. If a node has fewer
parents, it is essential that it gets a balanced number of red
and blue parents. For instance, the only acceptable value
for zn for a node with only two parents is zero, so a large
weight is assigned to it. Initially we set the weight values
as wn = 1

|Pn|2
, where |Pn| shows the number of potential

parents of node n. After finding an approximate solution,
the algorithm checks the solution. If it satisfies all the con-
ditions and all the nodes have one red and one blue parents,
the algorithm stops and returns the solution. If the solution
is not valid, the algorithm increases the weight of the nodes
whose parents are all of the same color, and recomputes the
solution by finding the eigenvector of the new matrix. In
this way, the algorithm adaptively assigns larger weights to
the nodes that are causing problem and have more strict
requirements.

4) Layer Re-assignment: If after some pre-specified num-
ber of iterations no solution is found, the layer of the nodes
causing the problem can be increased. The weight of such
nodes is generally large, so it is easy to identify them. By
assigning a higher layer to a node, the set of its potential
parents grows. For example, a node in layer 3 can have layer
2 nodes as its parents, but if this node moves to layer 4, it
can have its layer 2 and also its layer 3 neighbors as poten-
tial parents. After layer-reassignment the whole algorithm
is repeated again with the new layer values. Increasing the
layer of a node can possibly affect the layer of its children
and descendant nodes in the graph, and therefore may also
increase the maximum number of layers (parameter h) in
the network. To avoid this problem we limit the maximum
number of layers to a pre-specified value. In our implemen-
tation, the layer promotions were allowed only if after layer
re-assignment the maximum number of layers remained the
same as before.

7.2 Simulation Results
To evaluate this heuristic algorithm, we implemented it

in both Matlab and C++. We ran our algorithm on many
instances of randomly generated graphs. Random geometric
graphs [23] were used to model the connectivity graph, and
in the generated graphs all nodes had at least two neigh-
bors. Table 2 shows the performance of the different phases
of algorithm. The first row shows the average number of
neighbors of the nodes in the network. The second row
shows the average number of parents per node. The first
level nodes are excluded in computing the average number
of parents. The values in the third to sixth rows of the ta-
ble show the percentage of graphs for which a valid coloring
could be found. Even if one node did not get two differently
colored parents, the coloring was considered invalid. The
algorithm ran for 50 iterations of adaptive weight change
between layer reassignments. Clearly for a denser graph,
finding a solution becomes easier. As it can be seen from
the simulation results, with adaptive weighting and layer
re-assignment almost all graphs can be colored.

Although it is unlikely, it is still possible that no valid
coloring can be found for a particular graph. For instance, if
the graph has an orphan node which has only one potential
parent, no coloring is valid. In such case, two solutions
are possible: (a) either color the parent of the orphan node
purple which therefore increases the power consumed by the
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x2 x30 x1 x2 x3

x1V x2V x2

Base Station

V Vx1 x2 x3

VV x3x2x1

Children

Parents

Figure 14: Reduction of 3SAT problem to the graph
coloring problem.

parent node, or (b) accept more delay for the messages sent
by or received by the orphan node.

8. CONCLUSION
In this paper, we analyzed different wakeup schemes and

obtained their delay distribution and delay-power tradeoff
curves. All existing wakeup patterns such as synchronized
(SMAC) and staggered patterns (DMAC) are considered
and we also introduced new efficient wakeup patterns such as
crossed-ladders pattern which outperforms other methods.
We also presented the new cross-layer idea, called multi-
parent technique, where by assigning multiple parents with
different wakeup schedules to each node in the network, sig-
nificant performance improvement is achieved. A heuristic
algorithm for parent assignment problem for multi-parent
method was presented and evaluated through simulation.

APPENDIX
In this section, we prove that the coloring problem defined

in Section 7 is NP-complete by presenting a polynomial time
reduction from 3SAT to this problem. 3SAT is a special
case of satisfiability problem where the Boolean formulas
are in a special form consisting of k clauses connected by ∧,
each having three literals: φ = (a1 ∨ b1 ∨ c1) ∧ . . . ∧ (ak ∨
bk ∨ ck). Each literal is a Boolean variable xi or a negated
Boolean variable xi (i = 1, . . . , n). We would like to know
if some assignment of true and false to the variables makes
the formula evaluate to true.

We construct an instance of the graph coloring problem for
a Boolean formula φ(x1, . . . , xn) as follows: There are two
set of nodes in the graph, a parent set which has 2n+1 nodes
and a children set which has n + k nodes. For each variable
xi, we create two nodes in the parent set, one for the variable
and one for its negated version, and one node in the children
set which is connected to these two parents. Also there is
a common parent node representing the 0 (false) value. For
each clause (aj ∨ bj ∨ cj) we have a node in the children
set which is connected to the parents corresponding to aj ,
bj , cj , and also to the common parent. Figure 14 shows an
example, where φ = (x1∨x2∨x2)∧(x1∨x2∨x3)∧(x1∨x2∨x3).
To demonstrate that this construction works, we show that
a valid coloring for the constructed graph gives a satisfiable
assignment for φ and vice versa.

Suppose φ has a satisfiable assignment. We use color ‘red’
for false and ‘blue’ for true and color the parent nodes ac-
cording to the satisfiable assignment for φ. We show that



Table 2: Simulation Result for Graph Coloring Algorithm (N = 100).

Average Number of Neighbors 6.7 8.2 9.8 12.3 15.1 18.2 21.6

Average Number of Parents 2.50 2.99 3.40 4.13 4.89 5.79 6.83

First Approximation 9.19% 16.92% 27.12% 39.17% 41.57% 57.83% 67.96%

Success Soft Sign Function 30.09% 58.84% 75.28% 79.95% 83.75% 85.57% 92.18%

Percentage Adaptive Weighting 81.13% 98.22% 99.38% 99.71% 99.78% 99.91% 99.93%

Layer Re-assignment 91.44% 99.24% 99.65% 99.89% 99.96% 99.98% 100.00%

this results in a valid coloring and all children are connected
to both red and blue nodes. The children corresponding to
the variables are connected to both xi and xi, so they get
red and blue parents. The other children are related to the
clauses in φ. Since φ is true, at least one of the literals in
each clause is true and therefore the child node related to
each clause has at least one blue parent. Since each child is
also connected to the common 0 parent node which is red,
it gets both red and blue parents.

For reverse, if we find a coloring for the nodes, we can
convert it into an assignment for variables. We show that
this assignment makes φ evaluate to true. First note that
xi and xi are forced to select different colors as they have
one common child node. Assume the common 0 parent is
colored red. Then we use red for false and blue for true and
form an assignment for xi variables. Each clause in φ has a
child node in the graph and the child node has at least one
blue parent so the clause has at least one true literal and
therefore it is true. So under this assignment, all the clauses
are true and φ evaluates to 1.
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