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Abstract

Rover is a software toolkit that supports the construction of both mobile�transparent and mobile�aware appli�

cations� The objective of the mobile�transparent approach is to develop proxies for system services that hide the

mobile characteristics of the environment from applications� Since applications can be run without alteration� the

mobile�transparent approach is appealing� However� to excel� applications operating in the harsh conditions of a

mobile environment must often be aware of and take an active part in mitigating those conditions� The Rover

toolkit supports a set of programming and communication abstractions that enable the construction of both

mobile�transparent and mobile�aware applications� Using the Rover abstractions� applications obtain increased

availability� concurrency� resource allocation e�ciency� fault tolerance� consistency� and adaptation� Experimental

evaluation of a suite of mobile applications built with the toolkit demonstrates that such application�level control

can be obtained with relatively little programming overhead and allows correct operation� increases interactive

performance� and dramatically reduces network utilization under intermittently connected conditions�

I� Introduction

The mobile computing environment presents application designers with a unique set of communication and

data integrity constraints that are absent in traditional distributed computing settings� For example� although

mobile communication infrastructures are becoming more common� network bandwidth in mobile environments is

often severely limited or unavailable� Mobile application designers therefore require system facilities that minimize

dependence upon continuous network connectivity� provide tools to optimize the utilization of available network

bandwidth� minimize dependence on data stored on remote servers� and allow for dynamic division of work

between clients and servers� In this paper� we describe the Rover toolkit � a set of software tools that both supports

applications that operate oblivious to the underlying environment� and enables the construction of applications that

use awareness of the mobile environment to isolate themselves from its limitations� We illustrate the e�ectiveness

of the toolkit using a number of distributed applications� each of which runs well over several networks that di�er

by three orders of magnitude in bandwidth and latency�
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A� Mobile versus Stationary Environment

Designers of applications for mobile environments must address several di�erences between the mobile envi�

ronment and the stationary environment� Issues that represent minor inconveniences in stationary distributed

systems are signi�cant problems for mobile computers� This requires a rethinking of the classical distributed

systems techniques normally used in stationary environments�

Computers in a stationary environment are usually very reliable� Relative to their stationary counterparts�

mobile computers are quite fragile� a mobile computer may run out of battery power� be damaged in a fall� be

lost� or be stolen� Given these threats� primary ownership of data should reside with stationary computers� not

mobile computers� Furthermore� application designers should take special precautions to enhance the resilience of

the data stored on mobile computers�

Relative to most stationary computers� a mobile computer has fewer computational resources available� However�

the available resources may change dynamically �e�g�� a 	docked
 mobile computer that has access to a larger

display� graphic or math coprocessor� additional stationary storage� etc���

A stationary environment can distribute an application�s components and rely upon the use of high�bandwidth�

low�latency networks to provide good interactive application performance� Mobile computers operate primarily in

a limited bandwidth� high�latency� and intermittently�connected environment� nevertheless� users want the same

degree of responsiveness and performance as a fully�connected environment�

Network partitions are an infrequent occurrence in stationary networks� therefore� most applications consider

them to be major failures that are exposed to users� In the mobile environment� applications will face frequent�

long�duration network partitions� Some of the partitions will be involuntary �e�g�� due to a lack of network

coverage�� while others will be voluntary �e�g�� due to high dollar cost�� Applications should gracefully� and as

transparently as possible� handle such partitions� In addition� users should be able to continue working as if the

network was still available �albeit with some limitations�� In particular� users should be able to modify local copies

of global data�

When users modify local copies of global data� consistency becomes an issue� In a mobile environment� optimistic

concurrency control 
�� is useful because pessimistic methods are inappropriate �a disconnected user cannot grab

or release locks�� as pointed out by the designers of Coda 
��� However� using an optimistic approach does not

come for free� associated with long duration partitions� will be a greater incidence of update�update con�icts than

in stationary environments� It is therefore important to use application�speci�c semantic information to detect

when such con�icts are false positives and can be avoided�

B� The Argument for Mobile�Aware Computing

The attributes of the typical stationary environment have guided the development of classical distributed com�

puting techniques for building client�server applications� These applications are usually unaware of the environ�

ment� therefore� they make certain assumptions about the location and availability of resources�

Such mobile�transparent applications can be used unmodi�ed in mobile environments by having the system

shield or hide the di�erences between the stationary and mobile environments from applications� Coda 
�� and

Little Work 
�� used this approach by providing a �le system interface to applications� The systems consist of

a local proxy for some service �the �le system� running on the mobile host and providing the standard service

interface to the application� while attempting to mitigate any adverse e�ects of the mobile environment� The
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proxy on the mobile host cooperates with a remote server on a well�connected� stationary host�

However� the mobile�transparent approach sacri�ces functionality and performance� While the system hides

mobility issues from the application� it usually requires manual intervention by the user �i�e�� having the user

indicate which data to prefetch onto the user�s computer�� Similarly� con�ict resolution is complicated because the

interface between the application and its data was designed for a stationary environment� Consider an application

writing records into a �le shared among stationary and mobile hosts� While disconnected� the application on the

mobile host inserts a new record� The local �le system proxy records the write in a log� Meanwhile� an application

on a stationary host alters another record in the same �le� Upon reconnection� the �le system can detect that

con�icting updates have occurred� However� the �le system alone cannot resolve the con�ict�

Coda recognizes this limitation and provides for the use of application�speci�c resolvers �ASRs� 
��� However�

ASRs alone are insu�cient� In the above example� there is no way for the ASR to use the �le system interface to

determine whether the mobile host inserted a new record or the stationary host deleted an old one� The cause of

this confusion is that Coda changes the contract between the application and the �le system in order to hide the

condition of the underlying network� The read�write interface no longer applies to a single �le� but to possibly

inconsistent replicas of the �le� Therefore� any applications that depend on the standard read�write interface for

synchronization and ordering may fail�

So� although the mobile�transparent approach is appealing �in that it o�ers to run existing applications without

alteration�� it is fundamentally limited in that the functionality needed to create correct� well�performing applica�

tions in an intermittently�connected environment often requires the cooperation of both application and user� The

alternative to hiding environmental information from applications is to expose the information to the applications

and involve them in decision�making� This yields the class of mobile�aware applications�

A mobile�aware application can store not only the value of a write� but also the operation associated with

the write� This adds a signi�cant amount of application�speci�c semantic information� for example� it allows for

	on�the��y
 dynamic construction of con�ict resolution procedures�

Unlike previous systems� the Rover toolkit is designed to support both mobile�aware and mobile�transparent

approaches� For mobile�aware applications� the Rover toolkit provides the components and architecture necessary

for operation in a mobile environment� Our hypothesis is that running mobile applications e�ciently and correctly

often requires making applications and users aware of the environment in which they are running�

The mobile�aware argument can be viewed as applying the end�to�end argument 
�� to mobile applications�

