
Mobile Computing with the Rover Toolkit

Anthony D� Joseph� Joshua A� Tauber� and M� Frans Kaashoek

M�I�T� Laboratory for Computer Science

Cambridge� MA ������ U�S�A�

fadj� josh� kaashoekg�lcs�mit�edu

Abstract

Rover is a software toolkit that supports the construction of both mobile�transparent and mobile�aware appli�

cations� The objective of the mobile�transparent approach is to develop proxies for system services that hide the

mobile characteristics of the environment from applications� Since applications can be run without alteration� the

mobile�transparent approach is appealing� However� to excel� applications operating in the harsh conditions of a

mobile environment must often be aware of and take an active part in mitigating those conditions� The Rover

toolkit supports a set of programming and communication abstractions that enable the construction of both

mobile�transparent and mobile�aware applications� Using the Rover abstractions� applications obtain increased

availability� concurrency� resource allocation e�ciency� fault tolerance� consistency� and adaptation� Experimental

evaluation of a suite of mobile applications built with the toolkit demonstrates that such application�level control

can be obtained with relatively little programming overhead and allows correct operation� increases interactive

performance� and dramatically reduces network utilization under intermittently connected conditions�

I� Introduction

The mobile computing environment presents application designers with a unique set of communication and

data integrity constraints that are absent in traditional distributed computing settings� For example� although

mobile communication infrastructures are becoming more common� network bandwidth in mobile environments is

often severely limited or unavailable� Mobile application designers therefore require system facilities that minimize

dependence upon continuous network connectivity� provide tools to optimize the utilization of available network

bandwidth� minimize dependence on data stored on remote servers� and allow for dynamic division of work

between clients and servers� In this paper� we describe the Rover toolkit � a set of software tools that both supports

applications that operate oblivious to the underlying environment� and enables the construction of applications that

use awareness of the mobile environment to isolate themselves from its limitations� We illustrate the e�ectiveness

of the toolkit using a number of distributed applications� each of which runs well over several networks that di�er

by three orders of magnitude in bandwidth and latency�

�

To appear in IEEE Transactions on Computers: Special issue on Mobile Computing,  February 1997.



A� Mobile versus Stationary Environment

Designers of applications for mobile environments must address several di�erences between the mobile envi�

ronment and the stationary environment� Issues that represent minor inconveniences in stationary distributed

systems are signi�cant problems for mobile computers� This requires a rethinking of the classical distributed

systems techniques normally used in stationary environments�

Computers in a stationary environment are usually very reliable� Relative to their stationary counterparts�

mobile computers are quite fragile� a mobile computer may run out of battery power� be damaged in a fall� be

lost� or be stolen� Given these threats� primary ownership of data should reside with stationary computers� not

mobile computers� Furthermore� application designers should take special precautions to enhance the resilience of

the data stored on mobile computers�

Relative to most stationary computers� a mobile computer has fewer computational resources available� However�

the available resources may change dynamically �e�g�� a 	docked
 mobile computer that has access to a larger

display� graphic or math coprocessor� additional stationary storage� etc���

A stationary environment can distribute an application�s components and rely upon the use of high�bandwidth�

low�latency networks to provide good interactive application performance� Mobile computers operate primarily in

a limited bandwidth� high�latency� and intermittently�connected environment� nevertheless� users want the same

degree of responsiveness and performance as a fully�connected environment�

Network partitions are an infrequent occurrence in stationary networks� therefore� most applications consider

them to be major failures that are exposed to users� In the mobile environment� applications will face frequent�

long�duration network partitions� Some of the partitions will be involuntary �e�g�� due to a lack of network

coverage�� while others will be voluntary �e�g�� due to high dollar cost�� Applications should gracefully� and as

transparently as possible� handle such partitions� In addition� users should be able to continue working as if the

network was still available �albeit with some limitations�� In particular� users should be able to modify local copies

of global data�

When users modify local copies of global data� consistency becomes an issue� In a mobile environment� optimistic

concurrency control 
�� is useful because pessimistic methods are inappropriate �a disconnected user cannot grab

or release locks�� as pointed out by the designers of Coda 
��� However� using an optimistic approach does not

come for free� associated with long duration partitions� will be a greater incidence of update�update con�icts than

in stationary environments� It is therefore important to use application�speci�c semantic information to detect

when such con�icts are false positives and can be avoided�

B� The Argument for Mobile�Aware Computing

The attributes of the typical stationary environment have guided the development of classical distributed com�

puting techniques for building client�server applications� These applications are usually unaware of the environ�

ment� therefore� they make certain assumptions about the location and availability of resources�

Such mobile�transparent applications can be used unmodi�ed in mobile environments by having the system

shield or hide the di�erences between the stationary and mobile environments from applications� Coda 
�� and

Little Work 
�� used this approach by providing a �le system interface to applications� The systems consist of

a local proxy for some service �the �le system� running on the mobile host and providing the standard service

interface to the application� while attempting to mitigate any adverse e�ects of the mobile environment� The

�



proxy on the mobile host cooperates with a remote server on a well�connected� stationary host�

However� the mobile�transparent approach sacri�ces functionality and performance� While the system hides

mobility issues from the application� it usually requires manual intervention by the user �i�e�� having the user

indicate which data to prefetch onto the user�s computer�� Similarly� con�ict resolution is complicated because the

interface between the application and its data was designed for a stationary environment� Consider an application

writing records into a �le shared among stationary and mobile hosts� While disconnected� the application on the

mobile host inserts a new record� The local �le system proxy records the write in a log� Meanwhile� an application

on a stationary host alters another record in the same �le� Upon reconnection� the �le system can detect that

con�icting updates have occurred� However� the �le system alone cannot resolve the con�ict�

Coda recognizes this limitation and provides for the use of application�speci�c resolvers �ASRs� 
��� However�

ASRs alone are insu�cient� In the above example� there is no way for the ASR to use the �le system interface to

determine whether the mobile host inserted a new record or the stationary host deleted an old one� The cause of

this confusion is that Coda changes the contract between the application and the �le system in order to hide the

condition of the underlying network� The read�write interface no longer applies to a single �le� but to possibly

inconsistent replicas of the �le� Therefore� any applications that depend on the standard read�write interface for

synchronization and ordering may fail�

So� although the mobile�transparent approach is appealing �in that it o�ers to run existing applications without

alteration�� it is fundamentally limited in that the functionality needed to create correct� well�performing applica�

tions in an intermittently�connected environment often requires the cooperation of both application and user� The

alternative to hiding environmental information from applications is to expose the information to the applications

and involve them in decision�making� This yields the class of mobile�aware applications�

A mobile�aware application can store not only the value of a write� but also the operation associated with

the write� This adds a signi�cant amount of application�speci�c semantic information� for example� it allows for

	on�the��y
 dynamic construction of con�ict resolution procedures�

Unlike previous systems� the Rover toolkit is designed to support both mobile�aware and mobile�transparent

approaches� For mobile�aware applications� the Rover toolkit provides the components and architecture necessary

for operation in a mobile environment� Our hypothesis is that running mobile applications e�ciently and correctly

often requires making applications and users aware of the environment in which they are running�

The mobile�aware argument can be viewed as applying the end�to�end argument 
�� to mobile applications�

	Communication functionality can be implemented only with the knowledge and help of the application standing at

the endpoints of the communications system�
 The �le system example described above illustrates that applications

need to be aware of intermittent network connectivity to achieve consistency� Similar arguments can be made with

respect to performance� reliability� low�power operation� etc�

The mobile�aware argument does not require that every application use its own� ad hoc approach to mobile

computing� On the contrary� it allows the underlying communication and programming systems to de�ne an

application programming interface that optimizes common cases and supports the transfer of appropriate infor�

mation between the layers� Since mobile�aware applications share common design goals� they will need to share

design features and techniques� The Rover toolkit provides exactly such a mobile�aware application programming

interface�

�



C� Rover� The Toolkit Approach

The Rover toolkit o�ers applications a distributed object system based on a client�server architecture 
�� �see

Figure ��� Clients are Rover applications that typically run on mobile hosts� but could run on stationary hosts

as well� Servers� which may be replicated� typically run on stationary hosts and hold the long term state of the

system� Communication between clients is limited to peer�to�peer interactions within a mobile host �using the

local object cache for sharing� and mobile host�server interactions� there is no support for remote peer�to�peer or

mobile host�mobile host interactions�

The Rover toolkit provides mobile communication support based on two ideas� relocatable dynamic objects