	Communication functionality can be implemented only with the knowledge and help of the application standing at

the endpoints of the communications system�
 The �le system example described above illustrates that applications

need to be aware of intermittent network connectivity to achieve consistency� Similar arguments can be made with

respect to performance� reliability� low�power operation� etc�

The mobile�aware argument does not require that every application use its own� ad hoc approach to mobile

computing� On the contrary� it allows the underlying communication and programming systems to de�ne an

application programming interface that optimizes common cases and supports the transfer of appropriate infor�

mation between the layers� Since mobile�aware applications share common design goals� they will need to share

design features and techniques� The Rover toolkit provides exactly such a mobile�aware application programming

interface�
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C� Rover� The Toolkit Approach

The Rover toolkit o�ers applications a distributed object system based on a client�server architecture 
�� �see

Figure ��� Clients are Rover applications that typically run on mobile hosts� but could run on stationary hosts

as well� Servers� which may be replicated� typically run on stationary hosts and hold the long term state of the

system� Communication between clients is limited to peer�to�peer interactions within a mobile host �using the

local object cache for sharing� and mobile host�server interactions� there is no support for remote peer�to�peer or

mobile host�mobile host interactions�

The Rover toolkit provides mobile communication support based on two ideas� relocatable dynamic objects

�RDOs� and queued remote procedure call �QRPC�� A relocatable dynamic object is an object �code and data�

with a well�de�ned interface that can be dynamically loaded into a client computer from a server computer� or

vice versa� to reduce client�server communication requirements� Queued remote procedure call is a communication

system that permits applications to continue to make non�blocking remote procedure calls 
�� even when a host is

disconnected � requests and responses are exchanged upon network reconnection�

The key task of the programmer when building a mobile�aware application with Rover is to de�ne RDOs for the

data types manipulated by the application� and for data transported between client and server� The programmer

then divides the program into portions that run on the client and portions that run on the server� these parts

communicate by means of QRPC� The programmer then de�nes methods that update objects� including code for

con�ict detection and resolution�

To use the Rover toolkit� a programmer links the modules that compose the client and server portions of an

application with the Rover toolkit� The application can then actively cooperate with the runtime system to import

objects onto the local machine� invoke well�de�ned methods on those objects� export logs of method invocations

on those objects to servers� and reconcile the client�s copies of the objects with the server�s�

D� Main results

Earlier work on Rover introduced the Rover architecture� including both queued RPC and relocatable dynamic

objects 
��� 
��� This paper extends the design and implementation of QRPC and RDOs as described in 
�� with

compressed and batched QRPCs� presents the argument for making applications mobile�aware in greater depth�

and explains how applications use that awareness and the Rover toolkit to mitigate the e�ects of intermittent

communication on application performance� We draw four main conclusions from our experimental data and

experience developing Rover�

�� QRPC meshes extremely well with intermittently connected environments� Queuing enables RPCs to be

scheduled� batched� and compressed for increased network performance� QRPC performance is acceptable

even if every RPC is stored in stable logs at clients and servers� For lower�bandwidth networks� the overhead

of writing the logs is dwarfed by the underlying communication costs�

�� Use of RDOs allows mobile�aware applications to migrate functionality dynamically to either side of a slow

network connection to minimize the amount of data transiting the network� Caching RDOs reduces latency

and bandwidth consumption� Interface functionality can run at full speed on a mobile host� while large data

manipulations may be performed on the well�connected server�

�� We have implemented several mobile�aware applications �Rover Exmh� Webcal� Irolo� Stock Market Watcher�

and several proxies to support mobile�transparent applications �Web and USENET�� Our experience indi�
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Fig� �� Rover o�ers applications a client�server distributed object system with client caching and optimistic concurrency

control� Rover applications employ a primary�copy� tentative�update optimistic�consistency�based distributed object

model of data sharing� they call into the Rover library to import RDOs� and to export logs of operations that mutate

RDOs� Client�side applications invoke operations directly on locally cached RDOs� Server�side applications are respon�

sible for resolving con�icts and notifying clients of resolutions� A network scheduler drains the stable QRPC log� which

contains the RPCs that must be performed at the server�

cates that porting applications to Rover generally requires relatively little change to the original application�

Building Rover proxies is also easy and has allowed the use of applications �e�g�� Netscape and XRN� without

modi�cation� Most applications have been made mobile aware with only simple changes �approximately ���

of the original code and as little as three weeks work�� while others required several person�months of work�

�� Measurements of end�to�end mobile�application performance show that� by using Rover� mobile�transparent

and mobile�aware applications perform signi�cantly better than their original versions� For example� for the

mobile�transparent Netscape application� we observe performance improvements of up to ���� For mobile�

aware applications running over slow networks� we observe performance improvements of up to a factor of ���

over the original versions�

E� Outline of this paper

In the remainder of this paper we place our research in the context of related work �Section II�� present the

design of the Rover toolkit �Section III�� describe the implementation of the Rover toolkit �Section IV�� discuss

the implementation of several mobile�transparent and mobile�aware applications �Section V�� present experimental

results from these applications �Section VI�� and �nally� o�er observations on the bene�ts and limitations of the

Rover approach �Section VII��

II� Related Work

The need for mobile�aware applications and complimentary system services to expose mobility to applications

was identi�ed concurrently by several groups� Katz noted the need for adaptation of mobile systems to a variety

of networking environments 
��� Davies et� al� cited the need for protocols to provide feedback about the network
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to applications in a vertically integrated application environment 
���� Similarly� Kaashoek et� al� created a Web

browser which exposed the mobile environment to mobile code that implemented mobile�aware Web pages 
����

The Bayou project proposed and implemented an architecture for mobile�aware databases 
���� Baker has identi�ed

the dichotomy between mobile�awareness and mobile�transparency in general application and system design 
����

Rover is the �rst implemented general application architecture to support both mobile�transparent system service

proxies and mobile�aware applications�

Several previous projects have studied building mobile�transparent services for mobile clients� The Coda project

pioneered distributed services for mobile clients� In particular� it investigated how to build a mobile�transparent �le

system proxy for mobile computers by using optimistic concurrency control and prefetching 
��� 
���� Coda logs all

updates to the �le system during disconnection and replays the log on reconnection� automatic con�ict resolution

mechanisms are provided for directories and �les� using Unix �le naming semantics to invoke ASRs at the �le

system level 
��� A manual repair tool is provided for con�icts of either type that cannot be resolved automatically�

A newer version of Coda supports low�bandwidth networks as well as intermittent communication 
����

The Ficus �le system is also a mobile�transparent �le system supporting disconnected operation� but relies on

version vectors to detect con�icts 
���� The Little Work project caches �les to smooth disconnection from an AFS

�le system 
���� Con�icts are detected and reported to the user� Little Work is also able to use low�bandwidth

networks 
����

The BNU project implements an RPC�driven mobile�transparent application framework on mobile computers�

It allows for function shipping by downloading Scheme functions for interpretation 
���� The BNU environment

includes mobile�transparent proxies on stationary hosts for hiding the mobility of the system� BNU applications

do not dynamically adjust to the environment� nor do they have a concept of tentative or stale data� No addi�

tional support for disconnected operation� such as Rover�s queued RPC� is included in BNU� A follow�up project�

Wit� addresses some of these shortcomings and shares many of the goals of Rover� but employs di�erent solu�

tions 
���� Application designers for BNU noted that the workload characterizing mobile platforms is di�erent

from workstation environments and will entail distinct approaches to user interfaces 
����

A number of proposals have been made for various degrees of mobile�awareness in operating system services

and application� The Bayou project 
���� 
��� de�nes a mobile�aware database architecture for sharing data

among mobile users� Bayou supports tentative operation logs and data values 
��� and session guarantees for

weakly�consistent replicated data 
���� To illustrate these concepts� the authors have built a calendar tool and a

bibliographic database� Rover shares the notions of tentative operations and data� session guarantees� and the

calendar tool example with the Bayou project� Rover extends this work with an application programming interface�

RDOs� and QRPC to deal with intermittent communication� limited bandwidth� and resource�poor clients�

The InfoPad 
���� Daedalus 
���� GloMop 
��� and W� 
��� projects focus on mobile�aware wireless information

access� The InfoPad project employs a dumb terminal and o�oads all functionality from the client to the server�

Daedalus and GloMop use dynamic 	transcoding
 or 	distillation
 to reduce the bandwidth consumed by data

transmitted to a mobile host� The transcoding technology is completely compatible with Rover�s architecture�

Applications on the mobile host cooperate with mobile�aware proxies on a stationary host to de�ne the character�

istics of the desired network connections� Similarly� W� applies the technique of dividing application functionality

between a small PDA and a powerful� stationary host to Web browsing� Rover is designed for more �exible� dy�
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namic divisions� Depending on the power of the mobile host and available bandwidth� Rover allows mobile�aware

browsers to dynamically move functionality between the client and the server�

The BARWAN 
��� project supports mobile� 	data type aware
 applications� The approach relies on strongly

typed transmissions� A dynamically extensible type system enables type�speci�c compression levels and abstraction

mechanisms to conserver network usage� User code is itself a transmission type allowing computation relocation�

Davies� Adaptive Services 
��� similarly takes a protocol�centric approach for exposing information about the

mobile environment to the application� A similar approach is taken by the Odyssey project� Odyssey focuses on

system support to enable mobile�aware applications to use 	data �delity
 to control resource utilization� Data

�delity is de�ned as the degree to which a copy of data matches the original� 
��� Again� Rover is designed to focus

on dynamic adaptation of program functionality and data types�

A number of successful commercial mobile�aware applications have been developed for mobile hosts and limited�

bandwidth channels� For example� Qualcomm�s Eudora is a mail browser that allows e�cient remote access over

low�bandwidth links� Lotus Notes 
��� is a groupware application allowing users to share data in a weakly�connected

environment� Notes supports two forms of update operations� append and time�stamped� Con�icts are referred

to the user� TimeVision and Meeting Maker are group calendar tools allow a mobile user to download portions

of a calendar for o��line use� The Rover toolkit and its applications provide functionality that is similar to these

proprietary approaches� but in an application�independent manner� Using the Rover toolkit� standard workstation

applications such as Exmh and Ical can easily be turned into mobile�aware applications�

Gray et� al� perform a thorough theoretical analysis of the options for database replication in a mobile envi�

ronment and conclude that primary copy replication with tentative updates is the most appropriate approach for

mobile environments 
����

III� Design of the Rover Toolkit

The Rover toolkit is designed to support the construction of mobile�aware applications and proxies� In this

section we describe the key components of the Rover toolkit�

A� Object Design and QRPC

As the central structures about which all Rover design decisions revolve� relocatable dynamic objects �RDOs�

provide the key point of control in Rover applications� All application code and all application�touched data are

written as RDOs� RDOs may execute at either clients or servers� All RDOs have a 	home
 server that maintains

the primary� canonical copy� Clients import secondary copies of RDOs into their local caches and export tentatively

updated RDOs back to their home servers�

RDOs may vary in complexity from simple calendar items with a small set of operations to modules that

encapsulate a signi�cant part of an application �e�g�� the graphical user interface for an e�mail browser�� Complex

RDOs may create a thread of control when they are imported� The safe execution of RDOs is ensured by

authentication and by execution of RDOs in a controlled environment� These safety measures are appropriate

for the sharing of objects between mobile hosts and servers in the framework of speci�c applications� However�

there are several safety issues relating to the general use of mobile code that are not addressed by our current

implementation� This is an area of active research beyond the scope of this paper�

At the level of RDO design� application builders have semantic knowledge that is extremely useful in attaining
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the goals of mobile computing� By tightly coupling data with program code� applications can manage resource

utilization more carefully than is possible with a replication system that handles only generic data� Rover�s object

model makes this coupling extremely natural� For example� an RDO can include compression and decompression

methods along with compressed data in order to obtain application�speci�c and situation�speci�c compression�

reducing both network and storage utilization�

Rover clients use QRPC to lazily fetch RDOs from servers �see Figure ��� When an application issues a QRPC�

Rover stores the QRPC in a local stable log and immediately returns control to the application� If the application

has registered a callback routine� then when the requested RDO has arrived� Rover will invoke the callback to

notify the application� Alternatively� applications may simply block to wait for critical data �although this is an

undesirable action� especially when the mobile host is disconnected�� When the mobile host is connected� the

Rover network scheduler drains the log in the background� forwarding any queued QRPCs to the server�

When a Rover application modi�es a locally cached RDO� the cached copy is marked tentatively committed �

Updates are committed by using QRPC to lazily propagate the mutating operations to the Rover server� where

they are applied to the canonical copies� In the meantime� the application may choose to use tentatively committed

RDOs� This allows the application to continue execution even if the mobile host is disconnected�

B� Communication Scheduling

The Rover network scheduler may deliver QRPCs out of order �i�e�� non�FIFO�� depending upon any associ�

ated priorities and the dollar costs� It also may reorder logged requests based on consistency requirements and

application�speci�ed operation priorities� Reordering is important to usability in an environment with intermittent

connectivity� as it allows the user �through applications� to identify the important operations� For example� a user

may choose to send urgent updates as soon as possible while delaying other sends until inexpensive communication

is available�

QRPC supports split�phase operation� thus� if a mobile host is disconnected between sending the request and

receiving the reply� a Rover server will periodically attempt to contact the mobile host and deliver the reply�

The split�phase communication model enables Rover to use di�erent communication channels for the request and

the response and to close channels during the intervening period� Several wireless technologies o�er asymmetric

communication options� such as receive�only pagers and PCS phones that can initiate calls� but cannot receive

them� By splitting the request and response pair� communication can be directed over the most e�cient� available

channel� Closing the channel while waiting is particularly useful when the waiting period is long and the client

must pay for connection time�

The combination of the split�phase and stable nature of QRPCs allows a mobile host to be completely powered�

down while waiting for pending operation� When the mobile host resumes normal operation� the results of the