�RDOs� and queued remote procedure call �QRPC�� A relocatable dynamic object is an object �code and data�

with a well�de�ned interface that can be dynamically loaded into a client computer from a server computer� or

vice versa� to reduce client�server communication requirements� Queued remote procedure call is a communication

system that permits applications to continue to make non�blocking remote procedure calls 
�� even when a host is

disconnected � requests and responses are exchanged upon network reconnection�

The key task of the programmer when building a mobile�aware application with Rover is to de�ne RDOs for the

data types manipulated by the application� and for data transported between client and server� The programmer

then divides the program into portions that run on the client and portions that run on the server� these parts

communicate by means of QRPC� The programmer then de�nes methods that update objects� including code for

con�ict detection and resolution�

To use the Rover toolkit� a programmer links the modules that compose the client and server portions of an

application with the Rover toolkit� The application can then actively cooperate with the runtime system to import

objects onto the local machine� invoke well�de�ned methods on those objects� export logs of method invocations

on those objects to servers� and reconcile the client�s copies of the objects with the server�s�

D� Main results

Earlier work on Rover introduced the Rover architecture� including both queued RPC and relocatable dynamic

objects 
��� 
��� This paper extends the design and implementation of QRPC and RDOs as described in 
�� with

compressed and batched QRPCs� presents the argument for making applications mobile�aware in greater depth�

and explains how applications use that awareness and the Rover toolkit to mitigate the e�ects of intermittent

communication on application performance� We draw four main conclusions from our experimental data and

experience developing Rover�

�� QRPC meshes extremely well with intermittently connected environments� Queuing enables RPCs to be

scheduled� batched� and compressed for increased network performance� QRPC performance is acceptable

even if every RPC is stored in stable logs at clients and servers� For lower�bandwidth networks� the overhead

of writing the logs is dwarfed by the underlying communication costs�

�� Use of RDOs allows mobile�aware applications to migrate functionality dynamically to either side of a slow

network connection to minimize the amount of data transiting the network� Caching RDOs reduces latency

and bandwidth consumption� Interface functionality can run at full speed on a mobile host� while large data

manipulations may be performed on the well�connected server�

�� We have implemented several mobile�aware applications �Rover Exmh� Webcal� Irolo� Stock Market Watcher�

and several proxies to support mobile�transparent applications �Web and USENET�� Our experience indi�

�



Object cache

Server

Scheduler

Network

QRPC Log

Rover LibraryRover Library

Conflict?
Modify/Resolve

Object

Rover Library

Mobile Host

Client−side
Application

Client−side
Application

Server−side
Application

RDO

Import RDO

Resolved operation log

Export operation log

Fig� �� Rover o�ers applications a client�server distributed object system with client caching and optimistic concurrency

control� Rover applications employ a primary�copy� tentative�update optimistic�consistency�based distributed object

model of data sharing� they call into the Rover library to import RDOs� and to export logs of operations that mutate

RDOs� Client�side applications invoke operations directly on locally cached RDOs� Server�side applications are respon�

sible for resolving con�icts and notifying clients of resolutions� A network scheduler drains the stable QRPC log� which

contains the RPCs that must be performed at the server�

cates that porting applications to Rover generally requires relatively little change to the original application�

Building Rover proxies is also easy and has allowed the use of applications �e�g�� Netscape and XRN� without

modi�cation� Most applications have been made mobile aware with only simple changes �approximately ���

of the original code and as little as three weeks work�� while others required several person�months of work�

�� Measurements of end�to�end mobile�application performance show that� by using Rover� mobile�transparent

and mobile�aware applications perform signi�cantly better than their original versions� For example� for the

mobile�transparent Netscape application� we observe performance improvements of up to ���� For mobile�

aware applications running over slow networks� we observe performance improvements of up to a factor of ���

over the original versions�

E� Outline of this paper

In the remainder of this paper we place our research in the context of related work �Section II�� present the

design of the Rover toolkit �Section III�� describe the implementation of the Rover toolkit �Section IV�� discuss

the implementation of several mobile�transparent and mobile�aware applications �Section V�� present experimental

results from these applications �Section VI�� and �nally� o�er observations on the bene�ts and limitations of the

Rover approach �Section VII��

II� Related Work

The need for mobile�aware applications and complimentary system services to expose mobility to applications

was identi�ed concurrently by several groups� Katz noted the need for adaptation of mobile systems to a variety

of networking environments 
��� Davies et� al� cited the need for protocols to provide feedback about the network

�



to applications in a vertically integrated application environment 
���� Similarly� Kaashoek et� al� created a Web

browser which exposed the mobile environment to mobile code that implemented mobile�aware Web pages 
����

The Bayou project proposed and implemented an architecture for mobile�aware databases 
���� Baker has identi�ed

the dichotomy between mobile�awareness and mobile�transparency in general application and system design 
����

Rover is the �rst implemented general application architecture to support both mobile�transparent system service

proxies and mobile�aware applications�

Several previous projects have studied building mobile�transparent services for mobile clients� The Coda project

pioneered distributed services for mobile clients� In particular� it investigated how to build a mobile�transparent �le

system proxy for mobile computers by using optimistic concurrency control and prefetching 
��� 
���� Coda logs all

updates to the �le system during disconnection and replays the log on reconnection� automatic con�ict resolution

mechanisms are provided for directories and �les� using Unix �le naming semantics to invoke ASRs at the �le

system level 
��� A manual repair tool is provided for con�icts of either type that cannot be resolved automatically�

A newer version of Coda supports low�bandwidth networks as well as intermittent communication 
����

The Ficus �le system is also a mobile�transparent �le system supporting disconnected operation� but relies on

version vectors to detect con�icts 
���� The Little Work project caches �les to smooth disconnection from an AFS

�le system 
���� Con�icts are detected and reported to the user� Little Work is also able to use low�bandwidth

networks 
����

The BNU project implements an RPC�driven mobile�transparent application framework on mobile computers�

It allows for function shipping by downloading Scheme functions for interpretation 
���� The BNU environment

includes mobile�transparent proxies on stationary hosts for hiding the mobility of the system� BNU applications

do not dynamically adjust to the environment� nor do they have a concept of tentative or stale data� No addi�

tional support for disconnected operation� such as Rover�s queued RPC� is included in BNU� A follow�up project�

Wit� addresses some of these shortcomings and shares many of the goals of Rover� but employs di�erent solu�

tions 
���� Application designers for BNU noted that the workload characterizing mobile platforms is di�erent

from workstation environments and will entail distinct approaches to user interfaces 
����

A number of proposals have been made for various degrees of mobile�awareness in operating system services

and application� The Bayou project 
���� 
��� de�nes a mobile�aware database architecture for sharing data

among mobile users� Bayou supports tentative operation logs and data values 
��� and session guarantees for

weakly�consistent replicated data 
���� To illustrate these concepts� the authors have built a calendar tool and a

bibliographic database� Rover shares the notions of tentative operations and data� session guarantees� and the

calendar tool example with the Bayou project� Rover extends this work with an application programming interface�

RDOs� and QRPC to deal with intermittent communication� limited bandwidth� and resource�poor clients�

The InfoPad 
���� Daedalus 
���� GloMop 
��� and W� 
��� projects focus on mobile�aware wireless information

access� The InfoPad project employs a dumb terminal and o�oads all functionality from the client to the server�

Daedalus and GloMop use dynamic 	transcoding
 or 	distillation
 to reduce the bandwidth consumed by data

transmitted to a mobile host� The transcoding technology is completely compatible with Rover�s architecture�

Applications on the mobile host cooperate with mobile�aware proxies on a stationary host to de�ne the character�

istics of the desired network connections� Similarly� W� applies the technique of dividing application functionality

between a small PDA and a powerful� stationary host to Web browsing� Rover is designed for more �exible� dy�

�



namic divisions� Depending on the power of the mobile host and available bandwidth� Rover allows mobile�aware

browsers to dynamically move functionality between the client and the server�

The BARWAN 
��� project supports mobile� 	data type aware
 applications� The approach relies on strongly

typed transmissions� A dynamically extensible type system enables type�speci�c compression levels and abstraction

mechanisms to conserver network usage� User code is itself a transmission type allowing computation relocation�

Davies� Adaptive Services 
��� similarly takes a protocol�centric approach for exposing information about the

mobile environment to the application� A similar approach is taken by the Odyssey project� Odyssey focuses on

system support to enable mobile�aware applications to use 	data �delity
 to control resource utilization� Data

�delity is de�ned as the degree to which a copy of data matches the original� 
��� Again� Rover is designed to focus

on dynamic adaptation of program functionality and data types�

A number of successful commercial mobile�aware applications have been developed for mobile hosts and limited�

bandwidth channels� For example� Qualcomm�s Eudora is a mail browser that allows e�cient remote access over

low�bandwidth links� Lotus Notes 
��� is a groupware application allowing users to share data in a weakly�connected

environment� Notes supports two forms of update operations� append and time�stamped� Con�icts are referred

to the user� TimeVision and Meeting Maker are group calendar tools allow a mobile user to download portions

of a calendar for o��line use� The Rover toolkit and its applications provide functionality that is similar to these

proprietary approaches� but in an application�independent manner� Using the Rover toolkit� standard workstation

applications such as Exmh and Ical can easily be turned into mobile�aware applications�

Gray et� al� perform a thorough theoretical analysis of the options for database replication in a mobile envi�

ronment and conclude that primary copy replication with tentative updates is the most appropriate approach for

mobile environments 
����

III� Design of the Rover Toolkit

The Rover toolkit is designed to support the construction of mobile�aware applications and proxies� In this

section we describe the key components of the Rover toolkit�

A� Object Design and QRPC

As the central structures about which all Rover design decisions revolve� relocatable dynamic objects �RDOs�

provide the key point of control in Rover applications� All application code and all application�touched data are

written as RDOs� RDOs may execute at either clients or servers� All RDOs have a 	home
 server that maintains

the primary� canonical copy� Clients import secondary copies of RDOs into their local caches and export tentatively

updated RDOs back to their home servers�

RDOs may vary in complexity from simple calendar items with a small set of operations to modules that

encapsulate a signi�cant part of an application �e�g�� the graphical user interface for an e�mail browser�� Complex

RDOs may create a thread of control when they are imported� The safe execution of RDOs is ensured by

authentication and by execution of RDOs in a controlled environment� These safety measures are appropriate

for the sharing of objects between mobile hosts and servers in the framework of speci�c applications� However�

there are several safety issues relating to the general use of mobile code that are not addressed by our current

implementation� This is an area of active research beyond the scope of this paper�

At the level of RDO design� application builders have semantic knowledge that is extremely useful in attaining

�



the goals of mobile computing� By tightly coupling data with program code� applications can manage resource

utilization more carefully than is possible with a replication system that handles only generic data� Rover�s object

model makes this coupling extremely natural� For example� an RDO can include compression and decompression

methods along with compressed data in order to obtain application�speci�c and situation�speci�c compression�

reducing both network and storage utilization�

Rover clients use QRPC to lazily fetch RDOs from servers �see Figure ��� When an application issues a QRPC�

Rover stores the QRPC in a local stable log and immediately returns control to the application� If the application

has registered a callback routine� then when the requested RDO has arrived� Rover will invoke the callback to

notify the application� Alternatively� applications may simply block to wait for critical data �although this is an

undesirable action� especially when the mobile host is disconnected�� When the mobile host is connected� the

Rover network scheduler drains the log in the background� forwarding any queued QRPCs to the server�

When a Rover application modi�es a locally cached RDO� the cached copy is marked tentatively committed �

Updates are committed by using QRPC to lazily propagate the mutating operations to the Rover server� where

they are applied to the canonical copies� In the meantime� the application may choose to use tentatively committed

RDOs� This allows the application to continue execution even if the mobile host is disconnected�

B� Communication Scheduling

The Rover network scheduler may deliver QRPCs out of order �i�e�� non�FIFO�� depending upon any associ�

ated priorities and the dollar costs� It also may reorder logged requests based on consistency requirements and

application�speci�ed operation priorities� Reordering is important to usability in an environment with intermittent

connectivity� as it allows the user �through applications� to identify the important operations� For example� a user

may choose to send urgent updates as soon as possible while delaying other sends until inexpensive communication

is available�

QRPC supports split�phase operation� thus� if a mobile host is disconnected between sending the request and

receiving the reply� a Rover server will periodically attempt to contact the mobile host and deliver the reply�

The split�phase communication model enables Rover to use di�erent communication channels for the request and

the response and to close channels during the intervening period� Several wireless technologies o�er asymmetric

communication options� such as receive�only pagers and PCS phones that can initiate calls� but cannot receive

them� By splitting the request and response pair� communication can be directed over the most e�cient� available

channel� Closing the channel while waiting is particularly useful when the waiting period is long and the client

must pay for connection time�

The combination of the split�phase and stable nature of QRPCs allows a mobile host to be completely powered�

down while waiting for pending operation� When the mobile host resumes normal operation� the results of the

RDO invocation will be relayed reliably from the server� Thus� long�lived computation can occur at the server

while the mobile host conserves power�

C� Computation Relocation

Rover gives applications control over the location where computation will be performed� In an intermittently�

connected environment� the network often separates an application from the data upon which it is dependent� By

moving RDOs across the network� applications can move data and�or computation from client to server and vice�

�



versa� Computation relocation is useful when a large body of data can be distilled down to a small amount of data

or code that actually transits the network or when remote functionality is needed during periods of disconnection�

For example� migrating a GUI �graphical user interface� to the client serves both these purposes� The code to

implement a GUI is small compared to the graphical display updates it generates� At the same time� the GUI

together with the application�s RDOs can locally process user actions� avoiding additional network tra�c and

enabling disconnected operation�

Clients can also use RDOs to export computation to servers� Such RDOs are particularly useful for two

operations� performing �ltering actions against a dynamic data stream and performing complex actions against a

large amount of data� With RDOs� the desired processing can be performed at the server� with only the processed

results returned to the client�

D� Noti�cation

Since the mobile environment is dynamic� it is important to present the user and the application with information

about the current environment� The Rover toolkit provides applications with environmental information for use in

dynamic decision making or for presentation to the user� Applications may use either polling or callback models

to determine the state of the mobile environment�

Applications can forward noti�cations to users or use them for silent policy changes� For example� in our

calendar application �see Section V�� appointments that have been modi�ed but not propagated to the server are

displayed in a distinctive color �a technique that was borrowed from the Bayou room scheduling tool 
����� This

informs users that the appointment might be canceled due to a con�ict�

E� Object Replication and Consistency

An essential component to accomplishing useful work while disconnected is having the necessary information

locally available 
���� RDO replica caching is the chief technique available in Rover to achieve high availability�

concurrency� and reliability� In this section� we discuss strategies for selecting objects to replicate and for reducing

consistency�related�costs�

E�� Replication

RDO replication is accomplished during periods of network connectivity by �lling the mobile host�s cache with

useful RDOs� Applications should decide which objects to prefetch� We believe that the usability of applica�

tions will be critically dependent upon simple user interface metaphors for indicating collections of objects to be

prefetched� Requiring users to directly list the names of objects that they wish to prefetch is inherently confusing

and error�prone� Instead� Rover applications can provide prioritized prefetch lists based upon high�level user ac�

tions� For example� Rover Exmh automatically generates prefetch operations for the user�s inbox folder� recently

received messages� as well as folders the user visits or selects�

While replication can bring great bene�ts� application designers must be careful to avoid unnecessary com�

munication� increased latencies� and dead�lock� Applications should not replicate any more data than absolutely

necessary and should strive to keep update messages small�

�



E�� Consistency

When clients are allowed to perform concurrent updates on shared RDOs� most applications require consistency

control� The Rover toolkit provides signi�cant �exibility in the choice of mechanism� ranging from application�level

locking to application�speci�c algorithms for resolving uncoordinated updates to a single RDO� Since no single

scheme is appropriate for all applications� Rover leaves the selection of consistency scheme to the application�

However� only a limited number of methodologies lend themselves naturally to mobile environments� Therefore�

Rover provides substantial but not exclusive support for primary�copy� tentative�update optimistic consistency�

We expect many applications will continue to use a variety of approaches� including ad hoc approaches such as

hand editing or requiring all data replicas to converge to the same values� Certain applications will be structured

as a collection of independent atomic actions 
���� where the importing action uses application�level locks� version

vectors� or dependency�set checks to implement fully�serializable transactions within Rover method calls� Of

course� pessimistic concurrency control may cause long blocking periods in the mobile environment�

Rover directly supports primary�copy� tentative�update optimistic consistency control� Since optimistic concur�

rency control schemes allow updates by any host on any local data� we expect this approach to be widely used�

Therefore� we have built into the Rover library support for operation logging� rollback� and replay� log manipu�

lation functions� and automatically maintained RDO consistency vectors� So far� all Rover applications built to

date use primary�copy consistency control�

The server is responsible for maintaining the consistent view of the system� Update con�icts are detected and

resolved by the server� and the results of reconciliation are always treated by clients as overriding the tentative

state stored at the client� Thus� the client only needs to submit tentative operations to the server to reconcile the

system state and to assure that any updates are durable�

Rover automatically logs method invocations� rather than only new data values� to increase �exibility in resolving

con�icts� For example� a �nancial account object with debit� credit� and balance methods provides a great deal

more semantic information to the application than a simple account �le containing only the balance� Debit

and credit operations from multiple clients could be arbitrarily interleaved as long as the balance never becomes

negative� In contrast� consistently updating a balance value by overwriting the old value would require use of an

exclusive lock on the global balance�

When the QRPC for a mutating operation arrives at a server� the server invokes the requested method on the

primary copy� Typically a method call �rst checks whether the RDO has changed since it was imported by a mobile

host� The de�nition of con�icting modi�cations is strongly application� and data�speci�c� Therefore� Rover does

not try to detect con�icts directly� although it maintains version vectors for each RDO to aid con�ict detection�

In the event of an update�update con�ict� the con�ict must be resolved� Since the submitted operation is

tentative and was originally performed at the client on tentative data� the result of performing the operation at

the server may not be exactly what the client expected� However� since Rover can employ type�speci�c concurrency

control 
���� many con�icts can be avoided� Note that con�ict detection may depend not only on the application�

but on the data or even the operation involved�

IV� Implementation of the Rover Toolkit

As shown in Figure �� the Rover toolkit consists of four key components� the access manager� the object cache

�client�side only�� the operation log� and the network scheduler� we discuss each component in turn�

��



Mobile host

Access 
Manager

Server

Network
Scheduler

Network
Scheduler

Access 
Manager

 WWW
Browser

Search
  GUI

Calendar
    GUI

Email
  GUI

 Email
Filesys

Search
Engine

WWW
 proxy

Calendar
 Filesys

Network

Operation
Log Operation

Log
Object
Cache

Fig� 	� The Rover architecture consists of four key components at clients and servers� access manager� object cache


client�side only�� operation log� and network scheduler�

Each machine has a local Rover access manager � which is responsible for handling all interactions between

client�side and server�side applications and among client�side applications� The access manager services requests

for objects �RDOs�� mediates network access� logs modi�cations to objects� and� at clients� manages the object

cache� Client�side applications communicate with the access manager to import objects from servers and cache

them locally� Server�side applications are invoked by the access manager to handle requests from client�side

applications� Applications invoke the methods provided by the objects and� using the access manager� make

changes globally visible by exporting them back to the servers�

Within the access manager� RDOs� are imported into the object cache� while QRPCs are exported to the

operation log � The access manager routes invocations and responses between applications� the cache� and the

operation log� The log is drained by the network scheduler � which mediates between the various communication

protocols and network interfaces�

Rover starts as a minimal 	kernel
 that imports functionality on demand� This feature is particularly important

for mobile hosts with limited resources� small memory or small screen versions of applications may be loaded by

default� However� if the application �nds more hardware and network resources available �e�g�� if the mobile host

is docked� further RDOs may be loaded to handle these cases 
����

Failure recovery is also handled by the access manager� This task is eased somewhat by our use of both a

persistent cache and an operation log� After a failure� the access manager re�queues any incomplete QRPCs for

re�delivery� At�most�once delivery semantics are provided by unique identi�ers and the persistent log� One issue

that remains an open question is how to handle error responses from resent QRPCs for client�side applications

that no longer are running� Our implementation currently ignores such responses�

The object cache provides stable storage for local copies of imported objects� The object cache consists of a

local private cache located within the application�s address space and a global shared cache located within the

access manager�s address space� Client�side applications do not usually interact directly with the object cache�

When a client�side application issues an import or export operation� the toolkit satis�es the request based upon

whether the object is found in a local cache and the consistency option speci�ed for the object�

�The current implementation of RDOs uses the Tcl and Tk languages ����� However� since the interface is designed to be language�

independent� it will be easy to explore the use of other interpreted or byte�compiled languages �e�g�� Java ����	�

��



Once an object has been imported into the client�side application�s local address space� method invocations

without side e�ects are serviced locally by the object� At the application�s discretion� method invocations with

side e�ects may also be processed locally� inserting tentative data into the object cache� Operations with side

e�ects also insert a QRPC into a stable operation log located at the client� Each insert is a synchronous action�

The stable log is implemented as an ordinary UNIX �le� Rover performs both a �ush and a synchronize operation

to force new QRPCs to the log� Thus� the log update is on the critical path for message sending�

Support for intermittent network connectivity is accomplished by allowing the log to be incrementally �ushed

back to the server� Thus� as network connectivity comes and goes� the client will make progress towards reaching

a consistent state�

One issue Rover addresses with an application�speci�c approach is operation log growth during disconnected

operation� The ability to convey application�level semantics directly to servers is an important functional advan�

tage� especially in the presence of intermittent connectivity� However� it may lead to an operation log that grows

in size at a rate exceeding that of a simple write�ahead log� The traditional approach is log compaction 
����

Rover takes a di�erent approach by directly involving applications in log compaction� Applications can download

procedures into the access manager to manipulate their log records� For example� an application can �lter out

duplicate requests �e�g�� duplicate QRPCs to verify that an object is up�to�date can be reduced to a single QRPC��

In addition� applications can apply their own notion of 	overwriting
 to the operations in the log�

The network scheduler groups operations destined for the same server for transmission and selects the appro�

priate transport protocol and medium over which to send them� Rover is capable of using a variety of network

transports� Rover supports both connection�based protocols �e�g�� HTTP over TCP�IP networks� and connection�

less protocols �e�g�� SMTP over IP or non�IP networks� 
���� 
���� Di�erent protocols have di�erent strengths� For

example� while SMTP has extremely high latency� it is fundamentally a queued background process� it is more

appropriate than more interactive protocols for fetching extremely large documents� such as stored video� which

require large amounts of time regardless of the protocol� Another advantage is that the IP networks required for

HTTP or TCP are not always available� whereas SMTP often reaches even the most obscure locations�

The network scheduler leverages the queuing of QRPCs performed by the log to gain transmission e�ciency� The

result is a potentially signi�cant reduction in per�operation transmission overhead and an increase in connection

e�ciency through amortization of connection setup and teardown across multiple requests and responses� This

amortization is especially important when connection setup is expensive �either in terms of added latency or dollar

cost�� For example� the latency for a null RPC over a ��� Kbit�s Cellular CSLIP link is ���� seconds� batching

o�ers a substantial performance bene�t�

Our original network scheduler sent a request as soon as it was received from a client application� The new

extended scheduler uses the following heuristic to batch requests that are destined for the same server� when

a request is received from one client application� the scheduler uses the access manager to check all the client

applications �including the one that sent the original request� to see if any are in the process of sending a request

�this is the dashed arrow in Figure ��� If there are additional requests pending� the scheduler delays sending the

original request� Upon receipt of the next request� the scheduler repeats the pending request check� When there

are no pending requests from client applications� the scheduler batches the requests and sends them on the same

connection� the results are also received on the same connection�

��



This heuristic imposes a small delay on requests �the time for the access manager to check each client application

for pending requests and to receive the requests�� However� this is a small penalty to pay relative that incurred

by a high roundtrip time� since it allows the scheduler to automatically batch requests� Thus� an application that

issues several requests in a series will have the requests automatically batched and sent to the server using a single

connection� We are also investigating alternatives that rely upon applications to specify the set of requests that

should be batched together�

The network scheduler also applies compression to the headers associated with requests and� in the absence

of application�speci�ed compression� applies compression to application data� This o�ers signi�cant performance

advantages� especially when combined with batching� Typical compression ratios for the applications we have

studied are ��� � ��� to one� The combination of batching and compression yields �on average� a two� to four�fold

reduction in execution times�

V� Mobile Computing Using Rover

In this section� we discuss the steps involved with implementing mobile�aware applications �or porting existing

applications to a mobile�aware environment�� the programming interface provided by the Rover toolkit� and the

set of sample applications that we constructed using the toolkit�

A� Using Objects Instead of Files

There are several steps involved in porting an existing application to Rover or creating a new Rover�based

application� Each step requires the application developer to make one of several implementation choices� The

choices we used in developing the initial set of Rover applications is presented in Table I� While Rover does not

provide any mechanical tools for building applications� it does provide a consistent framework�

The �rst step is to split the application into components and identify which components should be present on

each side of the network link� It is very important that application developers think carefully about how application

functions should be divided between a client and a server� The division will be mostly static� as most of the �le

system components will remain on the server and most of the GUI components will remain on the client� However�

those components that are dependent upon the computing environment �network or computational resources� or

are infrequently used may be dynamically generated� For example� the search operation performed by a client

could be dynamically customized to the current link attributes� over a low�latency link� more work could be done

at the client and less at the server� and vice versa for a high�latency link� Likewise� the main portion of an

application�s help information could be prefetched by a client� but less frequently referenced portions could be

loaded on demand�

Once the application has been split into components� the next step is to appropriately encapsulate the appli�

cation�s state within objects that can be replicated and sent to multiple clients� For example� a user�s electronic

mail consists of messages and folders� In a traditional distributed computing environment� one encapsulation is to

store each message in an individual �le and use directories to group the messages into folders� Information about

the size or modi�cation date of a message is determined by using �le system status operations� In the mobile com�

puting environment� the corresponding encapsulation stores messages as objects and folders as objects containing

references to message objects� Each object encapsulates both the message or folder data and the appropriate

metadata�

��



In migrating to the mobile environment� the application�s reading of �les is replaced by the importing of objects

and its writing of �les is replaced by the exporting of changes to objects� The �le system interface still exists in

the server�side of the application� However� inserted between the two halves of the application is an object layer�

One of the primary purposes of the object layer is to provide a means of reducing the number of network

messages that must be sent between the client and server� this is done by migrating computation� Consider the

e�mail folder scan operation� which returns a list of messages and information about the messages in a folder� Using

a �le system�based approach means scanning the directory for the folder� opening each message� and extracting the

relevant information� This is an appropriate operation for a well�connected host� but would be very expensive and

time�consuming over a high�latency link� Using an object�based approach� the server�side application constructs

a folder object containing the metadata for the messages contained in the folder� The client�side application can

then import the folder object in a single roundtrip request and avoid multiple roundtrip requests� The multiple

requests are replaced by local computation � querying the folder object about the messages it contains�

The next step is to add support for interacting with the environment� For example� in the e�mail example� one

of the important pieces of message metadata that a folder object contains is the message�s size and the size of any

attachments� This information can be used by the application and conveyed to the user to allow useful decisions

to be made� Support for prefetching is another environment interaction issue� Also� the application developer

must decide which mechanisms to use for notifying users of the status of displayed data�

The �nal important step is the addition of application�speci�c con�ict resolution� For most stationary environ�

ments� con�icts are infrequent� For the mobile environment� they will be more common� Fortunately� application

developers can leverage the additional semantic information that is available with Rover�s operation�based �instead

of value�based� approach to object updating�

B� Toolkit Programming Interface

The programming interface between Rover and its client applications contains four primary functions� create

session� import � invoke� and export � Client applications call create session once with authentication information to

set up a connection with the local access manager and receive a session identi�er� The authentication information

is used by the access manager to authenticate client requests sent to Rover servers�

To import an object� an application calls import and provides the object�s unique identi�er� the session identi�er�

a callback� and arguments� In addition� the application speci�es a priority that is used by the network scheduler to

reorder QRPCs� The import function immediately returns a promise 
��� to the application� The application can

then wait on this promise or continue execution� Rover transparently queues QRPCs for each import operation

in the stable log� When the requested object is received by the access manager� the access manager updates the

promise with the returned information� In addition� if a callback was speci�ed� the access manager invokes it�

The current implementation also has a load operation that is an import combined with a call to create a process�

Applications use the load operation to import RDOs that need a separate thread of control� When the access

manager receives an RDO that was requested by a load � it creates a separate process and executes the RDO� The

reason for a separate load operation is historical� At the time that the prototype was implemented� the underlying

target operating systems �the UNIX�based Linux and SunOS operating systems� did not support multiple threads

per address space and only provided limited support for dynamic linking� In a future implementation� load may

be directly incorporated within import �

��



Issue Choice

Object Design Use RDOs that encapsulate su�cient state to

e�ectively service local requests� but are small

enough to easily prefetch

Computation Migration Use RDOs to migrate computation that requires

high bandwidth access

Noti�cation Use colors and text to notify users of tentative

information

Replication Use RDOs to replicate information

Consistency Use logs of operations to detect con�icts and help

resolve them

Object Prefetching Tradeo� of RDO size versus easier prefetching�

but have to avoid overly aggressive prefetching

TABLE I

Implementation choices for the initial application set built using the Rover toolkit�

Once an object is imported� an application can invoke methods on it to read and�or change it� Applications

export each local change an object back to servers by calling the export operation and providing the object�s

unique identi�er� the session identi�er� a callback� and arguments� Like import � export immediately returns a

promise� When the access manager receives responses to exports� it updates the a�ected promises and invokes any

application�speci�ed callbacks�

C� Rover Application Suite

Section III discusses several important issues in designing mobile�aware applications� this section provides exam�

ples of how those issues are addressed in several mobile�transparent and mobile�aware applications that have been

developed using the Rover toolkit �Table I lists the major implementation issues�� The two mobile�transparent

applications are� Rover NNTP proxy � a USENET reader proxy� and Rover HTTP proxy � a proxy for Web browsers�

The mobile�aware applications are� Rover Exmh� an e�mail browser� Rover Webcal � a distributed calendar tool�

Rover Irolo� a graphical rolodex tool� Rover Stock Market Watcher � a tool that obtains stock quotes�

Two of the mobile�aware applications are based upon existing UNIX applications� Rover Exmh is a port of Brent

Welch�s Exmh Tcl�Tk�based e�mail browser� Rover Webcal is a port of Ical� a Tcl�Tk and C�� based distributed

calendar and scheduling program written by Sanjay Ghemawat� Rover Irolo and the Rover Stock Market Watcher

were built from scratch�

This application suite was chosen to test several hypotheses about the ability to reasonably meet users� expec�

tations in a mobile� intermittently�connected environment� These applications represent a set of applications that

mobile users are likely to use� Because RDOs a�ect the structure of applications� it is important to qualitatively

test the ideas contained in the Rover toolkit with complete applications in addition to using standard quantitative

techniques�

As can been seen in Table II� porting these �le system�based workstation applications to a mobile�aware Rover

applications requires varying amounts of work� Some applications were written�ported in a few weeks� while others

��



Rover Base New Rover New Rover

Program code client code server code

Rover Exmh 	
���� Tcl�Tk ����� Tcl�Tk �
� Tcl�Tk

		� C 	���� C

Webcal 	����� C�� 	���� C�� ����� C��

and Tcl�Tk and Tcl�Tk and Tcl�Tk

Rover HTTP Proxy none 	�� Tcl�Tk �
� C

����� C

Rover Irolo 
�� Tcl�Tk 
�� Tcl�Tk 	�� Tcl�Tk

		� C

Rover NNTP Proxy none �	� Tcl�Tk ��� C


�� C

Rover Stock Watcher none �
 Tcl�Tk 	�� Perl

		� C �� Tcl�Tk

TABLE II

Lines of code changed or added in porting Exmh and Webcal and implementing the Rover HTTP Proxy� Rover

Irolo� Rover NNTP Proxy� and the Rover Stock Watcher �

required several person�months of work� For example� porting Exmh and Ical to Rover required simple changes to

approximately ��� of the lines of code� Most of these changes came from replacing �le system calls with object

invocations� these modi�cations in Rover Exmh and Rover Webcal were made almost independently of the rest of

the code�

The Rover HTTP and NNTP proxies demonstrate how Rover mobile�aware proxies support existing applications

�e�g�� Netscape and XRN� without modi�cation� Creating these proxies for these services is far easier than

modifying all the applications that use these services�

C�� Mobile�Transparent Applications

Rover NNTP proxy� Using the Rover NNTP proxy� users can read USENET news with standard news readers

while disconnected and receive news updates even over very slow links� Whereas most NNTP servers download

and store all available news� the Rover proxy cache is �lled on a demand�driven basis� When a user begins reading

a newsgroup� the NNTP proxy loads the headers for that newsgroup as a single RDO while articles are prefetched

in the background� As the user�s news reader requests the header of each article� the NNTP proxy provides them

by using the local newsgroup RDO� As new articles arrive at the server� the server�side of the proxy constructs

operations to update the newsgroup�header object� Thus� when a news reader performs the common operation of

rereading the headers in a newsgroup� the NNTP proxy can service the request with minimal communication over

the slow link�

Rover HTTP proxy� This is a unique application that interoperates with most of the popular Web browsers�

It allows users of existing Web browsers to 	click ahead
 of the arrived data by requesting multiple new documents

before earlier requests have been satis�ed� The proxy intercepts all web requests and� if the requested item is not

locally cached� returns a null response to the browser and enqueues the request in the operation log� When a

��



connection becomes available� the page is automatically requested� In the meantime� the user can continue to

browse already available pages and issue additional requests for pages without waiting� The granularity of RDOs

is individual pages and images�

The client and server cooperate in prefetching� The client speci�es the depth of prefetching for pages� while the

server automatically prefetches in�lined images�

The proxy uses a separate window �from the browser� to display the status of a page �loaded or pending�� If

an uncached �le is requested and the network is unavailable� an entry is added to the window� As pages arrive�

the window is updated to re�ect the changes� This window exposes the object cache and operations log directly

to the user and allows the user limited control over them�

The proxy can also directly control NCSA�s Mosaic 
��� and NCC�s Netscape Navigator 
��� browsers using

their remote control interfaces�

C�� Mobile�Aware Applications

Rover Exmh� Rover Exmh uses three types of RDOs� mail messages� mail folders� and lists of mail folders� By

using this level of granularity� many user requests can be handled locally without any network tra�c� Upon startup�

Rover Exmh prefetches the list of mail folders� the mail folders the user has recently visited� and the messages

in the user�s inbox folder� Alternatively� using a �ner�level of granularity �e�g�� header and message body� would

allow for more prefetching� but could delay servicing of user requests �especially during periods of disconnection��

In the other direction� using a larger granularity �e�g�� entire folders� would seriously a�ect usability and response

times for slow links�

Some computation can be migrated to servers� For example� instead of performing a glimpse search of mail

folders locally at the client �and thus having to import the index across a potentially low bandwidth link�� the

client can construct a query request RDO and send it to the server�

The GUI indicates that an operation is tentative using color coding� Con�ict detection is based upon a log of

changes to RDOs� this allows the server to detect and resolve a con�ict such as one user adding a message to a

folder and another user deleting it� Unresolvable con�icts are re�ected back to the user�

Rover Webcal� This distributed calendar tool uses two types of RDOs� items �appointments� daily todo lists�

and daily reminders� and calendars �lists of items�� At this level of granularity� the client can fetch calendars and

then prefetch items using a variety of strategies �e�g�� plus or minus one week� a month at a time� etc���

Rover Webcal uses color coding to aid the user in identifying those objects that have been locally modi�ed but

not yet propagated to a server� Con�ict detection is based upon a log of changes to RDOs� this allows the server

to detect and resolve a con�ict such as one user adding an item to a calendar and another user deleting it�

Rover Irolo� This graphical rolodex application uses two types of RDOs� entries and indices �lists of entries��

The GUI displays the last time an entry was updated and indicates whether the item is committed or tentative�

Con�ict detection is based upon a log of changes to RDOs� this allows the server to detect and resolve a con�ict

such as one user adding an entry to an index and another user deleting it�

Rover Stock Market Watcher� This application uses both computation migration and fault�tolerance tech�

niques 
��� The client constructs RDOs for stocks that are to be monitored and sends them to the server� The

server uses fault�tolerant techniques to store the real�time information retrieved from stock ticker services�

��



VI� Experiments

The Rover server executes either as a Common Gateway Interface �CGI� plugin to NCSA�s httpd ���a server

�running on Ultrix and SunOS in the non�forking� pool of servers mode�� or as a standalone TCP�IP server� The

standalone server yields signi�cant performance advantages over the CGI version� as it avoids the fork and exec

overheads incurred on each invocation of the CGI version� In addition� because a new copy of the CGI server is

started to satisfy each incoming request� any persistent state across connections must be stored in the �le system

and re�read for each connection�

Rover is implemented on several platforms� IBM ThinkPad ���C ������Mhz i�����DX�� laptops running Linux

������ Intel Advanced�EV ���� Mhz Pentium� workstations running Linux ������� DECstation ���� workstations

running Ultrix ���� and SPARCstation � and �� workstations running SunOS ����� U�� The primary mode of

operation is to use the laptops as clients of the workstations� However� workstations can also be used as clients of

other workstations�

Network options that we have experimented with include �� Mbit�s switched Ethernet� � Mbit�s wireless AT T

WaveLAN� ��� Kbit�s and �� Kbit�s Integrated Digital Services Network �ISDN� links� and Serial Line IP with

Van Jacobson TCP�IP header compression �CSLIP� 
��� over ���� Kbit�s V���terbo wired and ��� Kbit�s Enhanced

Throughput Cellular �ETC� cellular dial�up links��

The test environment consisted of a single server and multiple clients� The server machine was an Intel Ad�

vanced�EV workstation running the standalone TCP�IP server� The clients were IBM ThinkPad ���C laptops�

All of the machines were otherwise idle during the tests�

To minimize the e�ects of unrelated network tra�c on the experiments� the switched Ethernet was con�gured

such that the server� the ThinkPad Ethernet adapter� and the WaveLAN base station were the only machines on

the Ethernet segment and were all on the same switch port� However� network tra�c over the wired� cellular�

and ISDN links used shared public resources and traversed shared links� thus� there is increased variability in the

experimental results for those network transports� To reduce the e�ects of the variations on the experiments� each

experiment was executed multiple times and the results averaged� It is important to note that ordinary TCP�IP

was used on the wireless networks� While Rover applications might bene�t from the use of a specialized TCP�IP

implementation� it is not necessary� this is an advantage of using Rover� Since a Rover application sends less data

than an unmodi�ed application� it is less sensitive to errors on wireless links�

The following experiments are designed to explore the performance characteristics of the Rover toolkit� In

particular� the experiments test the following hypotheses�

�� Using QRPC instead of RPC signi�cantly improves performance by enabling batching and compression of

multiple requests and responses�

�� Mobile�transparent applications bene�t from using the Rover toolkit�

�� Mobile�aware applications o�er signi�cant performance advantages over existing versions�

�The con
guration used for the cellular experiments was the one suggested by our cellular provider and the cellular modem

manufacturer� ��� Kbit
s ETC� The client connected to our laboratory�s terminal server modem pool through the cellular service

provider�s pool of ETC cellular modems� This imposes a substantial added latency of approximately ��� ms� but also yields

signi
cantly better resilience to errors� Other choices are ���� Kbit
s ETC and directly connecting to the terminal server modem

pool using ���� Kbit
s V���bis� However� both choices su�er from signi
cantly higher error rates� especially when the mobile host is

in motion� Also� V���bis is signi
cantly less tolerant of the communications interruptions introduced by the in�band signaling used

by cellular phones �for cell switching and power level change requests	�

��



TCP QRPC Latency

Transport Throughput Latency No Flash RAM Disk

� MByte null RPC Logging Logging Logging

Ethernet ���� � �� �� ��

WaveLAN ���� �� �� �� ���

��� ISDN ���� �� ��� ��� ���

�� ISDN ���� �� ��� ��� ���

���� Wired CSLIP ����� ��� ��� ��� ���

��� Cellular CSLIP ����� ���� ���� ���� ����

TABLE III

The Rover experimental environment� Latencies are in milliseconds� throughput is in Mbit�s� Null RPC

latency is a ping�pong over TCP sockets� TCP throughput is the time to send � Mbyte of compressible ASCII

data ������� using GNU	s gzip �� 
 similar to Rover Tcl�based RDOs� and QRPC latency is the time to perform

a null QRPC� The ISDN and Wired and Cellular CSLIP links perform hardware compression� Note that the

cellular times reflect the overhead of the ETC protocol and a non�error�free wireless link�

A� Null QRPC Performance

To establish the baseline performance for QRPC� we repeated the latency and bandwidth measurement experi�

ments from 
��� but extended them to include several additional network technologies and the use of Flash RAM

for stable storage� The results are summarized in Table III�

The cost of a QRPC has several primary components� the transport cost �the base null TCP cost from Table III

plus the per�byte network transmission cost�� the stable client and server logging costs� and the execution cost of

the QRPC itself� By using stable logging at clients� Rover can guarantee the delivery of requests from clients to

servers� The use of server�side stable logging allows Rover to avoid having to retransmit a request from a client

�which might be disconnected� after a server failure 
��� The results show that the relative impact of logging is a

function of the transport media� Since we expect that Rover users will often be connected via slower links �e�g��

wired or cellular dialup�� the cost of stable logging will be a minor component of overall performance �e�g�� less

than �� for cellular links when using Flash RAM�� Thus� we believe it is acceptable to pay the additional cost for

client and server logging of QRPCs�

To understand the e�ects of batching and compression� we measured the performance of QRPC with asyn�

chronous logging� Figure � shows the e�ects of batching and compression �using the heuristic from Section IV�

on the per�request cost when performing a series of �� QRPCs� In each set of bars� the leftmost bar �compressed

batched� shows the performance when both compression and batching are applied� For this test� the compression

ratio was approximately twelve to one and the batch size was an average of seven requests per message� The

second bar �compressed single� shows the performance with compression and only a single request outstanding�

The compression ratio was ��� to one� The third bar �uncompressed overlapped� shows the performance without

compression or batching� but with multiple outstanding requests� The rightmost bar �uncompressed single�shows

the performance without compression or batching and with only a single request outstanding�

��



Ethernet WaveLAN 128 ISDN 64 ISDN 19.2 Wired 9.6 Cellular
1

10

100

1000

10000
T

im
e 

(m
ill

is
ec

on
ds

)
Compressed batched
Compressed single
Uncompressed overlapped
Uncompressed single 

Fig� �� Average time in milliseconds for one null QRPC when using compressing and batching a series of �� QRPCs with

asynchronous log record �ushing� The y�axis uses a logarithmic scale�

Ethernet WaveLAN 128 ISDN 64 ISDN 19.2 Wired 9.6 Cellular
0

100

200

300

400

500

T
im

e 
(s

ec
on

ds
) Netscape alone

Netscape + Rover HTTP Proxy

Fig� 
� Time in seconds to fetch�display �� WWW pages using Netscape alone and with the Rover HTTP proxy�

The results show that together compression and batching o�er performance gains for all networks with the largest

gains occurring for the slowest networks� The main reason for the batching performance gain is the elimination of

multiple roundtrip messages� Compression o�ers a signi�cant bene�t only when used with batching because it is

able to compress multiple QRPC headers within a batch�

B� Mobile�Transparent Application Performance

We compared the performance of Netscape� using a mobile�transparent Rover HTTP proxy against the same

application executing independently� We measured the time to fetch and display �� WWW pages using a variety

of networks� Figure � provides the results of the experiment and shows that performance when using the Rover

HTTP proxy is comparable for faster networks and up to ��� faster for the slower networks� The total data

transmitted to the client was ��� Kbytes of compressed data representing ��� Kbytes of uncompressed data� The

HTML portion of the pages accounted for ���� Kbytes and had a compression ratio of ������ The majority of the

data consisted of images� which were far less compressible using the default compression� We plan to explore the

use of application�speci�c image compression 
���� It is important to note that the experiments do not re�ect the

��



Ethernet WaveLAN 128 ISDN 64 ISDN 19.2 Wired 9.6 Cellular
0

2

4

6

8
Sp

ee
du

p Rover Irolo speedup
Rover Webcal speedup
Rover Exmh speedup

Fig� �� Speedup 
or slowdown� of Rover mobile�aware versions of applications over the original X���based applications�

The tasks were� reading eight MIME e�mail messages� viewing one week�s appointments from a medium�sized calendar�

and browsing �fty rolodex entries�

	click�ahead
 nature of the Netscape�Rover HTTP proxy application� which allows the user to browse the loaded

pages while waiting for additional pages to load�

C� Mobile�Aware Application Performance

This section presents the performance bene�ts of caching RDOs and a comparison between mobile�transparent

applications and mobile�aware applications running on both high�bandwidth� low�latency and low�bandwidth�

high�latency networks�

To measure the performance bene�ts of the complete Rover system for mobile�aware applications� we compare

the performance of Rover Webcal� Rover Exmh� and Rover Irolo against their unmodi�ed X���based counterparts�

Ical� Exmh� and Irolo� For each application� we designed a workload representative of a typical user�s actions and

measured the time to perform the complete task� To keep the measurements representative� we did not measure

the cost of starting the application and loading the data required for the task� This is typical of how the system

is used� where the application is started and the data are loaded over a fast network and then the application is

used repeatedly over a slow network �or without any network connectivity�� Each task was repeated on each of

the six network options�

Figure � presents the speedup �or slowdown� of the Rover version of each application over the original X���based

application� In general� the results show that� for fast networks �Ethernet� WaveLAN� and ISDN�� the performance

when using Rover is comparable �a slight speedup for Irolo� equal for Exmh� and a slight slowdown for Ical�� Over

slower networks �wired and cellular dial�up links�� Rover application performance is consistently better �ranging

from a ��� performance gain on wired dial�up to a factor of ��� on cellular dial�up�� The results for these two

networking technologies are especially encouraging� since they represent the target environment for Rover�

When no network is present� it is not possible to use the original X���based applications� The Rover applications�

however� show no change in performance as long as the application data are locally cached�

What the numbers fail convey is the extreme sluggishness of the user interface when using slower �e�g�� cellular�

links without Rover� Scrolling and refreshing operations are extremely slow� Pressing buttons and selecting text are

��



very di�cult operations to perform because of the lag between mouse clicks and display updates� With Rover� the

user sees the same excellent GUI performance across a range of networks that varies by three orders of magnitude

in both bandwidth and latency�

VII� Conclusions

We have shown that the integration of relocatable dynamic objects and queued remote procedure calls in the

Rover toolkit provides a powerful basis for building mobile�transparent and mobile�aware applications� We have

found it quite easy to adapt applications to use these Rover facilities� resulting in applications that are far less

dependent on high�performance communication connectivity� For example� one might conjecture that it would be

di�cult to build a mobile version of Netscape that provides a useful service in the absence of network connectivity�

In practice� we �nd the combination of the Rover cache� relocatable dynamic objects for interactive support� and

queued remote procedure calls results in a surprisingly useful system�

RDOs and QRPCs allow application developers to decouple many user�observable delays from network latencies�

The result is excellent graphical user interface performance over network technologies that vary by three orders of

magnitude in bandwidth and latency�

In addition� measurements of end�to�end mobile application performance shows that mobile�transparent and

mobile�aware applications perform signi�cantly better than their stationary counterparts� For example� for the

mobile�transparent Netscape application� we observe a performance improvement of ���� For mobile�aware ap�

plications� we observe performance improvements of up to a factor of ��� over slow networks�

VIII� Acknowledgments

We thank David Gi�ord for his e�orts in the early design stages of the Rover toolkit� in particular his idea

of QRPC� We also thank Greg Ganger� Eddie Kohler� and the anonymous reviewers for their careful readings of

earlier versions of this paper� We would also like to thank the rest of the Rover project team� George Candea�

Constantine Cristakos� Alan F� deLespinasse� and Michael Shurpik for helping with the development of Rover�

References

��� H� T� Kung and J� T� Robinson� �On Optimistic Methods for Concurrency Control�� ACM Transactions on Database Systems�

vol� �� no� �� pp� �������� June �����

��� J� J� Kistler and M� Satyanarayanan� �Disconnected operation in the Coda 
le system�� ACM Transactions on Computer

Systems� vol� ��� pp� ����� Feb� �����

��� P� Honeyman� L� Huston� J� Rees� and D� Bachmann� �The LITTLE WORK project�� in Proc� of the �rd Workshop on

Workstations Operating Systems� Key Biscayne� FL� Apr� ����� IEEE�

��� P� Kumar� Mitigating the E�ects of Optimistic Replication in a Distributed File System� Ph�D� thesis� School of Computer