RDO invocation will be relayed reliably from the server� Thus� long�lived computation can occur at the server

while the mobile host conserves power�

C� Computation Relocation

Rover gives applications control over the location where computation will be performed� In an intermittently�

connected environment� the network often separates an application from the data upon which it is dependent� By

moving RDOs across the network� applications can move data and�or computation from client to server and vice�
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versa� Computation relocation is useful when a large body of data can be distilled down to a small amount of data

or code that actually transits the network or when remote functionality is needed during periods of disconnection�

For example� migrating a GUI �graphical user interface� to the client serves both these purposes� The code to

implement a GUI is small compared to the graphical display updates it generates� At the same time� the GUI

together with the application�s RDOs can locally process user actions� avoiding additional network tra�c and

enabling disconnected operation�

Clients can also use RDOs to export computation to servers� Such RDOs are particularly useful for two

operations� performing �ltering actions against a dynamic data stream and performing complex actions against a

large amount of data� With RDOs� the desired processing can be performed at the server� with only the processed

results returned to the client�

D� Noti�cation

Since the mobile environment is dynamic� it is important to present the user and the application with information

about the current environment� The Rover toolkit provides applications with environmental information for use in

dynamic decision making or for presentation to the user� Applications may use either polling or callback models

to determine the state of the mobile environment�

Applications can forward noti�cations to users or use them for silent policy changes� For example� in our

calendar application �see Section V�� appointments that have been modi�ed but not propagated to the server are

displayed in a distinctive color �a technique that was borrowed from the Bayou room scheduling tool 
����� This

informs users that the appointment might be canceled due to a con�ict�

E� Object Replication and Consistency

An essential component to accomplishing useful work while disconnected is having the necessary information

locally available 
���� RDO replica caching is the chief technique available in Rover to achieve high availability�

concurrency� and reliability� In this section� we discuss strategies for selecting objects to replicate and for reducing

consistency�related�costs�

E�� Replication

RDO replication is accomplished during periods of network connectivity by �lling the mobile host�s cache with

useful RDOs� Applications should decide which objects to prefetch� We believe that the usability of applica�

tions will be critically dependent upon simple user interface metaphors for indicating collections of objects to be

prefetched� Requiring users to directly list the names of objects that they wish to prefetch is inherently confusing

and error�prone� Instead� Rover applications can provide prioritized prefetch lists based upon high�level user ac�

tions� For example� Rover Exmh automatically generates prefetch operations for the user�s inbox folder� recently

received messages� as well as folders the user visits or selects�

While replication can bring great bene�ts� application designers must be careful to avoid unnecessary com�

munication� increased latencies� and dead�lock� Applications should not replicate any more data than absolutely

necessary and should strive to keep update messages small�
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E�� Consistency

When clients are allowed to perform concurrent updates on shared RDOs� most applications require consistency

control� The Rover toolkit provides signi�cant �exibility in the choice of mechanism� ranging from application�level

locking to application�speci�c algorithms for resolving uncoordinated updates to a single RDO� Since no single

scheme is appropriate for all applications� Rover leaves the selection of consistency scheme to the application�

However� only a limited number of methodologies lend themselves naturally to mobile environments� Therefore�

Rover provides substantial but not exclusive support for primary�copy� tentative�update optimistic consistency�

We expect many applications will continue to use a variety of approaches� including ad hoc approaches such as

hand editing or requiring all data replicas to converge to the same values� Certain applications will be structured

as a collection of independent atomic actions 
���� where the importing action uses application�level locks� version

vectors� or dependency�set checks to implement fully�serializable transactions within Rover method calls� Of

course� pessimistic concurrency control may cause long blocking periods in the mobile environment�

Rover directly supports primary�copy� tentative�update optimistic consistency control� Since optimistic concur�

rency control schemes allow updates by any host on any local data� we expect this approach to be widely used�

Therefore� we have built into the Rover library support for operation logging� rollback� and replay� log manipu�

lation functions� and automatically maintained RDO consistency vectors� So far� all Rover applications built to

date use primary�copy consistency control�

The server is responsible for maintaining the consistent view of the system� Update con�icts are detected and

resolved by the server� and the results of reconciliation are always treated by clients as overriding the tentative

state stored at the client� Thus� the client only needs to submit tentative operations to the server to reconcile the

system state and to assure that any updates are durable�

Rover automatically logs method invocations� rather than only new data values� to increase �exibility in resolving

con�icts� For example� a �nancial account object with debit� credit� and balance methods provides a great deal

more semantic information to the application than a simple account �le containing only the balance� Debit

and credit operations from multiple clients could be arbitrarily interleaved as long as the balance never becomes

negative� In contrast� consistently updating a balance value by overwriting the old value would require use of an

exclusive lock on the global balance�

When the QRPC for a mutating operation arrives at a server� the server invokes the requested method on the

primary copy� Typically a method call �rst checks whether the RDO has changed since it was imported by a mobile

host� The de�nition of con�icting modi�cations is strongly application� and data�speci�c� Therefore� Rover does

not try to detect con�icts directly� although it maintains version vectors for each RDO to aid con�ict detection�

In the event of an update�update con�ict� the con�ict must be resolved� Since the submitted operation is

tentative and was originally performed at the client on tentative data� the result of performing the operation at

the server may not be exactly what the client expected� However� since Rover can employ type�speci�c concurrency

control 
���� many con�icts can be avoided� Note that con�ict detection may depend not only on the application�

but on the data or even the operation involved�

IV� Implementation of the Rover Toolkit

As shown in Figure �� the Rover toolkit consists of four key components� the access manager� the object cache

�client�side only�� the operation log� and the network scheduler� we discuss each component in turn�
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client�side only�� operation log� and network scheduler�

Each machine has a local Rover access manager � which is responsible for handling all interactions between

client�side and server�side applications and among client�side applications� The access manager services requests

for objects �RDOs�� mediates network access� logs modi�cations to objects� and� at clients� manages the object

cache� Client�side applications communicate with the access manager to import objects from servers and cache

them locally� Server�side applications are invoked by the access manager to handle requests from client�side

applications� Applications invoke the methods provided by the objects and� using the access manager� make

changes globally visible by exporting them back to the servers�

Within the access manager� RDOs� are imported into the object cache� while QRPCs are exported to the

operation log � The access manager routes invocations and responses between applications� the cache� and the

operation log� The log is drained by the network scheduler � which mediates between the various communication

protocols and network interfaces�

Rover starts as a minimal 	kernel
 that imports functionality on demand� This feature is particularly important

for mobile hosts with limited resources� small memory or small screen versions of applications may be loaded by

default� However� if the application �nds more hardware and network resources available �e�g�� if the mobile host

is docked� further RDOs may be loaded to handle these cases 
����

Failure recovery is also handled by the access manager� This task is eased somewhat by our use of both a

persistent cache and an operation log� After a failure� the access manager re�queues any incomplete QRPCs for

re�delivery� At�most�once delivery semantics are provided by unique identi�ers and the persistent log� One issue

that remains an open question is how to handle error responses from resent QRPCs for client�side applications

that no longer are running� Our implementation currently ignores such responses�

The object cache provides stable storage for local copies of imported objects� The object cache consists of a

local private cache located within the application�s address space and a global shared cache located within the

access manager�s address space� Client�side applications do not usually interact directly with the object cache�

When a client�side application issues an import or export operation� the toolkit satis�es the request based upon

whether the object is found in a local cache and the consistency option speci�ed for the object�

�The current implementation of RDOs uses the Tcl and Tk languages ����� However� since the interface is designed to be language�

independent� it will be easy to explore the use of other interpreted or byte�compiled languages �e�g�� Java ����	�
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Once an object has been imported into the client�side application�s local address space� method invocations

without side e�ects are serviced locally by the object� At the application�s discretion� method invocations with

side e�ects may also be processed locally� inserting tentative data into the object cache� Operations with side

e�ects also insert a QRPC into a stable operation log located at the client� Each insert is a synchronous action�

The stable log is implemented as an ordinary UNIX �le� Rover performs both a �ush and a synchronize operation

to force new QRPCs to the log� Thus� the log update is on the critical path for message sending�

Support for intermittent network connectivity is accomplished by allowing the log to be incrementally �ushed

back to the server� Thus� as network connectivity comes and goes� the client will make progress towards reaching

a consistent state�

One issue Rover addresses with an application�speci�c approach is operation log growth during disconnected

operation� The ability to convey application�level semantics directly to servers is an important functional advan�

tage� especially in the presence of intermittent connectivity� However� it may lead to an operation log that grows

in size at a rate exceeding that of a simple write�ahead log� The traditional approach is log compaction 
����

Rover takes a di�erent approach by directly involving applications in log compaction� Applications can download

procedures into the access manager to manipulate their log records� For example� an application can �lter out

duplicate requests �e�g�� duplicate QRPCs to verify that an object is up�to�date can be reduced to a single QRPC��

In addition� applications can apply their own notion of 	overwriting
 to the operations in the log�

The network scheduler groups operations destined for the same server for transmission and selects the appro�

priate transport protocol and medium over which to send them� Rover is capable of using a variety of network

transports� Rover supports both connection�based protocols �e�g�� HTTP over TCP�IP networks� and connection�

less protocols �e�g�� SMTP over IP or non�IP networks� 
���� 
���� Di�erent protocols have di�erent strengths� For

example� while SMTP has extremely high latency� it is fundamentally a queued background process� it is more

appropriate than more interactive protocols for fetching extremely large documents� such as stored video� which

require large amounts of time regardless of the protocol� Another advantage is that the IP networks required for

HTTP or TCP are not always available� whereas SMTP often reaches even the most obscure locations�

The network scheduler leverages the queuing of QRPCs performed by the log to gain transmission e�ciency� The

result is a potentially signi�cant reduction in per�operation transmission overhead and an increase in connection

e�ciency through amortization of connection setup and teardown across multiple requests and responses� This

amortization is especially important when connection setup is expensive �either in terms of added latency or dollar

cost�� For example� the latency for a null RPC over a ��� Kbit�s Cellular CSLIP link is ���� seconds� batching

o�ers a substantial performance bene�t�

Our original network scheduler sent a request as soon as it was received from a client application� The new

extended scheduler uses the following heuristic to batch requests that are destined for the same server� when

a request is received from one client application� the scheduler uses the access manager to check all the client

applications �including the one that sent the original request� to see if any are in the process of sending a request

�this is the dashed arrow in Figure ��� If there are additional requests pending� the scheduler delays sending the

original request� Upon receipt of the next request� the scheduler repeats the pending request check� When there

are no pending requests from client applications� the scheduler batches the requests and sends them on the same

connection� the results are also received on the same connection�
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This heuristic imposes a small delay on requests �the time for the access manager to check each client application

for pending requests and to receive the requests�� However� this is a small penalty to pay relative that incurred

by a high roundtrip time� since it allows the scheduler to automatically batch requests� Thus� an application that

issues several requests in a series will have the requests automatically batched and sent to the server using a single

connection� We are also investigating alternatives that rely upon applications to specify the set of requests that

should be batched together�

The network scheduler also applies compression to the headers associated with requests and� in the absence

of application�speci�ed compression� applies compression to application data� This o�ers signi�cant performance

advantages� especially when combined with batching� Typical compression ratios for the applications we have

studied are ��� � ��� to one� The combination of batching and compression yields �on average� a two� to four�fold

reduction in execution times�

V� Mobile Computing Using Rover

In this section� we discuss the steps involved with implementing mobile�aware applications �or porting existing

applications to a mobile�aware environment�� the programming interface provided by the Rover toolkit� and the

set of sample applications that we constructed using the toolkit�

A� Using Objects Instead of Files

There are several steps involved in porting an existing application to Rover or creating a new Rover�based

application� Each step requires the application developer to make one of several implementation choices� The

choices we used in developing the initial set of Rover applications is presented in Table I� While Rover does not

provide any mechanical tools for building applications� it does provide a consistent framework�

The �rst step is to split the application into components and identify which components should be present on

each side of the network link� It is very important that application developers think carefully about how application

functions should be divided between a client and a server� The division will be mostly static� as most of the �le

system components will remain on the server and most of the GUI components will remain on the client� However�

those components that are dependent upon the computing environment �network or computational resources� or

are infrequently used may be dynamically generated� For example� the search operation performed by a client

could be dynamically customized to the current link attributes� over a low�latency link� more work could be done

at the client and less at the server� and vice versa for a high�latency link� Likewise� the main portion of an

application�s help information could be prefetched by a client� but less frequently referenced portions could be

loaded on demand�

Once the application has been split into components� the next step is to appropriately encapsulate the appli�

cation�s state within objects that can be replicated and sent to multiple clients� For example� a user�s electronic

mail consists of messages and folders� In a traditional distributed computing environment� one encapsulation is to

store each message in an individual �le and use directories to group the messages into folders� Information about

the size or modi�cation date of a message is determined by using �le system status operations� In the mobile com�

puting environment� the corresponding encapsulation stores messages as objects and folders as objects containing

references to message objects� Each object encapsulates both the message or folder data and the appropriate

metadata�
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In migrating to the mobile environment� the application�s reading of �les is replaced by the importing of objects

and its writing of �les is replaced by the exporting of changes to objects� The �le system interface still exists in

the server�side of the application� However� inserted between the two halves of the application is an object layer�

One of the primary purposes of the object layer is to provide a means of reducing the number of network

messages that must be sent between the client and server� this is done by migrating computation� Consider the

e�mail folder scan operation� which returns a list of messages and information about the messages in a folder� Using

a �le system�based approach means scanning the directory for the folder� opening each message� and extracting the

relevant information� This is an appropriate operation for a well�connected host� but would be very expensive and

time�consuming over a high�latency link� Using an object�based approach� the server�side application constructs

a folder object containing the metadata for the messages contained in the folder� The client�side application can

then import the folder object in a single roundtrip request and avoid multiple roundtrip requests� The multiple

requests are replaced by local computation � querying the folder object about the messages it contains�

The next step is to add support for interacting with the environment� For example� in the e�mail example� one

of the important pieces of message metadata that a folder object contains is the message�s size and the size of any

attachments� This information can be used by the application and conveyed to the user to allow useful decisions

to be made� Support for prefetching is another environment interaction issue� Also� the application developer

must decide which mechanisms to use for notifying users of the status of displayed data�

The �nal important step is the addition of application�speci�c con�ict resolution� For most stationary environ�

ments� con�icts are infrequent� For the mobile environment� they will be more common� Fortunately� application

developers can leverage the additional semantic information that is available with Rover�s operation�based �instead

of value�based� approach to object updating�

B� Toolkit Programming Interface

The programming interface between Rover and its client applications contains four primary functions� create

session� import � invoke� and export � Client applications call create session once with authentication information to

set up a connection with the local access manager and receive a session identi�er� The authentication information

is used by the access manager to authenticate client requests sent to Rover servers�

To import an object� an application calls import and provides the object�s unique identi�er� the session identi�er�

a callback� and arguments� In addition� the application speci�es a priority that is used by the network scheduler to

reorder QRPCs� The import function immediately returns a promise 
��� to the application� The application can

then wait on this promise or continue execution� Rover transparently queues QRPCs for each import operation

in the stable log� When the requested object is received by the access manager� the access manager updates the

promise with the returned information� In addition� if a callback was speci�ed� the access manager invokes it�

The current implementation also has a load operation that is an import combined with a call to create a process�

Applications use the load operation to import RDOs that need a separate thread of control� When the access

manager receives an RDO that was requested by a load � it creates a separate process and executes the RDO� The

reason for a separate load operation is historical� At the time that the prototype was implemented� the underlying

target operating systems �the UNIX�based Linux and SunOS operating systems� did not support multiple threads

per address space and only provided limited support for dynamic linking� In a future implementation� load may

be directly incorporated within import �
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Issue Choice

Object Design Use RDOs that encapsulate su�cient state to

e�ectively service local requests� but are small

enough to easily prefetch

Computation Migration Use RDOs to migrate computation that requires

high bandwidth access

Noti�cation Use colors and text to notify users of tentative

information

Replication Use RDOs to replicate information

Consistency Use logs of operations to detect con�icts and help

resolve them

Object Prefetching Tradeo� of RDO size versus easier prefetching�

but have to avoid overly aggressive prefetching

TABLE I

Implementation choices for the initial application set built using the Rover toolkit�

Once an object is imported� an application can invoke methods on it to read and�or change it� Applications

export each local change an object back to servers by calling the export operation and providing the object�s

unique identi�er� the session identi�er� a callback� and arguments� Like import � export immediately returns a

promise� When the access manager receives responses to exports� it updates the a�ected promises and invokes any

application�speci�ed callbacks�

C� Rover Application Suite

Section III discusses several important issues in designing mobile�aware applications� this section provides exam�

ples of how those issues are addressed in several mobile�transparent and mobile�aware applications that have been

developed using the Rover toolkit �Table I lists the major implementation issues�� The two mobile�transparent

applications are� Rover NNTP proxy � a USENET reader proxy� and Rover HTTP proxy � a proxy for Web browsers�

The mobile�aware applications are� Rover Exmh� an e�mail browser� Rover Webcal � a distributed calendar tool�

Rover Irolo� a graphical rolodex tool� Rover Stock Market Watcher � a tool that obtains stock quotes�

Two of the mobile�aware applications are based upon existing UNIX applications� Rover Exmh is a port of Brent

Welch�s Exmh Tcl�Tk�based e�mail browser� Rover Webcal is a port of Ical� a Tcl�Tk and C�� based distributed

calendar and scheduling program written by Sanjay Ghemawat� Rover Irolo and the Rover Stock Market Watcher

were built from scratch�

This application suite was chosen to test several hypotheses about the ability to reasonably meet users� expec�

tations in a mobile� intermittently�connected environment� These applications represent a set of applications that

mobile users are likely to use� Because RDOs a�ect the structure of applications� it is important to qualitatively

test the ideas contained in the Rover toolkit with complete applications in addition to using standard quantitative

techniques�

As can been seen in Table II� porting these �le system�based workstation applications to a mobile�aware Rover

applications requires varying amounts of work� Some applications were written�ported in a few weeks� while others
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Rover Base New Rover New Rover

Program code client code server code

Rover Exmh 	
���� Tcl�Tk ����� Tcl�Tk �
� Tcl�Tk

		� C 	���� C

Webcal 	����� C�� 	���� C�� ����� C��

and Tcl�Tk and Tcl�Tk and Tcl�Tk

Rover HTTP Proxy none 	�� Tcl�Tk �
� C

����� C

Rover Irolo 
�� Tcl�Tk 
�� Tcl�Tk 	�� Tcl�Tk

		� C

Rover NNTP Proxy none �	� Tcl�Tk ��� C


�� C

Rover Stock Watcher none �
 Tcl�Tk 	�� Perl

		� C �� Tcl�Tk

TABLE II

Lines of code changed or added in porting Exmh and Webcal and implementing the Rover HTTP Proxy� Rover

Irolo� Rover NNTP Proxy� and the Rover Stock Watcher �

required several person�months of work� For example� porting Exmh and Ical to Rover required simple changes to

approximately ��� of the lines of code� Most of these changes came from replacing �le system calls with object

invocations� these modi�cations in Rover Exmh and Rover Webcal were made almost independently of the rest of

the code�

The Rover HTTP and NNTP proxies demonstrate how Rover mobile�aware proxies support existing applications

�e�g�� Netscape and XRN� without modi�cation� Creating these proxies for these services is far easier than

modifying all the applications that use these services�

C�� Mobile�Transparent Applications

Rover NNTP proxy� Using the Rover NNTP proxy� users can read USENET news with standard news readers

while disconnected and receive news updates even over very slow links� Whereas most NNTP servers download

and store all available news� the Rover proxy cache is �lled on a demand�driven basis� When a user begins reading

a newsgroup� the NNTP proxy loads the headers for that newsgroup as a single RDO while articles are prefetched

in the background� As the user�s news reader requests the header of each article� the NNTP proxy provides them

by using the local newsgroup RDO� As new articles arrive at the server� the server�side of the proxy constructs

operations to update the newsgroup�header object� Thus� when a news reader performs the common operation of

rereading the headers in a newsgroup� the NNTP proxy can service the request with minimal communication over

the slow link�

Rover HTTP proxy� This is a unique application that interoperates with most of the popular Web browsers�

It allows users of existing Web browsers to 	click ahead
 of the arrived data by requesting multiple new documents

before earlier requests have been satis�ed� The proxy intercepts all web requests and� if the requested item is not

locally cached� returns a null response to the browser and enqueues the request in the operation log� When a
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connection becomes available� the page is automatically requested� In the meantime� the user can continue to

browse already available pages and issue additional requests for pages without waiting� The granularity of RDOs

is individual pages and images�

The client and server cooperate in prefetching� The client speci�es the depth of prefetching for pages� while the

server automatically prefetches in�lined images�

The proxy uses a separate window �from the browser� to display the status of a page �loaded or pending�� If

an uncached �le is requested and the network is unavailable� an entry is added to the window� As pages arrive�

the window is updated to re�ect the changes� This window exposes the object cache and operations log directly

to the user and allows the user limited control over them�

The proxy can also directly control NCSA�s Mosaic 
��� and NCC�s Netscape Navigator 
��� browsers using

their remote control interfaces�

C�� Mobile�Aware Applications

Rover Exmh� Rover Exmh uses three types of RDOs� mail messages� mail folders� and lists of mail folders� By

using this level of granularity� many user requests can be handled locally without any network tra�c� Upon startup�

Rover Exmh prefetches the list of mail folders� the mail folders the user has recently visited� and the messages

in the user�s inbox folder� Alternatively� using a �ner�level of granularity �e�g�� header and message body� would

allow for more prefetching� but could delay servicing of user requests �especially during periods of disconnection��

In the other direction� using a larger granularity �e�g�� entire folders� would seriously a�ect usability and response

times for slow links�

Some computation can be migrated to servers� For example� instead of performing a glimpse search of mail

folders locally at the client �and thus having to import the index across a potentially low bandwidth link�� the

client can construct a query request RDO and send it to the server�

The GUI indicates that an operation is tentative using color coding� Con�ict detection is based upon a log of

changes to RDOs� this allows the server to detect and resolve a con�ict such as one user adding a message to a

folder and another user deleting it� Unresolvable con�icts are re�ected back to the user�

Rover Webcal� This distributed calendar tool uses two types of RDOs� items �appointments� daily todo lists�

and daily reminders� and calendars �lists of items�� At this level of granularity� the client can fetch calendars and

then prefetch items using a variety of strategies �e�g�� plus or minus one week� a month at a time� etc���

Rover Webcal uses color coding to aid the user in identifying those objects that have been locally modi�ed but

not yet propagated to a server� Con�ict detection is based upon a log of changes to RDOs� this allows the server

to detect and resolve a con�ict such as one user adding an item to a calendar and another user deleting it�

Rover Irolo� This graphical rolodex application uses two types of RDOs� entries and indices �lists of entries��

The GUI displays the last time an entry was updated and indicates whether the item is committed or tentative�

Con�ict detection is based upon a log of changes to RDOs� this allows the server to detect and resolve a con�ict

such as one user adding an entry to an index and another user deleting it�

Rover Stock Market Watcher� This application uses both computation migration and fault�tolerance tech�

niques 
��� The client constructs RDOs for stocks that are to be monitored and sends them to the server� The

server uses fault�tolerant techniques to store the real�time information retrieved from stock ticker services�
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VI� Experiments

The Rover server executes either as a Common Gateway Interface �CGI� plugin to NCSA�s httpd ���a server

�running on Ultrix and SunOS in the non�forking� pool of servers mode�� or as a standalone TCP�IP server� The

standalone server yields signi�cant performance advantages over the CGI version� as it avoids the fork and exec

overheads incurred on each invocation of the CGI version� In addition� because a new copy of the CGI server is

started to satisfy each incoming request� any persistent state across connections must be stored in the �le system

and re�read for each connection�

Rover is implemented on several platforms� IBM ThinkPad ���C ������Mhz i�����DX�� laptops running Linux

������ Intel Advanced�EV ���� Mhz Pentium� workstations running Linux ������� DECstation ���� workstations

running Ultrix ���� and SPARCstation � and �� workstations running SunOS ����� U�� The primary mode of

operation is to use the laptops as clients of the workstations� However� workstations can also be used as clients of

other workstations�

Network options that we have experimented with include �� Mbit�s switched Ethernet� � Mbit�s wireless AT T

WaveLAN� ��� Kbit�s and �� Kbit�s Integrated Digital Services Network �ISDN� links� and Serial Line IP with

Van Jacobson TCP�IP header compression �CSLIP� 
��� over ���� Kbit�s V���terbo wired and ��� Kbit�s Enhanced

Throughput Cellular �ETC� cellular dial�up links��

The test environment consisted of a single server and multiple clients� The server machine was an Intel Ad�

vanced�EV workstation running the standalone TCP�IP server� The clients were IBM ThinkPad ���C laptops�

All of the machines were otherwise idle during the tests�

To minimize the e�ects of unrelated network tra�c on the experiments� the switched Ethernet was con�gured

such that the server� the ThinkPad Ethernet adapter� and the WaveLAN base station were the only machines on

the Ethernet segment and were all on the same switch port� However� network tra�c over the wired� cellular�

and ISDN links used shared public resources and traversed shared links� thus� there is increased variability in the

experimental results for those network transports� To reduce the e�ects of the variations on the experiments� each

experiment was executed multiple times and the results averaged� It is important to note that ordinary TCP�IP

was used on the wireless networks� While Rover applications might bene�t from the use of a specialized TCP�IP

implementation� it is not necessary� this is an advantage of using Rover� Since a Rover application sends less data

than an unmodi�ed application� it is less sensitive to errors on wireless links�

The following experiments are designed to explore the performance characteristics of the Rover toolkit� In

particular� the experiments test the following hypotheses�

�� Using QRPC instead of RPC signi�cantly improves performance by enabling batching and compression of

multiple requests and responses�

�� Mobile�transparent applications bene�t from using the Rover toolkit�

�� Mobile�aware applications o�er signi�cant performance advantages over existing versions�

�The con
guration used for the cellular experiments was the one suggested by our cellular provider and the cellular modem

manufacturer� ��� Kbit
s ETC� The client connected to our laboratory�s terminal server modem pool through the cellular service

provider�s pool of ETC cellular modems� This imposes a substantial added latency of approximately ��� ms� but also yields

signi
cantly better resilience to errors� Other choices are ���� Kbit
s ETC and directly connecting to the terminal server modem

pool using ���� Kbit
s V���bis� However� both choices su�er from signi
cantly higher error rates� especially when the mobile host is

in motion� Also� V���bis is signi
cantly less tolerant of the communications interruptions introduced by the in�band signaling used

by cellular phones �for cell switching and power level change requests	�
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TCP QRPC Latency

Transport Throughput Latency No Flash RAM Disk

� MByte null RPC Logging Logging Logging

Ethernet ���� � �� �� ��

WaveLAN ���� �� �� �� ���

��� ISDN ���� �� ��� ��� ���

�� ISDN ���� �� ��� ��� ���

���� Wired CSLIP ����� ��� ��� ��� ���

��� Cellular CSLIP ����� ���� ���� ���� ����

TABLE III

The Rover experimental environment� Latencies are in milliseconds� throughput is in Mbit�s� Null RPC

latency is a ping�pong over TCP sockets� TCP throughput is the time to send � Mbyte of compressible ASCII

data ������� using GNU	s gzip �� 
 similar to Rover Tcl�based RDOs� and QRPC latency is the time to perform

a null QRPC� The ISDN and Wired and Cellular CSLIP links perform hardware compression� Note that the

cellular times reflect the overhead of the ETC protocol and a non�error�free wireless link�

A� Null QRPC Performance

To establish the baseline performance for QRPC� we repeated the latency and bandwidth measurement experi�

ments from 
��� but extended them to include several additional network technologies and the use of Flash RAM

for stable storage� The results are summarized in Table III�

The cost of a QRPC has several primary components� the transport cost �the base null TCP cost from Table III

plus the per�byte network transmission cost�� the stable client and server logging costs� and the execution cost of

the QRPC itself� By using stable logging at clients� Rover can guarantee the delivery of requests from clients to

servers� The use of server�side stable logging allows Rover to avoid having to retransmit a request from a client

�which might be disconnected� after a server failure 
��� The results show that the relative impact of logging is a

function of the transport media� Since we expect that Rover users will often be connected via slower links �e�g��

wired or cellular dialup�� the cost of stable logging will be a minor component of overall performance �e�g�� less

than �� for cellular links when using Flash RAM�� Thus� we believe it is acceptable to pay the additional cost for

client and server logging of QRPCs�

To understand the e�ects of batching and compression� we measured the performance of QRPC with asyn�

chronous logging� Figure � shows the e�ects of batching and compression �using the heuristic from Section IV�

on the per�request cost when performing a series of �� QRPCs� In each set of bars� the leftmost bar �compressed

batched� shows the performance when both compression and batching are applied� For this test� the compression

ratio was approximately twelve to one and the batch size was an average of seven requests per message� The

second bar �compressed single� shows the performance with compression and only a single request outstanding�

The compression ratio was ��� to one� The third bar �uncompressed overlapped� shows the performance without

compression or batching� but with multiple outstanding requests� The rightmost bar �uncompressed single�shows

the performance without compression or batching and with only a single request outstanding�

��



Ethernet WaveLAN 128 ISDN 64 ISDN 19.2 Wired 9.6 Cellular
1

10

100

1000

10000
T

im
e 

(m
ill

is
ec

on
ds

)
Compressed batched
Compressed single
Uncompressed overlapped
Uncompressed single 

Fig� �� Average time in milliseconds for one null QRPC when using compressing and batching a series of �� QRPCs with

asynchronous log record �ushing� The y�axis uses a logarithmic scale�
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Fig� 
� Time in seconds to fetch�display �� WWW pages using Netscape alone and with the Rover HTTP proxy�

The results show that together compression and batching o�er performance gains for all networks with the largest

gains occurring for the slowest networks� The main reason for the batching performance gain is the elimination of

multiple roundtrip messages� Compression o�ers a signi�cant bene�t only when used with batching because it is

able to compress multiple QRPC headers within a batch�

B� Mobile�Transparent Application Performance

We compared the performance of Netscape� using a mobile�transparent Rover HTTP proxy against the same

application executing independently� We measured the time to fetch and display �� WWW pages using a variety

of networks� Figure � provides the results of the experiment and shows that performance when using the Rover

HTTP proxy is comparable for faster networks and up to ��� faster for the slower networks� The total data

transmitted to the client was ��� Kbytes of compressed data representing ��� Kbytes of uncompressed data� The

HTML portion of the pages accounted for ���� Kbytes and had a compression ratio of ������ The majority of the

data consisted of images� which were far less compressible using the default compression� We plan to explore the

use of application�speci�c image compression 
���� It is important to note that the experiments do not re�ect the
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Fig� �� Speedup 
or slowdown� of Rover mobile�aware versions of applications over the original X���based applications�

The tasks were� reading eight MIME e�mail messages� viewing one week�s appointments from a medium�sized calendar�

and browsing �fty rolodex entries�

	click�ahead
 nature of the Netscape�Rover HTTP proxy application� which allows the user to browse the loaded

pages while waiting for additional pages to load�

C� Mobile�Aware Application Performance

This section presents the performance bene�ts of caching RDOs and a comparison between mobile�transparent

applications and mobile�aware applications running on both high�bandwidth� low�latency and low�bandwidth�

high�latency networks�

To measure the performance bene�ts of the complete Rover system for mobile�aware applications� we compare

the performance of Rover Webcal� Rover Exmh� and Rover Irolo against their unmodi�ed X���based counterparts�

Ical� Exmh� and Irolo� For each application� we designed a workload representative of a typical user�s actions and

measured the time to perform the complete task� To keep the measurements representative� we did not measure

the cost of starting the application and loading the data required for the task� This is typical of how the system

is used� where the application is started and the data are loaded over a fast network and then the application is

used repeatedly over a slow network �or without any network connectivity�� Each task was repeated on each of

the six network options�

Figure � presents the speedup �or slowdown� of the Rover version of each application over the original X���based

application� In general� the results show that� for fast networks �Ethernet� WaveLAN� and ISDN�� the performance

when using Rover is comparable �a slight speedup for Irolo� equal for Exmh� and a slight slowdown for Ical�� Over

slower networks �wired and cellular dial�up links�� Rover application performance is consistently better �ranging

from a ��� performance gain on wired dial�up to a factor of ��� on cellular dial�up�� The results for these two

networking technologies are especially encouraging� since they represent the target environment for Rover�

When no network is present� it is not possible to use the original X���based applications� The Rover applications�

however� show no change in performance as long as the application data are locally cached�

What the numbers fail convey is the extreme sluggishness of the user interface when using slower �e�g�� cellular�

links without Rover� Scrolling and refreshing operations are extremely slow� Pressing buttons and selecting text are
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very di�cult operations to perform because of the lag between mouse clicks and display updates� With Rover� the

user sees the same excellent GUI performance across a range of networks that varies by three orders of magnitude

in both bandwidth and latency�

VII� Conclusions

We have shown that the integration of relocatable dynamic objects and queued remote procedure calls in the

Rover toolkit provides a powerful basis for building mobile�transparent and mobile�aware applications� We have

found it quite easy to adapt applications to use these Rover facilities� resulting in applications that are far less

dependent on high�performance communication connectivity� For example� one might conjecture that it would be

di�cult to build a mobile version of Netscape that provides a useful service in the absence of network connectivity�

In practice� we �nd the combination of the Rover cache� relocatable dynamic objects for interactive support� and

queued remote procedure calls results in a surprisingly useful system�

RDOs and QRPCs allow application developers to decouple many user�observable delays from network latencies�

The result is excellent graphical user interface performance over network technologies that vary by three orders of

magnitude in bandwidth and latency�

In addition� measurements of end�to�end mobile application performance shows that mobile�transparent and

mobile�aware applications perform signi�cantly better than their stationary counterparts� For example� for the

mobile�transparent Netscape application� we observe a performance improvement of ���� For mobile�aware ap�

plications� we observe performance improvements of up to a factor of ��� over slow networks�
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