Science� Carnegie Mellon University� Dec� �����

��� J� H� Saltzer� D� P� Reed� and D� D� Clark� �End�to�end arguments in system design�� ACM Transactions on Computer

Systems� vol� �� no� �� pp� ������� Nov� �����

��� A� Joseph� A� F� deLespinasse� J� A� Tauber� D� K� Gi�ord� and F� Kaashoek� �Rover� A toolkit for mobile information access��

in Proc� of the Fifteenth Symposium on Operating Systems Principles �SOSP�� Copper Mountain Resort� CO� Dec� ����� pp�

��������

��� A�D� Birrell and B�J� Nelson� �Implementing remote procedure calls�� ACM Transactions on Computer Systems� vol� �� no�

�� pp� ������ Feb� �����

��� A� Joseph and F� Kaashoek� �Building reliable mobile�aware applications using the rover toolkit�� in Proc� of the Second

International Conference on Mobile Computing and Networking �MOBICOM ����� Rye� NY� Nov� ����� pp� ��������

��



��� R� H� Katz� �Adaptation and mobility in wireless information systems�� IEEE Personal Communications� vol� �� pp� �����

�����

���� N� Davies� G� Blair� K� Cheverst� and A� Friday� �Supporting adaptive services in a heterogeneous mobile environment�� in

Proc� of the Workshop on Mobile Computing Systems and Applications� Santa Cruz� CA� Dec� �����

���� F� Kaashoek� T� Pinckney� and J� A� Tauber� �Dynamic documents� Mobile wireless access to the WWW�� in Proc� of the

Workshop on Mobile Computing Systems and Applications� Santa Cruz� CA� Dec� ����� pp� ��������

���� A� Demers� K� Petersen� M� Spreitzer� D� Terry� M� Theimer� and B� Welch� �The Bayou architecture� Support for data sharing

among mobile users�� in Proc� of the Workshop on Mobile Computing Systems and Applications� Santa Cruz� CA� Dec� �����

pp� ����

���� M�G� Baker� �Changing communication environments in MosquitoNet�� in Proc� of the Workshop on Mobile Computing

Systems and Applications� Santa Cruz� CA� Dec� ����� pp� ������

���� M� Satyanarayanan� J� J� Kistler� L� B� Mummert� M� R� Ebling� P� Kumar� and Q� Lu� �Experience with disconnected

operation in a mobile environment�� in Proc� of the First USENIX Symposium on Mobile 	 Location
Independent Computing�

Cambridge� MA� Aug� ����� pp� ������

���� L� B� Mummert� M� R� Ebling� and M� Satyanarayanan� �Exploiting weak connectivity for mobile 
le access�� in Proc� of the

Fifteenth Symposium on Operating Systems Principles �SOSP�� Copper Mountain Resort� CO� Dec� ����� pp� ��������

���� P� Reiher� J� Heidemann� D� Ratner� G� Skinner� and G� J� Popek� �Resolving 
le con�icts in the Ficus 
le system�� in Proc�

of the USENIX Summer ���� Technical Conference� Boston� MA� ����� pp� ��������

���� L� B� Huston and P� Honeyman� �Disconnected operation for AFS�� in Proc� of the First USENIX Symposium on Mobile 	

Location
Independent Computing� Cambridge� MA� Aug� ����� pp� �����

���� L� Huston and P� Honeyman� �Partially connected operation�� in Proc� of the Second USENIX Symposium on Mobile 	

Location
Independent Computing� Ann Arbor� MI� Apr� ����� pp� ������

���� T� Watson and B� Bershad� �Local area mobile computing on stock hardware and mostly stock software�� in Proc� of the First

USENIX Symposium on Mobile 	 Location
Independent Computing� Cambridge� MA� Aug� ����� pp� ��������

���� T� Watson� �Application design for wireless computing�� in Proc� of the Workshop on Mobile Computing Systems and

Applications� Santa Cruz� CA� Dec� ����� pp� ������

���� J� Landay� �User interface issues in mobile computing�� in Proc� of the Fourth Workshop on Workstation Operating Systems

�WWOS
IV�� IEEE� Oct� ����� pp� ������

���� D� B� Terry� M� M� Theimer� K� Petersen� A� J� Demers� M� J� Spreitzer� and C� H� Hauser� �Managing update con�icts in a

weakly connected replicated storage system�� in Proc� of the Fifteenth Symposium on Operating Systems Principles �SOSP��

Copper Mountain Resort� CO� Dec� ����� pp� ��������

���� M� Theimer� A� Demers� K� Petersen� M� Spreitzer� D� Terry� and B� Welch� �Dealing with tentative data values in disconnected

work groups�� in Proc� of the Workshop on Mobile Computing Systems and Applications� Santa Cruz� CA� Dec� ����� pp�

��������

���� D� B� Terry� A� J� Demers� K� Petersen� M� J� Spreitzer� M� M� Theimer� and B� B� Welch� �Session guarantees for weakly

consistent replicated data�� in Proc� of the ���� Symposium on Parallel and Distributed Information Systems� Sept� �����

pp� ��������

���� M�T� Le� F� Burghardt� S� Seshan� and J� Rabaey� �InfoNet� the networking infrastructure of InfoPad�� in Proc� of the Spring

COMPCON Conference� ����� pp� ��������

���� S� Narayanaswamy� et� al�� �Application and network support for InfoPad�� IEEE Personal Communications� vol� �� no� ��

pp� ����� Apr� �����

���� A� Fox� S� D� Gribble� E� A� Brewer� and E� Amir� �Adapting to network and client variability via on�demand dynamic

distillation�� in Proc� of the Seventh Architectural Support for Programming Languages and Operating Systems �ASPLOS��

Cambridge� MA� Oct� ����� pp� ��������

���� J� Bartlett� �W��the Wireless World�Wide Web�� in Proc� of the Workshop on Mobile Computing Systems and Applications�

Santa Cruz� CA� Dec� ����� pp� ��������

���� R� Katz et� al�� �The Bay Area Research Wireless Access Network �BARWAN	�� in Proc� of the Spring COMPCON Confer


ence� Feb� �����

���� B� D� Noble� M� Price� and M� Satyanarayanan� �A programming interface for application�aware adaptation in mobile com�

puting�� in Proc� of the Second USENIX Symposium on Mobile 	 Location
Independent Computing� Ann Arbor� MI� Apr�

�����

��



���� L� Kawell Jr�� S� Beckhardt� T� Halvorsen� R� Ozzie� and I� Greif� �Replicated document management in a group communication

system�� Presented at the Second Conference on Computer
Supported Cooperative Work� Portland� OR� Sept� �����

���� J� Gray� P� Helland� P� O�Neil� and D� Shasha� �The dangers of replication and a solution�� in Proc� of the ���� SIGMOD

Conference� Montreal� Quebec� Canada� June �����

���� J� J� Kistler� Disconnected Operation in a Distributed File System� Ph�D� thesis� School of Computer Science� Carnegie

Mellon University� May �����

���� D� K� Gi�ord and J� E� Donahue� �Coordinating independent atomic actions�� in Proc� of the Spring COMPCON Conference�

San Francisco� CA� Feb� ����� pp� ������

���� W� Weihl and B� Liskov� �Implementation of Resilient� Atomic Data Types�� ACM Transactions on Programming Languages

and Systems� vol� �� no� �� pp� �������� Apr� �����

���� J�K� Ousterhout� Tcl and the Tk Toolkit� Addison�Wesley� Reading� MA� �����

���� K� Arnold and J� Gosling� The Java Programming Language� Addison�Wesley Publishing Co�� Reading� Massachusetts� �����

���� D� H� Crocker� Standard for the Format of ARPA Internet Text Messages� Internet RFC ���� Aug� �����

���� Information Sciences Institute� Transmission Control Protocol
 DARPA Internet Program Protocol Speci�cation� Internet

RFC ���� Sept� �����

���� B� Liskov and L� Shrira� �Promises� Linguistic support for e�cient asynchronous procedure calls�� in Proc� of the SIGPLAN

Conference on Programming Language Design and Implementation� Atlanta� GA� June ����� pp� ��������

���� National Center for Supercomputing Applications� Mosaic� University of Illinois in Urbana�Champaign� �����

���� Netscape Communications Corporation� Netscape Navigator� Mountain View� CA� �����

���� V� Jacobson� Compressing TCP�IP Headers for Low
Speed Serial Links� Internet RFC ����� Feb� �����

��


